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Summary: We examine a generalized F -test of a nonparametric function through penalized splines and a linear

mixed effects model representation. With a mixed effects model representation of penalized splines, we imbed the test

of an unspecified function into a test of some fixed effects and a variance component in a linear mixed effects model

with nuisance variance components under the null. The procedure can be used to test a nonparametric function or

varying-coefficient with clustered data, compare two spline functions, test the significance of an unspecified function

in an additive model with multiple components, and test a row or a column effect in a two-way analysis of variance

model. Through a spectral decomposition of the residual sum of squares, we provide a fast algorithm for computing

the null distribution of the test, which significantly improves the computational efficiency over bootstrap. The spectral

representation reveals a connection between the likelihood ratio test (LRT) in a multiple variance components model

and a single component model. We examine our methods through simulations, where we show that the power of the

generalized F -test may be higher than the LRT, depending on the hypothesis of interest and the true model under the

alternative. We apply these methods to compute the genome-wide critical value and p-value of a genetic association

test in a genome-wide association study (GWAS), where the usual bootstrap is computationally intensive (up to 108

simulations) and asymptotic approximation may be unreliable and conservative.
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1. Introduction

With a mixed effects model representation of penalized splines (Speed 1991; Ruppert et

al. 2003; Wand 2003), we imbed the test of an unspecified function into a test of some

fixed effects and a variance component in a linear mixed effects model with multiple vari-

ance components. Tests involving variance components have non-standard null distributions

because some parameters are on the boundary of the parameter space under the null.

When data consists of independent subvectors both under the null and alternative, the

asymptotic distribution of a likelihood ratio test (LRT) or a restricted LRT (RLRT) is a

50:50 mixture of chi-square distributions (Self and Liang 1987; Stram and Lee 1994). When

the independence assumption is violated, Crainiceanu and Ruppert (2004) and Crainiceanu et

al. (2005) discovered that the null distribution of the LRT is different from a 50:50 chi-square

mixture in models with a single variance component, and that using a chi-square mixture

distribution was conservative. For models with a single variance component, Crainiceanu and

Ruppert (2004) took advantage of a spectral decomposition of the likelihood to propose a

fast algorithm for computing the exact null distribution of the LRT and RLRT. This non-

standard behavior was also observed for the degrees-of-freedom test proposed by Cantoni

and Hastie (2002), and the null distribution needed to be computed by bootstrap.

To generalize these results to more complex models with nuisance variance components

under the null, Greven et al. (2008) proposed to approximate the null distribution of the

RLRT using a pseudo-likelihood ratio test theory (Liang and Self 1996). One constructs

pseudo-outcomes by subtracting the best linear unbiased predictors (BLUPs) of nuisance

random effects and applying methods developed for models with a single variance component

to derive the null distribution of the RLRT. Although the procedure generally works well,

in some models with highly correlated covariates and a nuisance variance component that is

on the boundary of the parameter space, the regularity conditions of the pseudo-RLRT may

not be satisfied and a conservative type I error rate has been observed (Greven et al. 2008;

Scheipl et al. 2008). No simple spectral decomposition or exact distribution is available in

the literature for testing a variance component in linear mixed models with multiple random

effects.



2 Biometrics, December 2011

We examine a generalized F -test of a variance component, where there are nuisance random

effects under the null. The methods are applicable to testing an unspecified nonparametric

function or varying-coefficient through penalized splines with clustered data, comparing two

spline functions, testing the significance of an unspecified function in an additive model with

multiple components, and testing a row or a column effect in a two-way analysis of variance

model. We transform a test of a nonparametric function to a test of some fixed effects and a

random effect in a linear mixed effects model with nuisance variance components under the

null. We present a spectral decomposition to account for additional variance components in

the model and develop a fast algorithm to compute the null distribution of the proposed test.

The spectral representation is also used to compare the LRT with the pseudo-LRT, which

reveals a connection with methods developed for the single variance component models, and

sheds new insights on the geometry of the LRT in multiple variance components models.

Compared to the LRT, the generalized F -test has a computational advantage – only a single

linear mixed effects model will be fit under the alternative, which is an attractive feature when

the test is carried out many times. For example, in a genome-wide association study (GWAS),

the procedure is applied to compute the genome-wide critical value of a genetic association

test with correlated family data, where the parametric bootstrap is computationally intensive

due to the large number of simulations required (up to 108 repetitions) and the asymptotic

approximation is unreliable and conservative at the extreme tails.

2. Models and examples

In this section, we first introduce several motivating examples and then describe the general

modeling framework.

