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Abstract

In the last two decades, the design of longitudinal studies, especially the sample

size determination, has received extensive attention (Overall and Doyle 1994; Hedeker

et al. 1999; Roy et al. 2007). However, there is little discussion on the relative

efficiency of three strategies widely used to analyze randomized clinical trial data: a

full longitudinal analysis using all data measured over time, an endpoint analysis using

data measured at the endpoint (the primary time point for outcome evaluation), and

a change score analysis using data measured at the baseline and the endpoint. When

designing randomized clinical trials, investigators usually need to decide whether they

would collect the interim data and if so, which type of analysis among the three would

be the primary analysis. In this work, we compare the relative efficiency of detecting an

intervention effect in randomized clinical trials using longitudinal, endpoint, and change

score analysis, assuming linearity of the outcome trajectory and several commonly

used within-individual correlation structures. Our analysis reveals an important and
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somewhat surprising finding that a full longitudinal analysis using all available data

is often less efficient than an endpoint analysis and the change score analysis if the

correlation among the repeated measurements is not particularly strong and the drop

out rate is not high. We illustrate our findings through the design of two randomized

clinical trials.
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1 Introduction

In many randomized clinical trials, repeated measures of an outcome are recorded over the

course of study. When designing or analyzing these trials, investigators need to decide

whether to choose among a longitudinal analysis that incorporates all data measured over

time, an endpoint analysis based on outcomes measured at the endpoint (the study’s primary

time point for outcome evaluation), or a change score analysis based on change from the

baseline to the endpoint. The endpoint analysis is usually a two-sample test comparing

group mean outcomes at the endpoint. The change score analysis is usually a two-sample

test on the difference scores. The longitudinal analysis is usually based on a linear mixed

effects model (Laird and Ware 1982) or a marginal model using general estimating equations

(Liang and Zeger 1986) with all available data, including baseline, interim and primary time

point data.

Intuitively, it might appear reasonable to assume that the longitudinal analysis would

be more efficient than the endpoint or change score analysis because more data is used.

However, whether this intuition indeed holds depends on how informative the extra data

are. As an example, consider a randomized parallel group clinical trial with two waves of

data collection at the baseline and the end of study. In this case, longitudinal analysis and

change score analysis coincide. Here it is well-known that longitudinal analysis based on

change scores (difference between the two waves) is less efficient than the endpoint analysis

if the autocorrelation ρ is less than 0.5. The longitudinal/change scores analysis is inferior
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in this case because adding the baseline measures introduces more noise than information

when the autocorrelation ρ is low. It appears reasonable that the same trade-off might also

hold for studies with more than two waves of data collection. However, explicit relationship

between relative efficiency of these analyses and the autocorrelation has not been studied

systematically in the literature for more general cases.

Our experience with practical studies reveals that the autocorrelation between the base-

line and primary endpoint outcomes is often less than 0.5. For example, in a landmark

randomized clinical trial of complicated grief (Shear et al. 2005), the correlation between

the baseline outcome measure inventory of complicated grief (ICG) and the 16-week end-

point ICG was only 0.38. Therefore it is important to take autocorrelation into consideration

when choosing analysis strategies.

The inferiority of the two-wave longitudinal/change score analysis when the autocorrela-

tion ρ is less than 0.5 did not stop the wide use of of longitudinal studies. Part of the reason

for this popularity of longitudinal studies might be because investigators and statisticians

anticipated that this inferiority will diminish with more waves of data. However, our find-

ings presented below indicate that this intuition is not always true. For example, with the

autoregressive correlation structure (AR1), the breakpoint for the longitudinal analysis to be

more efficient than the endpoint analysis remains very close to ρ = 0.5 with more waves of

data (Figure 1, upper panel); furthermore, longitudinal analysis is less efficient than change

score analysis for almost the entire range of autocorrelation (ρ) between the baseline and

the primary time point, except when ρ is very close to zero: ρ <= 0.013 for four waves,

and 0.027 for five waves (Figure 1, bottom panel). Therefore, the intuition that longitudinal

analysis is more efficient by virtue of its use of more data is not necessarily valid.

Another part of the reason for the popularity of longitudinal studies might be due to the

desire to guard against participant dropout: with longitudinal studies, interim data can be

used to extrapolate to the endpoint, say, using a linear trajectory. For the first part of this

paper, we focus on studies with little dropout and missing data, to illustrate the relative
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efficiency among the three analysis strategies in the most transparent way. In the second

part of this paper the impact of missing data on the relative efficiency among the three

analysis strategies.

There is a wealth of literature on statistical methods for the analysis of longitudinal data

(e.g., Diggle et al. 2002; Fitzmaurice et al. 2004; Hardin and Hilbe 2002). In addition, the

design issues of longitudinal studies, especially the sample size determination, has drawn

extensive attention over the years (Vonesh and Schork 1986; Muller et al. 1992; Overall

and Doyle 1994; Rochon J 1998; Hedeker et al. 1999; Yan and Su 2006; Roy et al. 2007;

Bhaumik et al. 2008; Moerbeek 2008; Gibbons et al. 2010). For example, Muller et al. (1992)

considered power calculation for multivariate linear models with repeated measures. Hedeker

et al. (1999) focused on one-degree-of-freedom contrasts such as time by group interaction,

and examined power and sample size for longitudinal studies, allowing for attrition. Roy et

al. (2007) extended the work in Hedeker et al. (1999) to multi-level designs where repeated

measurements are nested within participants and participants are nested within clusters.

However, how the power of longitudinal analysis compares with simple endpoint or change

score analysis has not received much attention.

In recent years, the CONSORT statement (http://www.consort-statement.org) has been

widely accepted as a guideline for designing and reporting clinical trials, endorsed by major

clinical journals such as the Journal of American Medical Association, New England Journal

of Medicine, and British Medical Journal. Item 6a of the CONSORT statement recommends

”Completely defined pre-specified primary and secondary outcome measures, including how

and when they were assessed”. In addition, it states, ”authors should also indicate the pre-

specified time point of primary interest.” Clearly, the endpoint analysis conducted at the

endpoint directly follows the CONSORT guideline, under the implicit assumption that the

endpoint is the ”time point of primary interest.”

In this paper, we compare the relative efficiency of longitudinal, endpoint, and change

score analyses for randomized clinical trials. In an endpoint analysis, we focus on testing the
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group mean difference between treatment arms at the endpoint. In a change score analysis,

we compare the difference between the endpoint and the baseline across treatment groups. In

a longitudinal analysis, we focus on testing time by group interaction, which is equivalent to

comparing the group mean difference at the endpoint under several common assumptions:

the expected outcome trajectory is linear in both groups; participants are randomized to

one of the treatment arms (therefore their expected baseline outcomes are the same), and

participants in different arms are followed by the same period of time. In this case, testing

for time by group interaction is also equivalent to testing the difference in the rate of change

of the outcome across groups.

We report a somewhat surprising result that the longitudinal analysis is often less effi-

cient than the endpoint analysis if the autocorrelation among repeated measurements is not

particularly strong. Furthermore, in some cases using more than two waves ofdata in the

longitudinal analysis does not appear to be more advantageous than a change-score analysis.

We first compare the relative efficiency without considering attrition for several widely used

within-individual correlation structures and then discuss how drop outs would affect the

efficiency.

This work was motivated by the design of the Recovery After an Initial Schizophrenia

Episode (RAISE) study and the Healing Emotion After Loss (HEAL) study. In the RAISE

study, the investigators are interested in identifying patients with early psychosis to change

their prognoses of schizophrenia through coordinated and aggressive treatment in the ear-

liest stages of illness. In the HEAL study, the primary research question is to identify the

optimal treatment for individuals suffering from the debilitating condition of complicated

grief (Shear et al. 2005). Both studies are multi-site randomized clinical trials with multiple

assessments scheduled across the length of study. The investigators are interested in com-

paring improvement of a range of the functional and disease severity outcomes between two

treatment arms. Both the interim outcomes and the end of study outcomes will be available

and the investigators would like to choose a powerful analysis as the primary analysis. We
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illustrate our methods through the design of the RAISE and HEAL studies.

2 Efficiency comparison without attrition

2.1 General model set up

For simplicity, we consider a longitudinal study with a balanced design (the same assessment

schedule is used for all participants) and equally spaced assessment time points. Let i index

subjects, j index the assessment time points, and k index treatment groups. We assume

equal sample size allocation across two treatment groups. Let J denote the fixed total

number of assessments. We assume the time point of primary interest is the last wave, J ,

the end point. Let µjk denote the expected outcome for group k at time point j, and let

µk = (µ1k, · · · , µJk)
T . The outcome model is

yijk = µjk + εikj, (1)

where εikj are measurement errors with mean zero. We discuss several covariance structures

for εikj in section 2.3. The expected outcome trajectory is assumed to be linear in each

treatment group. We assume the same expected group mean difference at the primary time

point when comparing different analyses.

In many clinical studies, the research question can be summarized as examining the

significance of a pre-specified contrast

l =
J∑

j=1

cj(µj1 − µj2) = cT (µ1 − µ2), (2)

where cj denote the weight placed on the contrast at time point j, and c = (c1, · · · , cJ)T .

We give three examples of commonly used contrast in the next section. For a given contrast,

the corresponding linear combination of the sample mean,

cT (ȳ1 − ȳ2),
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where ȳk = 1
nJ

∑
ij yijk, is used to test its significance. Denote the standardized effect size

as dJ = (µ1J − µ2J)/σJJ (Cohen 1988). Under the assumption of a linear expected outcome

trajectory, we obtain the expected group difference to be

dj = (j − 1)/(J − 1)dJ . (3)

Note that d1 = 0 due to the virtue of randomization.