Example 1: Test an unspecified function in a partially linear mixed effects model. For

clustered data, such as samples collected from a family study, let i index families (or clusters)

and j index subjects in a family (or a cluster). Consider a partially linear mixed effects model

yij = f(sij) + cij
Tη + αi + εij, i = 1, · · · , n, j = 1, · · · , ni,

αi ∼ N(0, σ2
α), εij ∼ N(0, σ2

ε), (1)
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where αi’s are independent family-specific random effects, f(sij) is an unspecified baseline

function relating the outcome to the covariates sij, cij’s are vectors of fixed effects with

coefficients η, and εij’s are independent residual measurement errors. Our goal is to test the

significance of the regression function f(s), that is,

H0 : f(s) = 0,

or the deviation of f(s) from an hth order polynomial function, that is,

H0 : f(s) = β0 + β1s+ · · ·+ βhs
h.

Under the alternative, to incorporate a large class of functions, we specify f(s) to be a flexible

spline function, such as

f(s) = β0 + β1s+ · · ·+ βhs
h +

K∑
k=1

bk(s− τk)h+,

where τk, k = 1, · · · , K, are a sequence of knots, and (s − τ)h+ = (s − τ)h if s > τ ,

and 0 otherwise. A sufficient number of knots will be used to guarantee flexibility. Let

xij = (1, sij, · · · , shij)T and zij = {(sij − τ1)h+, · · · , (sij − τK)h+}T . Under the alternative, we

have the representation, f(sij) = xTijβ + zTijb, where b = (b1, · · · , bK)T .

To obtain a smooth fitted curve, one minimizes a penalized weighted least squares (Ruppert

et al. 2003),

n∑
i=1

(Y i −Ciη −X iβ −Zib)TV i
−1(Y i −Ciη −X iβ −Zib) +

1

λ
ΘTDΘ,

where Y i = (yi1, · · · , yini)T ,Ci = (ci1, · · · , cini)T ,X i = (xi1, · · · ,xini)T ,Zi = (zi1, · · · , zini)T ,

Θ = (ηT ,βT , bT )T , V i = cov(Y i), λ is a smoothing parameter, D = diag(0m+h+1,Σ
−1), m

is the dimension of η, and Σ is a known penalty matrix, depending on the spline basis used.

For example, Σ = IK with a truncated polynomial basis.

Linear mixed effects model set up for the test: With a mixed effects model representation of

splines (Speed 1991; Ruppert et al. 2003; Wand 2003), solutions to the penalized weighted

least squares are obtained from a linear mixed effects model, where bk are treated as random

effects and the smoothing parameter is specified as the ratio of two variance components.
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Specifically, a mixed effects model representation is

Y i = Ciη +X iβ +Zib+U iαi + εi, i = 1, · · · , n,

b ∼ N(0, σ2
bΣ), αi ∼ N(0, σ2

α), εi ∼ N(0, σ2
εIni), (2)

where the smoothing parameter λ = σ2
b/σ

2
ε and U i = 1ni . Through model (2), significance

of f(s) can now be tested by

H0 : β = (β0, · · · , βh)T = 0, σ2
b = 0.

Testing a nonparametric deviation from a polynomial function is simply through H0 : σ2
b = 0.

Note that αi in model (2) are nuisance random effects under the null hypothesis.

Example 2: Test an unspecified function in a partially linear mixed effects model with

multiple variance components. An extension to Example 1 is a partially linear mixed effects

model with multiple variance components,

yij = f(sij) + cTijη + αi0 + αi1uij + εij, i = 1, · · · , n, j = 1, · · · , ni,

αi0 ∼ N(0, σ2
α0

), αi1 ∼ N(0, σ2
α1

), εij ∼ N(0, σ2
ε), (3)

where αi0 and αi1 are independent random effects. It is again of interest to test H0 : f(s) = 0.

Here, there are two nuisance variance components under the null (αi0 and αi1). A model

similar to (2) can be used to test this hypothesis.

Example 3: Varying coefficient model. In many applications, it is of interest to test an

unspecified varying-coefficient or a group difference. Let gi denote a group indicator. A

flexible model with an unspecified baseline function and a varying-coefficient is

yi = cTi η + f(si) + β(si)gi + εi,

where ci is a vector of covariates, f(·) is a spline function describing the relationship between

the expected outcome and the covariate si in the baseline group, and β(·) is the difference

between the experiment group and the baseline group. The hypothesis of no group difference

is H0 : β(s) = 0. Using a linear mixed effects model representation of penalized splines on
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f(·) and β(·), the model under the alternative can be expressed as

Y = Cη +W 1β1 +W 2β2 +Z1b1 +Z2b2 + ε, (4)

b1 ∼ N(0, σ2
b1

Σ1), b2 ∼ N(0, σ2
b2

Σ2), ε ∼ N(0, σ2
εIn),

where Σj’s are known penalty matrices and W j and Zj are related to the basis functions

for f(·) and β(·). Testing a group difference is through

H0 : β2 = 0, σ2
b2

= 0.