Overall and Doyle (1994) and Hedeker (1999) showed that the sample size needed in each

group at the beginning of the study for testing contrast l is:

NL = 2(zα/2 + zβ)
2/d2L, d2L = l2/cTΣc, (4)

where zα/2 is the upper (α/2)th percentile of a standard normal distribution, zβ is the upper

βth percentile, and Σ = {σ2
jj′}j,j′=1,··· ,J denotes the J×J within-individual covariance matrix

of (εi1k, · · · , εiJk)T assumed to be homogeneous across treatment groups. In addition, in the

design stage of a clinical trial, investigators usually assume a homogenous variance across

time points, that is, σ2
jj = σ2, j = 1, · · · , J .

It can be seen from (2) that the power for the longitudinal study depends on the linear

contrast to be tested (both the contrast weights and the effect sizes at each time point) and

the covariance structure among the repeated measurements. We will discuss the specification

for these parameters in the next two subsections.

2.2 Three common analysis strategies

There are three strategies commonly used in the analysis of clinical trial data, which we

now present in the notation of a pre-specified contrast. In a longitudinal analysis, Hedeker

et al. (1999) suggested to specify cj as orthonormal coefficients, which yields a test of time

by group interaction. To be specific, with two time points, the orthonormal coefficients are

c1 = −1/
√
2, and c2 = 1/

√
2. Therefore the contrast to be tested has a norm of one, and

is the difference at two time points of the expected difference of the outcome in two groups

(difference of the difference, i.e., interaction effect). For three time points, the time by group
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interaction is the difference between time three and time two (in the mean group difference

µj1 − µj2) minus the difference between time two and time one, and the coefficients are

c1 = −1/
√
2, c2 = 0, and c3 = 1/

√
2. These coefficients reflect the conventional wisdom that

for odd number of time points, the group mean difference at the middle time point does not

contribute to testing interaction. In general, the orthonormal contrast for testing interaction

has the form

cj =

{
[j − (J + 1)/2]/wJ , J odd number

[2j − (J + 1)]/wJ , J even number,

where wJ is a normalization constant.

In the notation of (2), the change score analysis analysis tests a contrast with c1 =

−1, cJ = 1 and cj = 0, for j ̸= 1 or J . The test statistic is 1
n
{(
∑

i yiJ2 −
∑n

i=1 yi12) −∑
i(yiJ1−

∑n
i=1 yi11)}. The endpoint analysis corresponds to cj = 0 for j = 1, · · · , J − 1 and

cJ = 1. The test statistic is 1
n
(
∑

i yiJ2 −
∑

i yiJ1). It is easy to see from (4) that the sample

size needed in each group for an endpoint analysis is

NE =
2(zα/2 + zβ)

2σ2
JJ

(µ1J − µ2J)2
. (5)

Using the standardized effect size, (5) is also written as NE = 2(zα/2 + zβ)
2/d2J , which is a

well-known result in Fleiss (1986).

2.3 Specification of the covariance structure

There is a variety of correlation structures for repeated measures that are commonly imple-

mented in longitudinal models. One useful correlation structure is the first-order autoregres-

sive structure (AR1), which assumes the correlation decreases exponentially with increasing

time interval between two measurements. Therefore, for a balanced design

σ2
jj′ = σ2ρ

|j−j′|
(J−1) , ρ = corr(εi1k, εiJk).

Note that ρ is defined as the correlation between the measurement at the baseline and at

the primary time point, to give it an interpretation that is independent of the number of

intermediate assessments.
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Another popular correlation structure is the compound symmetry structure, which as-

sumes correlation between two distinct measures to be a constant regardless of how further

apart they are, that is,

σ2
jj′ = σ2ρ, ρ = corr(εijk, εij′k), ∀j ̸= j′.

The last correlation structure we investigate is the random effects structure (Laird and

Ware 1982). Here the random errors in model (1) decompose as

εijk = Zαi + eijk

where Z is the design matrix for the random effects αi, and eijk are independent residual

measurement errors. The within-individual variance-covariance matrix can be expressed as

Σ = ZΣαZ
′ + Ω,

where Σα = cov(αi), eik = (ei1k, · · · , eiJk)T , and Ω = cov(eik). A random intercept model

with independent residuals yields a compound symmetry covariance structure. To study a

mixture of compound symmetry and AR1 correlation, we assume a random intercept model

with AR1 residuals. For this case, Z is a vector of J constants of one, Σα is a scalar, {σ2
α},

and Ω has the (j, j′)th element σ2
ϵρ

|j−j′|/(J−1), where ρ = corr(ei1k, eiJk). We define the

correlation due to the random intercept as ρcs = σ2
α/(σ

2
α + σ2

ϵ ).