Here, b1 are nuisance random effects under the null. In this example, the nuisance variance

ratio, γ = σ2
b1
/σ2

ε , can be regarded as the smoothing parameter for the baseline function.

Example 4: Additive models. Consider an additive model with two covariates,

yi = f1(si1) + f2(si2) + εi, εi ∼ N(0, σ2
ε),

where f1(·) and f2(·) are unspecified spline functions and the covariates si1 and si2 can be

either correlated or independent. When one of the covariates, say si2, is of primary interest,

one tests H0 : f2(s) = 0, which can also be assessed by testing fixed and random effects in a

mixed effects model similar to (4).

Another example where this test is useful includes testing a fixed smoothing parameter

with longitudinal data, for example, to test λ = λ0 in model (2). The methods can also be

used to test a random slope in the presence of a random intercept, test a row or column

effect in a two-way analysis of variance model, or test a random effect in a split-plot design

through a two-level random effects model.

2.1 The general problem setting

All the examples above can be summarized as testing a hypothesis in a linear mixed effects

model with multiple variance components. To be specific, our goal is to test

H0 : β2 = 0, σ2
bL

= 0, or H0 : σ2
bL

= 0
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in the model

Y = X0β1 +Wβ2 +
L∑
l=1

Z lbl + ε, (5)

bl ∼ N(0, σ2
bl

Σl), ε ∼ N(0, σ2
εI),

where X0 is the design matrix for the q-dimensional fixed effects under the null, X1 =

(X0,W ) is the design matrix for the p-dimensional fixed effects under the alternative (in

some examples p− q = h+ 1), bl, l = 1, · · · , L, are random effects independent of ε, and Σl

are known matrices.

3. A generalized F -test

We develop a generalized F -test by comparing the residual sum of squares (RSS) of two

models obtained from (5), similar to the classic ANOVA F -tests. Classic F -tests are based on

computing RSS under a restricted model and a full model and dividing them by appropriate

degrees of freedom. For tests involving variance components, it is unclear what degrees of

freedom should be used (Hodge and Sargent 2001; Vaida and Blanchard 2005). Although

the test statistic based on comparing RSS under the null and the alternative can still be

constructed, its null distribution may be non-standard.

We present the test statistic under the general framework in Section 2.1. For the purpose

of illustration, assume L = 2 in model (5). It is easy to generalize to the case where L > 2

(e.g., simulation scenario (c) in Tabel 1). Let γ denote the nuisance variance ratio, σ2
b1
/σ2

ε ,

and let λ = σ2
b2
/σ2

ε . Under the null hypothesis, the residual sum of squares is

RSS0(γ) =
1

σ2
ε

{Y −X0β̂0(γ)}TV 0(γ)−1{Y −X0β̂0(γ)},

where β̂0(γ) = {X0
TV 0(γ)−1X0}−1X0

TV 0(γ)−1Y and V 0(γ) = In + γZ1Σ1Z
T
1 . Under

the alternative, the residual sum of squares is

RSS1(γ, λ) =
1

σ2
ε

{Y −X1β̂1(γ, λ)}TV 1(γ, λ)−1{Y −X1β̂1(γ, λ)},

where β̂1(γ, λ) = {X1
TV 1(γ, λ)−1X1}−1X1

TV 1(γ, λ)−1Y , and V 1(γ, λ) = V 0(γ)+λZ2Σ2Z
T
2 .

When the variance components ratio γ is known to be γ0, a generalized F -test can be defined
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as

T1 =
RSS0(γ0)−RSS1(γ0, λ̂)

RSS1(γ0, λ̂)/n
,

where λ̂ is estimated by the restricted maximum likelihood (REML) under the alternative

hypothesis. When γ is unknown, the test statistic is

T2 =
RSS0(γ̂)−RSS1(γ̂, λ̂)

RSS1(γ̂, λ̂)/n
,

where both γ̂ and λ̂ are obtained by REML under the alternative. Both test statistics are easy

to compute with any standard statistical software. However, deriving their null distributions

is not trivial because the null value of σ2
bL

is on the boundary of the parameter space and

the data cannot be partitioned as independent subvectors in certain models, such as (2).

Note that T1 or T2 is different from the F or R statistic examined in Cantoni and Hastie

(2002). The latter statistics is based on RSS from a conditional model, that is,
∑n

i=1(Y i −

Ŷ i)
2, where Ŷ i = X i1β̂1+W iβ̂2+

∑L
l=1Zilb̂l, and b̂l are BLUPs of bl. The null distributions

of these F and R tests are unknown in literature and need to be obtained through bootstrap

or permutation to account for uncertainties in estimating smoothing parameters (or variance

components). In contrast, the proposed T1 and T2 are based on marginal models of Y .

Although when there is a non-linear trend, the linear mixed effects model (5) is not the true

model under the alternative, it holds exactly under the null. The null distribution of the

proposed generalized F -test is computed from a valid model under the null and thereby the

test is expected to maintain its size.