2.4 Optimal linear contrast

Although here we are interested in testing an intervention effect in a randomized clinical

trial by testing time by group interaction, we briefly describe the optimal linear contrast

with greatest efficiency for a given covariance structure. We define relative efficiency of

longitudinal analysis comparing with the endpoint analysis as the usual Pitman asymptotic

relative efficiency (ARE), is the ratio of sample size required for each analysis to reach the

same power and effect size. Under the linearity assumption (3), the ARE is

NL

NE

=
cTΣc

cTΩc
,
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where

Ω = uuT , and u =

(
0, · · · , j − 1

J − 1
, · · · , 1

)T

.

Note that the ARE takes the form of a Raleigh quotient (Mardias et al. 1988?). By maxi-

mizing reciprocal of the ARE, we obtain the optimal linear contrast for longitudinal analysis

to require least number of subjects comparing to the endpoint analysis, therefore is most

efficient. The maxima of the ARE is obtained from an eigen-analysis of Σ−1Ω. To be specific,

solution to the optimization problem

max
c

cTΩc

cTΣc

is c∗ = v1, where v1 is the first eigenvector of Σ−1Ω corresponding to the largest eigenvalue,

which is the maximized value of ARE.

It may be worth pointing out that the optimal linear contrast may not be the orthonormal

weights used in testing interaction. For example, with two time points, the orthonormal

weights on expected differences in outcome are placed equally at the baseline and the end

of the study. The linear contrast for testing interaction is c = (−1/
√
2, 1/

√
2)T , while the

optimal linear contrast is c∗ = (−1/
√
5, 4/

√
5)T for ρ = 0.5. At this correlation value,

the longitudinal analysis is 25% more efficient (ARE∗=0.75). In other words, longitudinal

analysis would require 25% less sample size than the endpoint analysis to reach the same

power. In addition, 0.5 is no longer the break point of the correlation for longitudinal

analysis to be more efficient. In fact, at any positive ρ, the longitudinal analysis requires less

number of subjects at the beginning of study. This suggests that under certain conditions

and for a given covariance structure, one may be able to find an optimal linear contrast

so that the longitudinal analysis always beats the endpoint analysis. For three time points

and compound symmetry correlation with ρ = 0.5, c∗ = (−3/
√
35, 1/

√
35, 5/

√
35)T , and

ARE∗=0.727. We will investigate the efficiency of the two analyses with optimal linear

contrast in a future work.
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2.5 Efficiency comparisons under three correlation structures

2.5.1 AR1 correlation structure

From (4), the necessary sample size to detect a contrast l with power 1− β is

NL =
2(zα/2 + zβ)

2(
∑n

j=1 c
2
j + 2

∑
j<j′ ρ

|j−j′|
(J−1) cjcj′)

(
∑n

j=1 cjdj)
2

,

where dj is the standardized effect size measured at time j. Recall the sample size for an

endpoint analysis is NE defined in (5), it follows that the relative efficiency of an endpoint

analysis versus a longitudinal analysis is

rAR1 =
NL

NE

=
(
∑J

j=1 c
2
j + 2

∑
j<j′ ρ

|j−j′|
J−1 cjcj′)d

2
J

(
∑n

j=1 cjdj)
2

, (6)

where rAR1 > 1 indicates the endpoint analysis to be more efficient.

In Table 1, we summarize the relative efficiency for up to five time points. We can see

that the relative efficiency is a power function of the autocorrelation ρ. In Figure 1, we

plot the relative efficiency at various values of ρ. For two time points, the longitudinal and

change score analysis coincides. The results replicate the well-known fact that the change

score (or longitudinal) analysis is more efficient than the endpoint analysis if and only if

the autocorrelation between the baseline outcome and endpoint outcome is greater than 0.5.

More specifically, the relative efficiency rAR1 is a linear function of the autocorrelation ρ:

rAR1 < 1 for ρ > 0.5, indicating the change score (or longitudinal) analysis is more efficient

than the endpoint analysis; rAR1 > 1 for ρ < 0.5, indicating the endpoint analysis is more

efficient.

When J = 3, since the weight placed on the middle point is zero, rAR1 is the same as

when J = 2. For four or five time points, rAR1 first increases and then decreases. It reaches

the peak at a correlation of 0.037 and 0.029, respectively, for which values the longitudinal

analysis is the least efficient. When there are four time points, at a correlation of 0.037,

the longitudinal analysis requires twice of sample size as of an endpoint analysis. For five

time points, at the correlation of 0.029, longitudinal analysis requires 1.95 times of sample
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size as the endpoint analysis. For J = 4 or J = 5, when ρ is greater than 0.573 or 0.523,

respectively, the longitudinal design is more efficient. Note that the break point correlation

for the longitudinal analysis to be more efficient does not always decrease with more waves

of data. With J = 2, the break point correlation is 0.5, while with J = 4, the break point

correlation is 0.573.