3.1 Spectral decomposition of the test statistic

Here we present a spectral decomposition to obtain the null distribution of T1 and T2 that

accounts for the nuisance variance components still under the general framework (5) with

L = 2.

Theorem 1: Let ρs(γ) denote the sth eigenvalue of Σ
−1/2
2 ZT

2P V 0Z2Σ
−1/2
2 , where P V 0 =

{V 0(γ)−1 − V 0(γ)−1X1(X
T
1V 0(γ)−1X1)

−1XT
1V 0(γ)−1}. Let ωs denote the eigenvalues of

Σ1/2ZT
1P 1Z1Σ

1/2, where P 1 = I −X1(X
T
1X1)

−1XT
1 . Then under the null hypothesis (3),
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the generalized F -test T1 has the exact distribution

T1 =d

{
K∑
s=1

λ̂ρs(γ0)

1 + λ̂ρs(γ0)
u2s +

p−q∑
s=1

v2s

}/{ K∑
s=1

1

1 + λ̂ρs(γ0)
u2s +

n−p∑
s=K+1

u2s

}
, (6)

where =d denotes equality in distribution, us ∼i.i.d. N(0, 1), s = 1, · · · , n − p, vs ∼i.i.d.

N(0, 1), s = 1, · · · , p− q, λ̂ = maxλ fn(γ0, λ), and

fn(γ, λ) = −(n− p) log

{
K∑
s=1

u2s
1 + λρs(γ)

+

n−p∑
s=K+1

u2s

}

−
K∑
s=1

log{1 + λρs(γ)} −
K∑
s=1

log(1 + γωs) (7)

is the spectral decomposition of the log-profile restricted likelihood under the alternative up to

a constant. The null distribution of T2 is obtained by replacing γ0 by γ̂ in (6) and computing

γ̂ and λ̂ by maxγ,λ fn(γ, λ).

The proof of Theorem 1 is in the Online Appendix A.1. These decompositions allow for fast

computation of the null distribution of T by avoiding permutation.

A similar decomposition can be used to obtain the distribution of the test statistics under

the alternative, that is,

T1 =d

{
K∑
s=1

(λ̂− λ0)ρs(γ0)
1 + λ̂ρs(γ0)

u2s +

p−q∑
s=1

(θs + vs)
2

}/{ K∑
s=1

1 + λ0ρs(γ0)

1 + λ̂ρs(γ0)
u2s +

n−p∑
s=K+1

u2s

}
,

where γ0 and λ0 are the true values of γ and λ, and θs are related to the noncentrality param-

eter defined in the Online Appendix A1. This expression is useful for the fast computation

of power under the alternative hypothesis without bootstrap. The distribution of T2 under

the alternative has a similar representation, with γ0 replaced by γ̂, and γ̂ and λ̂ computed

by maxγ,λ fn(γ, λ).

3.2 Fast algorithm to compute the null distribution

Taking advantage of the decompositions (6) and (7), one can obtain the exact null distribu-

tion of T1 rapidly with the following Algorithm A:

A0. Pre-simulation step: Compute eigenvalues ρs(γ0).

A1. Simulate n−p independent standard normal random variables, us, and p−q independent
standard normal random variables, vs.
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A2. Choose λ by maximizing fn(γ0, λ) in (7) over grid points λ1, · · · , λm.

A3. Compute the test statistic by (6) using the λ selected in step A2.

A4. Repeat the above steps 1-3 for required number of repetitions.

Note that this algorithm is extremely fast, since both (6) and (7) only involve arithmetic

operations and their computations are instantaneous. Using R (R Development Core Team,

2012), we were able to obtain about 80,000 simulations per minute on a Dell computer with

2.67GHz CPU and 4Gz memory.

To obtain the null distribution of T2, the steps A0, A2, and A3 in the Algorithm A are

replaced by the following Algorithm B:

B0. Pre-simulation step: Compute eigenvalues ρs(γj) at grid points γ1, · · · , γm.

B2. With pre-computed ρs(γj), choose γ and λ through maximizing fn(γ, λ) in (7) over grid
points γ1, · · · , γm and λ1, · · · , λm.

B3. Compute the test statistic by (6) using γ and λ selected in step B2.

There are several desirable features regarding the numerical efficiency of Algorithm B.

The eigen-decomposition to compute ρs(γ) in step B0 only needs to be done once before the

simulation starts and the simulation replications are only applied to steps B1 through B3.

The speed of eigen-decomposition depends on the column dimension of Z2 (or the number

of knots), which does not increase with the sample size or the number of nuisance variance

components. The algorithm depends on the sample size through simulating n − p standard

normal random variables, thus computation time increases minimally when n increases. In

contrast, a permutation or bootstrap based approach for a mixed effects model may be slower

when the number of random effects is large.