Next we compare the efficiency of a change score analysis versus a full longitudinal anal-

ysis using interim data with J > 2. This is equivalent to comparing the rows with J = 3, 4,

or 5 in Table 1 with the rows with J = 2. Again, using an additional wave of data col-

lected at the midpoint of study period does not increase the efficiency, therefore using three

waves of data has the same power as a change score analysis. The lower panel of Figure

1 depicts the relative efficiency using four or five waves of data. Note that the advantage

of using more waves of data quickly diminishes with increasing correlation among repeated

measures, indicating that the additional information in interim data is limited compared to

noise. In general, the change score analysis is more efficient than the longitudinal analysis

with J = 4 or J = 5, unless the correlation is very small. Specifically, with AR1 correlation

when ρ > 0.013 and ρ > 0.027, respectively for J = 4 and J = 5, a change score analysis

using just two waves of data is more efficient.

2.5.2 Compound symmetry correlation structure

For compound symmetry structure, the relative efficiency for an endpoint analysis versus a

longitudinal analysis is

rcs =
NL

NE

=
(
∑J

j=1 c
2
j + 2ρ

∑
j<j′ cjcj′)d

2
J

(
∑n

j=1 cjdj)
2

.

It is shown in the appendix that the above formula simplifies to

rcs =
(1− ρ)d2J

(
∑J

j=1 cjdj)
2
. (7)

Therefore the relative efficiency is a decreasing linear function of the correlation ρ. It is

easy to see that in general, when ρ ≥ 1 − (
∑

j cjdj)
2/d2J , the longitudinal analysis is more
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efficient than the endpoint analysis. We summarize the relative efficiency for 2, 3, 4, and 5

time points in the middle panel of Table 1. When ρ is greater than 0.5, 0.5, 0.444 and 0.375,

respectively for these time points, the longitudinal design is more efficient. We show in the

online appendix that when the number of time points increases, the correlation required

for the longitudinal analysis to be more efficient decreases. Specifically, the break point

correlation hJ with J time points has the general form of

hJ = 1−

(
J∑

j=1

cj
j − 1

J − 1

)2

.

Figure A1 in the online appendix shows this relationship for 2 to 10 time points. Note that

with ten or more time points, longitudinal analysis is always more efficient.

The upper panel in Figure 2 presents the relationship between the relative efficiency and

the correlation. Note that for two or three time points, the relationship is the same as

the AR1 correlation. For more than two time points, at the same value of the correlation,

the compound symmetry structure requires less sample size for a longitudinal longitudinal

analysis than AR1 correlation. Intuitively, this is because for the former, the correlation

between any two repeated measurements is a constant, while for the latter, it decreases as

the time interval between the observations increases. The higher the correlation between the

observations, the more efficient a longitudinal analysis is for examining the time by group

interaction.

The lower panel in Figure 2 compares longitudinal analysis with a change score analysis

for compound symmetry correlation. We can see that the relative efficiency is a constant.

Using four or five waves of data requires 90% or 80% of sample size as a change score analysis

using two waves of data, respectively. The improvement in efficiency with additional interim

data is only moderate.
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2.5.3 Random effects correlation structure

The random effects correlation here can be interpreted as a mixture of AR1 and compound

symmetry. In this case, the sample size needed for a longitudinal analysis is

NL =
2(zα + zβ)

2[
∑J

j=1 c
2
j + 2

∑
j<j′{ρcs + (1− ρcs)ρ

|j−j′|
J−1 }cjcj′ ]

(
∑n

j=1 cjdj)
2

,

and the relative efficiency is

rmix =
[
∑n

j=1 c
2
j + 2

∑
j<j′{ρcs + (1− ρcs)ρ

|j−j′|
J−1 }cjcj′ ]d2n

(
∑n

j=1 cjdj)
2

.

The third panel in Table 1 shows the relative efficiency for 2, 3, 4 and 5 time points.

The relative sample size is a power function in the AR1 autocorrelation ρ. When ρcs = ρ,

the correlation between the baseline and the endpoint outcome is ρ∗ = 2ρ − ρ2, which is

also the maximum correlation between these two outcomes. With two sources of random

errors in this model, we examine the relative efficiency when the two sources of correlation

are equal (ρcs = ρ), and summarize results as a function of ρ∗. The upper panel in Figure

3 shows the trend of relative efficiency. It can be seen that the relationship between the

relative efficiency and the correlation is similar regardless of the number of waves. When ρ∗

is greater than 0.5, 0.5, 0.51, and 0.522 for 2, 3, 4 and 5 time points, the longitudinal analysis

is more efficient. The break point for longitudinal analysis to be more beneficial increases

slightly with more number of waves. At the same value of correlation between baseline and

endpoint, the relative efficiency of a mixture type correlation is in between the compound

symmetry and AR1.