The major computational step in Algorithm B is to maximize fn(γ, λ) in (7). After

obtaining ρs(γj), computing fn(γj, λl) only involves arithmetic operations, which can be

done extremely rapidly. In addition, we studied a search algorithm with respect to λ at a

fixed value of γ̂ in step B2 and found satisfactory performance in many simulation settings

that offers further improvement on the numerical efficiency. In our data analysis example

with a large sample size (n = 6309), reduction in computing time was more than 3000 folds

using the proposed algorithm when compared to the bootstrap. We obtained about 60,000

simulations per minute on a Dell computer with 2.67GHz CPU and 4Gz memory using R.

Under a special case, one can further speed up the pre-simulation step of Algorithm B. We
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show in the Online Appendix A2 that when Z1ΣZ
T
1 and Z2Σ2Z

T
2 can be simultaneously

diagonalized, one obtains

ρs(γ) =
µs

1 + γωs
, (8)

where µs is the sth eigenvalue of Σ2
1/2ZT

2P 1Z2Σ2
1/2. Therefore ρs(γ) has an explicit expres-

sion as a function of γ in this case. With this explicit formula, the eigen-decomposition to

obtain µs and ωs only needs to be done once in step B0 for all grid points of γ. Two matrices

can be simultaneously diagonalized if they commute. In example 4 (additive model), for a

balanced design where the two covariates are equally spaced and the knots are also equally

spaced, the matrices Σ
−1/2
1 ZT

1P 1Z1Σ
−1/2
1 and Σ

−1/2
2 ZT

2P 1Z2Σ
−1/2
2 commute; therefore,

they can be simultaneously diagonalized and the relation (8) holds.

Another speed up of the algorithm is useful when there is more than one nuisance variance

component. In this case, step B2 of the algorithm can be replaced by a one-dimensional search

where we fix nuisance parameters at values estimated under the alternative hypothesis. We

present an example of an additive model with multiple nuisance variance components in

Section 4.

3.3 Distribution of the (R)LRT with multiple variance components

The decomposition (6) allows a direct comparison between LRT and pseudo-LRT approxi-

mation. Let L(γ, λ) = −n log{RSS(γ, λ)} − log |V 1(γ, λ)| denote the profile log-likelihood

under the model (2) obtained by substituting the weighted least square estimate β̂1(γ, λ)

into the likelihood. When the variance ratio γ0 is known, the likelihood ratio test is LRT1 =

supλ>0 L(γ0, λ) − supλ=0 L(γ0, λ). We show in Online Appendix A4 that under the null

hypothesis, LRT1 has the exact distribution

LRT1 =d n log

(
1 +

∑p−q
s=1 v

2
s∑n−p

s=1 u
2
s

)
+ sup

λ
gn(γ0, λ), (9)

gn(γ, λ) = n log

{
1 +

∑K
s=1

λρs(γ)
1+λρs(γ)

u2s∑K
s=1

u2s
1+λρs(γ)

+
∑n−p

s=K+1 u
2
s

}
−

K∑
s=1

log{1 + λϕs(γ)},
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and ϕs(γ) are the eigenvalues of Σ2
−1/2ZT

2V
−1
0 Z2Σ2

−1/2. When γ is unknown, we show in

the Online Appendix A3 that the null distribution of LRT2 can be obtained as

LRT2 =d n log

(
1 +

∑p−q
s=1 v

2
s∑n−p

s=1 u
2
s

)
+ sup

λ,γ
gn(γ, λ).

When the hypothesis of interest only involves a variance component without fixed effects,

RLRT is used instead of LRT. We cab show that the exact null distribution of RLRT with

γ known is

RLRT1 =d sup
λ>0

hn(γ0, λ), (10)

hn(γ, λ) = (n− p) log

{
1 +

∑K
s=1

λρs(γ)
1+λρs(γ)

u2s∑K
s=1

u2s
1+λρs(γ)

+
∑n−p

s=K+1 u
2
s

}
−

K∑
s=1

log{1 + λρs(γ)},

and the null distribution of RLRT with γ unknown is RLRT2 =d supγ>0,λ>0 hn(γ, λ).

Greven et al. (2008) computed the null distribution of RLRT by applying methods for the

single variance component model (Crainiceanu and Ruppert 2004) through a pseudo-LRT

using pseudo-outcomes Ỹ i = Y i −
∑L−1

l=1 Zilb̂l, where b̂l are BLUPs of bl. From (9), it is

easy to see that by replacing µs,n in Crainiceanu and Ruppert (2004) with ρs(γ), we arrive

at their equation (9). Note that µs,n are eigenvalues of Σ2
1/2ZT

2P 1Z2Σ2
1/2 denoted by µs in

this work. Since ρs(γ) are eigenvalues of Σ2
1/2ZT

2P V 0Z2Σ2
1/2, it follows that

ρs(0) = µs,n.