Again the lower panel of Figure 3 compares a change score analysis with a longitudinal

analysis. Similar to the AR1 correlation, under this random effects correlation, the advantage

of using more waves of data also quickly disappears with increasing correlation, which implies

limited information contained in the interim data. Specifically, when ρ > 0.088 or ρ > 0.053,

a change score analysis is more efficient for J = 4 and J = 5, respectively.
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3 Efficiency comparison with attrition

In many clinical trials, subjects drop out of the assessments regardless of investigators’ best

efforts to follow them in the study. In this section we investigate the impact of drop out on

the relative efficiency. For simplicity, first assume that the retention rate (one minus drop

out rate) is the same for both intervention groups. It is easy to generalize to differential

retention rates in the two groups. Let bj denote the retention rate at the assessment j, then

the sample size observed at that point is bjN . When there are drop outs, the sample size

formula corresponding to (5) and (4) for an endpoint analysis and a longitudinal analysis

are, respectively,

NE =
2(zα + zβ)

2σ2

(µ1 − µ2)2bJ
,

and

NL =
2(zα + zβ)

2[
∑J

j=1 c
2
j/b

2
j + 2

∑
j<j′ σjj′cjcj′/

√
bjbj′ ]

(
∑J

j=1 cjdj)
2

.

The relative sample sizes for AR1, compound symmetry and a mixture of the two taking

into account of drop outs are, respectively,

rAR1 =
(
∑J

j=1 c
2
j/b

2
j + 2

∑
j<j′ ρ

|j−j′|cjcj′/
√

bjbj′)d
2
JbJ

(
∑J

j=1 cjdj)
2

,

rcs =
(
∑J

j=1 c
2
j/b

2
j + 2ρ

∑
j<j′ cjcj′/

√
bjbj′)d

2
JbJ

(
∑J

j=1 cjdj)
2

,

and

rmix =
{
∑J

j=1 c
2
j/b

2
j + 2

∑
j<j′(ρcs + (1− ρcs))ρ

|j−j′|cjcj′/
√
bjbj′}d2JbJ

(
∑J

j=1 cjdj)
2

.

Assume the drop out rate increases linearly across time, that is, bj = 1− j − 1

J − 1
(1− bJ).

Tables 2 shows the numerical values of the break point for longitudinal analysis to be more

efficient for the AR1, compound symmetry and random effect correlation. Note the decreas-

ing trend of the break point as the retention rate decreases in all three covariance structures.
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Figure A2 in the online appendix shows the relative efficiency as a function of the autocor-

relation with the AR1 structure for several retention rates at the end of study. As the final

retention rate decreases, smaller correlation is required for the longitudinal analysis to be

more efficient than the endpoint analysis. This reflects the benefit of longitudinal analysis

utilizing all interim data when there are drop outs. For example, with a 50% retention rate

and two time points, when ρ > 0.25 the longitudinal design is more efficient. In contrast,

when there are no drop outs, the break point is ρ > 0.5.

Figures A3 and A4 in the online appendix present the relative efficiency for the compound

symmetry and random effect correlation. We see a similar trend between the retention rate

and the break point for the longitudinal analysis to be more efficient. Note that for five time

points, 25% retention rate and with compound symmetry correlation, under all correlation

values the longitudinal analysis is more efficient.

4 Application to the RAISE and HEAL studies

In the RAISE study, a longitudinal design with five equally spaced assessments was used.

The investigators are interested in whether an endpoint analysis or a longitudinal analysis

should be proposed as the primary analysis. We compared the sample size needed for each

of the analysis to have 80% power under various values of attrition rates. For an endpoint

analysis with 20% attrition rate and an effect size of 0.4 at the end of the study, the required

sample size for comparing the outcome in two groups with a 1:1 sample size ratio is 124 per

group. Assume the same effect size at the end of study and a linear drop out rate, for an AR1

structure with autocorrelation of 0.5, the sample size required to compare the rate of change

between two groups for a longitudinal analysis is 143 per group. The endpoint analysis was

chosen as primary analysis due to its robustness to model misspecification, simplicity in

interpretation and good power.

The HEAL study is a randomized treatment study of complicated grief (CG). The pri-

mary research question is to compare rate of change in severity scores among individuals with
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CG who were assigned to receive escitalopram (ESC) plus complicated grief psychotherapy

(CGT) to the rate of change among those who were assigned to receive placebo (PBO) plus

CGT. The sample size was 110 each arm. We assume a target power of 80%, a baseline as-

sessment and eleven post-randomization weekly measurements, an AR1 structure with corre-

lation between two adjacent measurements to be 0.93 (estimated from the symptom severity

data from a prior study) and between the baseline and the end of study is 0.9311 = 0.45. We

also assume that the assessment dropout is distributed uniformly across waves of follow-up

assessments. We derive the minimal detection limit (MDL), the smallest effect size that can

be detected with 80% power (any effect size larger than MDL has more than 80% power;

any effect size smaller than MDL has less than 80% power). With 0% and 10% drop out

rate, the MDL in the rate of change was 0.410 and 0.423 points per week, respectively. The

expected MDL at the end of the study is 4.51 and 4.65 points, respectively. For an endpoint

analysis, the MDL was 0.758 and 0.8 points, respectively. For this example, clearly an end-

point analysis is more powerful, due to a low correlation between the baseline and the end

of study outcomes.

5 Discussion

In this work we are interested in the relationship between relative efficiency of endpoint or

change score analysis versus longitudinal analysis and correlation among repeated measures

for testing a treatment effect in randomized clinical trials. We show that in some cases, it is

reasonable to focus on the primary time point outcome or change from the baseline, and not

to use the interim measurements. When there is no attrition and with an AR1 correlation

structure, the correlation between adjacent outcomes needs to be fairly large for the longitu-

dinal analysis to be more beneficial. For four or five time points, the relative efficiency is a

power function with a unique peak between zero and one. When designing a study with little

knowledge of the autocorrelation, one can use the “worse-case autocorrelation” which leads

to the largest sample size as a benchmark. For example, for four time points, the required
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sample size reaches its peak at ρ = 0.018, and one can use this as assumed correlation for

the sample size calculation.

For compound symmetry structure, the correlation between repeated measurements is

a constant across time. With the same number of time points and same correlation, the

break point is smaller than the AR1, indicating that compound symmetry structure is more

favorable for the longitudinal analysis. The break point decreases with increasing number

of time points, implying that the efficiency gain of the longitudinal analysis is greater when

there are more measurements per subject. Longitudinal analysis is always more efficient

with J > 10. However, the compound symmetry structure assumes a constant correlation

across all time points, which may not be realistic. For a mixture of compound symmetry

and AR1, the break point is between the previous two types of covariance.

When J > 3, we also compared efficiency of using two waves of data in a change score

analysis (baseline and endpoint outcome) with using additional interim data in a longitudinal

analysis. For any correlation structure, using an additional wave at the middle point of study

does not improve power for testing time by group interaction. For compound symmetry

structure, using four and five waves of data is 10% and 20% more efficient, respectively. For

the other two types, using additional waves of data is only beneficial when the correlation

between repeated measures is very low. In particular, for AR1 using four waves of data can

be much less efficient than just using two waves when correlation is high. Note that for a

mixture of AR1 and compound symmetry correlation, using five waves of data can be less

informative than four waves when assessments are equally spaced. This might be due to an

interplay of compound symmetry and AR1 correlation. A future work on optimal design of

assessment time points is in demand.

The endpoint analysis is simple and transparent, and the results are clearly understood

without any ambiguity. This analysis does not require any modeling on the trajectory of

the outcome, therefore the interpretation of the results is free from such model assumptions.

In contrast, longitudinal analysis can be used to evaluate interim treatment effect and cu-
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mulative treatment effect, but a parametric longitudinal analysis requires assumptions on

the functional form of the trajectories and the covariance structure of the repeated assess-

ments. Validity of the results might be questionable if these assumptions are not satisfied.

Of course nonparametric longitudinal analysis (see for example, Wu and Zhang 2006) or

marginal approaches without requiring correct specification of correlation structure can be

performed when some of these assumptions are in doubt. However, it is well known that

nonparametric analysis requires larger sample size to reach the same power comparing to a

correctly specified parametric analysis.

The pros and cons of endpoint versus longitudinal analysis depend in part on the antici-

pated assessment drop-out rate. When there is substantial attrition, the benefit of longitu-

dinal analysis using all interim data becomes more crucial. When attrition rate increases,

the break points in correlation in all three types of covariances decreases. In fact, for five

time points, with high proportion of missing data (retention rate at the end of study being

25% or less) and compound symmetry covariance, the longitudinal analysis is always more

efficient at any correlation. Therefore for studies anticipating large proportion of drop outs,

the ability for the longitudinal analysis to capture available information for drop-out cases

would be attractive. However, the cost of interim data collection should be evaluated in

light of the increased efficiency. For studies making intensive efforts to assess participants

irrespective of whether they drop out of the protocol, therefore anticipating a low assess-

ment drop-out rate, the longitudinal analysis has less benefit. In addition, the comparison

of longitudinal versus change score analysis reveals limited information in interim data and

most of information is retained in the baseline and primary time point data.

One potential strategy combining endpoint and longitudinal analysis is to use endpoint

for complete cases, and use longitudinal model to extrapolate incomplete cases, then analyze

endpoint data combining complete cases and extrapolated cases. This method may be more

favorable than last-observation-carry-forward under very general conditions, and could also

be better than the longitudinal analysis per se when the correlation is not very high. Works
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along this line is under further investigation.