Therefore, when γ0 = 0 or γ̂ = 0, RLRT1 and RLRT2 reduce to the equation (9) in

Crainiceanu and Ruppert (2004). In general, when γ > 0 there is no explicit expression

relating ρs(γ) to µs,n. However, when relation (8) in Section 3.2 holds, we substitute (8) into

(11) to arrive at the null distribution representation

RLRT1 =d sup
λ>0

(n− p) log

1 +

∑K
s=1

λµs,n/c0,s
1+λµs,n/c0,s

u2s∑K
s=1

u2s
1+λµs,n/c0,s

+
∑n−p

s=K+1 u
2
s

−
K∑
s=1

log{1 + λµs,n/c0,s}

 ,
where the constants c0,s = (1 + γ0ωs). Therefore, scaling µs,n by 1 + γ0ωs would equate

the exact null distribution of the RLRT1 and the pseudo-RLRT in this case. The close

relationship between (9) and equation (9) in Crainiceanu and Ruppert (2004) sheds lights
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on the validity of approximating LRT in the multiple variance components model by a single

variance component based approach in some cases observed in Greven et al. (2008).

4. Simulations

4.1 Overview of the simulation experiments

We performed simulation studies to examine the type I error rate and power of the generalized

F -test and compare them with the 50:50 chi-square approximation and the pseudo-LRT (or

pseudo-RLRT when applicable). In all simulations, we assume the nuisance variance ratio γ

to be unknown and examine the performance of T2. Performance of T1 is similar and results

are omitted. In all experiments, we simulated covariates si from a uniform distribution with

support [0,1]. We used a linear truncated polynomial basis with K = min(n/10, 35) knots,

and examined two sample sizes for each scenario. We obtained 5,000 replications to compute

the null distribution of T2, 5000 replications to compute the empirical rejection rate to assess

type I error rate, and 1000 replications to assess power.

We considered five simulation scenarios: (a) Testing σ2
α = 0 in model (2) of Example 1; (b)

Testing f(s) = 0 in model (1) of Example 1; (c) Testing f(s) = 0 in model (3) of Example

2; (d) Testing β(t) = 0 in Example 3; and (e) Testing linearity of f2(t) in Example 4. The

parameters common to the next two subsections are as follows. For case (a) through (d),

we let η = 1 and simulated cij from a uniform distribution with support [0,1]. We fixed

β = (−0.2, 0.2)T and σ2
b = 1. For case (c), the nuisance random intercepts in model (3) have

variance σ2
α0

= 1. For case (d), coefficients β1 = (1,−0.5) in the varying coefficient model

(4). We generated the binary group indicator from a Bernoulli distribution with a success

probability of 0.5, and used the effect coding (-1/1 coding). For case (e), we generated

covariates (si1, si2) from uniform distributions with a correlation of 0.7. For (d) and (e), we

centered the covariates si or (si1, si2) to improve numerical stability. Lastly, we fixed σ2
ε = 1

in all experiments.
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4.2 Type I error rates

Here we examine the sensitivity of type I error rates of various tests to the presence of the

nuisance random effects under the null. The empirical type I error rate was evaluated at a

nominal level of 5% and at various values of the variance of the nuisance random effects that

ranged from 0 to 100. We show the empirical type I error rates in Table 1 and show the

confidence intervals of the error rates computed based on the exact binomial distribution in

the Online Supplementary Material (Tables A1 and A2). From these tables, it is seen that

the 50:50 chi-square approximation of Stram and Lee (1994) is conservative, regardless of

the sample size and the value of the nuisance variance component, except in case (a) with

a relatively large sample size. Similar to Greven et al. (2008) and Scheipl et al. (2008), the

pseudo-LRT and pseudo-RLRT behave satisfactorily across various settings, except in case

(e): a conservative type I error was observed for pseudo-RLRT when the nuisance variance

is small and the covariates si1 and si2 are highly correlated in the additive model. In this

case, when the nuisance variance component σ2
b1

= 0, 10−4 and 0.01, and n=500, the type

I error rate of the pseudo-RLRT is smaller than the nominal level (i.e., the upper bound of

the exact 95% confidence interval is smaller than 5%, Table A2 in the Online Supplementary

Material). For other values of σ2
b1

, the type I error rate of the pseudo-RLRT adheres to the

nominal level. In this scenario, the proposed procedure is robust to the presence of nuisance

variance component in the sense that it maintains the correct size for all values of σ2
b1

.

In other simulation settings where the covariates have low correlation or the nuisance

variance component is not on the boundary of the parameter space, the generalized F -

test also has type I error close to the nominal level. For example, with the partially linear

model, case (a) and (b) in Table 1 show that both the generalized F -test and the pseudo-

RLRT maintain the nominal level of the type I error rate at all the values of nuisance

variance. However, the 50:50 chi-square approximation is still conservative. In these settings,

we investigated a speed-up of Algorithm B by replacing Step B2 with a one-dimensional

search of λ over λ1, · · · , λm, while fixing γ̂ as estimated under the alternative. The procedure

is instantaneous and provides satisfactory type I error rates similar to those reported in

Table 1. In case (c), we investigate the performance of the proposed procedure when there
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are multiple nuisance variance components under the null (random intercepts and random

slopes), and show that the proposed test maintains the correct type I error rate.

4.3 Power of the tests

The next six sets of simulations compare the power of various tests. The true models under

the alternative hypothesis are specified as follows. For case (a), we simulated data from

model (2) with σ2
b = 1 and let σ2

α take different values. For case (b), we fixed σ2
α = 1 and

let f(t) = d ∗ sin(2πt) in the partially linear mixed effects model (1). The parameter d

serves as a measure of the effect size. For case (c), we fixed both variances σ2
α0

and σ2
α1

at

one in the partially linear model (3). We let β = (0.3, 0.3)T for the case n = 40, ni = 5;

β = (0.1, 0.1)T for the case n = 100, ni = 5; and let the variance σ2
b take different values. For

the varying coefficient model, we fixed the nuisance variance component at σ2
b1

= 1 and let

β(t) = d ∗ sin(2πt) in scenario (d), let β(t) = d ∗ (t+ t2) in scenario (e), and let d range from

0.1 to 1. For case (f), we fixed the nuisance variance component at σ2
b1

= 1 in the additive

model and let the variance component of interest, σ2
b2

, take different values.

We present the numerical results in Tables A3 and A4 in the Online Appendix A.4 and

depict the power comparisons in Figure 1 and Figure 2. We see that in all six scenarios, the

50:50 chi-square approximation is less powerful because it is a conservative procedure. The

loss of power can be up to 16% compared to the proposed test. Depending on the hypothesis

being tested and the true underlying model, there are some differences in power between

the generalized F -test and the pseudo-LRT or RLRT. For example, in scenario (a), when

testing for the random intercepts in model (2), there is no difference between the proposed

and RLRT. In scenario (b), when testing the presence of a sine function in a partially linear

model, the LRT is less powerful than the generalized F -test for several values of d. For

scenario (c) and with a sample size of 200, the LRT appears to be slightly more powerful

than the generalized-F when σ2
b=0.01.

For the varying coefficient model in case (d), when the function being tested is a sine

function, the proposed test has a greater power than the pseudo-LRT. The power gain is up

to 10%. When the function being tested is simpler (less number of modes), such as a quadratic

function in scenario (e), the pseudo-LRT is slightly more powerful than the proposed F -test.
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For the additive model in case (f), the proposed test behaves similarly to the pseudo-RLRT.

A computational advantage of the generalized F -test is that it requires fitting only one linear

mixed effects model. The reduction in computational burden is important when the test is

applied many times, such as in a GWAS, where T1 or T2 is computed for up to a million

single nucleotide polymorphisms (SNPs) along the genome.

5. Data analysis

In 2007, dense SNP genotyping (550,000 SNPs) was conducted in the Framingham Heart

Study (FHS) to map genes associated with risk factors of cardiovascular disease (CVD).

In this genome-wide association study (GWAS), the research goal is to test the association

between a SNP and a risk factor for CVD. Here the outcome of interest is the systolic blood

pressure (SBP), a complex trait influenced by both environmental and genetic factors. In

the literature, the heritability of SBP is estimated to be high (between 30% to 60%, Levy et

al. 2000), which suggests a substantial genetic contribution. Several GWAS were conducted

to identify SNPs that can explain the high heritability (Levy et al. 2009). However, most

work in the current literature do not account for the age-specific genetic effect.

We test for the genetic association by the proposed generalized F -test using the FHS

baseline SBP data incorporating the age effect by a varying coefficient mixed effects model.

There were 6309 subjects from 951 families with available SBP included in the analysis.

In the literature on genetic analysis of SBP, a log-transformation is often applied to better

satisfy the model assumptions (Byng et al. 2003; Cui and Sheffield 2003). Therefore, a log-

transformation of SBP was also applied in our analysis. We show a scatter plot of SBP and

log(SBP) against age in Figure 3.

Consider the varying-coefficient mixed effects model,

yij = cTijη + β(sij)gij + αi + εij, i = 1, · · · , n, j = 1, · · · , nij, (11)

where yij is the log-transformed SBP of the jth subject in the ith family, αi is a family-

specific random effect, gij is the genotype at a SNP for this subject coded as number of the

minor alleles, sij is the subject’s age, cij are fixed effects (such as gender, age, age-squared,
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body mass index (BMI) and BMI-squared), and β(sij) is an additive genetic effect. It is of

interest to test no genetic effect, that is, H0 : β(s) = 0 in (11). Under the alternative, usual

practice specifies β(s) as a linear function. Wang et al. (2012) observed power loss of the

linear model analysis when the true genetic effect is nonlinear. Since the true genetic effect

is unknown in practice, a flexible model under the alternative is desirable. We specify β(s)

using a quadratic truncated polynomial base under the alternative and test the association

through penalized spline. With the mixed model representation, the test falls under the

general framework in model (5) and we test H0 : β2 = 0, σ2
b2

= 0.