Some studies repeatedly collect the assessments over time as a retention tool to stay in

contact with participants so that they don’t dropout (and also to collect updated contact

info). However, it is not necessary to administer the full assessment battery which can be

burdensome to participants and costly to studies for the purpose of retention, especially if the

follow-up requires in-person encounter. A brief follow-up by phone or postcard or electronic

means will probably suffice.

Here we assume balanced and equally spaced data, which may be relaxed by incorporating

a suitable design matrix. Here we also do not consider designs where subjects are nested in

clusters. With such designs, the correlation between clusters may play an important role as

well as the correlation between repeated measures on the same subjects (Bhaumik 2008).

In summary, the relative efficiency of longitudinal versus cross-sectional design hinges on

the correlation between repeated measurements and attrition rates. When the correlation is

weak, a longitudinal analysis is not necessarily more efficient than an endpoint or change score

analysis. When there is significant assessment drop out, however, the longitudinal analysis

is more favorable. In many practical situations, instead of jumping into the conclusion of

choosing a longitudinal analysis, care should be taken when designing a clinical trial.
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Table 1: Relative efficiency of an endpoint analysis versus a longitudinal analysis for various

within-subject covariance structures

J AR1: Relative efficiency rAR1
∗

2 2(1− ρ)

3 2(1− ρ)

4
9

5
+

9

10
ρ1/3 − 27

25
ρ2/3 − 81

50
ρ

5
8

5
+

32

25
ρ1/4 − 8

25
ρ1/2 − 32

25
ρ3/4 − 32

25
ρ

J Compound Symmetry: Relative efficiency rcs
∗

2 2(1− ρ)

3 2(1− ρ)

4 9(1− ρ)/5

5 8(1− ρ)/5

J Random effects: Relative efficiency rmix
†

2 2(1− ρcs − ρ̄csρ)

3 2(1− ρcs − ρ̄csρ)

4
9

5
+

9

10
(ρcs + ρ̄csρ

1/3)− 27

25
(ρcs + ρ̄csρ

2/3)− 81

50
(ρcs + ρ̄csρ)

5
8

5
+

32

25
(ρcs + ρ̄csρ

1/4)− 8

25
(ρcs + ρ̄csρ

1/2)− 32

25
(ρcs + ρ̄csρ

3/4)− 32

25
(ρcs + ρ̄csρ)

∗: For AR1 and compound symmetry covariance, ρ = corr(εi1k, εiJk)

† : For random effects covariance, ρ = corr(ei1k, eiJk), ρcs = σ2
α/(σ

2
α + σ2

ϵ ), and ρ̄cs = 1− ρcs
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Table 2: Correlation required for longitudinal design to be more efficient with various within-

subject covariance structures

AR1 covariance∗

J Retention 100% Retention 75% Retention 50% Retention 25%

2, 3 ρ > 0.5 ρ > 0.433 ρ > 0.353 ρ > 0.25

4 ρ > 0.573 ρ > 0.445 ρ > 0.361 ρ > 0.226

5 ρ > 0.523 ρ > 0.458 ρ > 0.373 ρ > 0.218

Compound Symmetry∗

J Retention 100% Retention 75% Retention 50% Retention 25%

2, 3 ρ > 0.5 ρ > 0.433 ρ > 0.353 ρ > 0.25

4 ρ > 0.444 ρ > 0.368 ρ > 0.268 ρ > 0.103

5 ρ > 0.375 ρ > 0.287 ρ > 0.163 ρ > 0

Random Effects†

J Retention 100% Retention 75% Retention 50% Retention 25%

2, 3 ρ > 0.5 ρ > 0.433 ρ > 0.352 ρ > 0.248

4 ρ > 0.510 ρ > 0.443 ρ > 0.358 ρ > 0.219

5 ρ > 0.522 ρ > 0.457 ρ > 0.370 ρ > 0.206

∗: For AR1 and compound symmetry covariance, ρ = corr(εi1k, εiJk)

† : For random effects covariance, ρ = corr(ei1k, eiJk), ρcs = σ2
α/(σ

2
α + σ2

ϵ ), and here we examine scenarios

when ρ = ρcs.
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Figure 1: Relative efficiency of an endpoint analysis versus a longitudinal analysis (upper

panel) and of a change score analysis versus a longitudinal analysis (lower panel) with the

AR1 correlation structure
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Figure 2: Relative efficiency of an endpoint analysis versus a longitudinal analysis (upper

panel) and of a change score analysis versus a longitudinal analysis (lower panel) with the

compound symmetry correlation structure
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Figure 3: Relative efficiency of an endpoint analysis versus a longitudinal analysis (upper

panel) and of a change score analysis versus a longitudinal analysis (lower panel) with the

random effects correlation structure
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