To correct for the large number of tests performed in a GWAS, the genome-wide significance

level is usually set as 10−8 (Levy et al. 2009). We created 108 repetitions to examine the null

distribution of the test statistic. The computing time for 108 null distribution simulations

was around 28 hours on a Dell computer with 2.67GHz CPU and 4GHz memory, compared to

an estimated 105 hours by bootstrap (estimated from performing 100 bootstraps). The long

computing time for bootstrap is partially due to a large number of random effects (families).

The genome-wide critical value was computed to be 7.84.

Levy et al. (2009) conducted a meta analysis of six GWAS on blood pressure traits and

reported several promising regions that may harbor genes for SBP. We selected two promising

candidate regions on chromosome 12 to analyze. There were 42 SNPs available in these

regions (19 from region 88485Kb to 88605Kb and 23 from region 110305Kb to 110390Kb).

The p-values were computed as the proportions of the simulated null test statistics greater

than or equal to the observed. The top ranking SNPs are rs7136259, rs17249754, and

rs11065898 with the respective p-values 0.00012, 0.00015, and 0.00068. The minor allele

frequencies of these SNPs are 18%, 21%, and 34%, respectively. The first two top-ranking

SNPs locate in the gene ATP2B1 (88585Kb and 110347Kb on chromosome 12) and the third

one locates in the gene SH2B3 (88605Kb on chromosome 12). Both genes were reported

to be associated with hypertension and blood pressure in several studies (Levy et al. 2009;

Newton-Cheh et al. 2009). We present the fitted genetic effect β̂(s) on the original scale

for three SNPs in Figure 4, which suggests a nonlinear trend in all three cases. For SNPs

rs7136259 and rs17249754, the genetic effect appears to be larger at the early and late ages
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(before age 20 and after age 50), while for SNP rs11065898, the genetic effect fluctuates

across time.

These analyses provide some evidence of the presence of gene-age interaction, which in

some cases may not have been identified if the time-trend had been ignored (Wang et

al. 2012). There are reports of empirical evidence and theoretical justification for genetic

factors controlling time-varying developmental features of a phenotype in plant, animal, and

human genetic literature (Province and Rao 1985, Rice 2002, He et al. 2010). Since aging

is a complex biological process during which many physiological changes may take place,

age may represent a surrogate of various unmeasured biological factors. Taking into account

the gene-age interaction in a genetic association study may help with resolving some of the

inconsistencies in replicating a genetic finding, and may increase power of association tests

(e.g., Lasky-Su et al. 2008; Wang et al. 2012).

This data analysis example shows that the proposed procedure solves a computational

problem encountered in obtaining reliable genome-wide significance level for large-scale

studies such as GWAS, where permutation is practically unrealistic and asymptotic ap-

proximation may be conservative and unstable.

6. Discussion

In this work, we propose a test of an unspecified function through linear mixed effects

models with more than one variance component. We present a spectral decomposition of

the test statistic that offers fast computation of the null and alternative distributions and

reveals the connection between (R)LRT for single and multiple variance component models.

The computational gain over permutation and bootstrap is especially useful for large scale

experiments, such as the GWAS or microarray gene expression studies. With a large scale

study, improving power is important, therefore an asymptotic chi-square approximation that

leads to a conservative decision is highly undesirable. We observe some power differences

between the generalized F -test and the (R)LRT depending on the true underlying model. In

practice, when the true underlying function is unknown, these tests may supplement each
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other in terms of power. For the LRT or RLRT, the R package RLRsim (Scheipl et al. 2008)

can be used to compute the null distribution efficiently.

Here, we use a reduced-rank penalized spline to represent an unknown function under

the alternative. An extension to applying the test and its null distribution computation with

smoothing splines or kernel machines is possible through mixed effects model representations.

Lastly, the methods can be extended to O’Sullivan penalized splines using the B-splines basis

functions through a penalty matrix presented in Wand and Ormerod (2008).

7. Supplementary Material

Web Appendices and Tables referenced in Sections 3 and 4 are available with this paper at

the Biometrics website on Wiley Online Library.
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Figure 1. Power of various tests in scenarios (a) (top two panels), (b) (middle two panels),
and (c) (bottom two panels) based on 1,000 simulations.
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(a): Testing for the random intercept with a nuisance unspecified function in example 1.
(b): Testing for an unspecified function with a nuisance random intercept in example 1.
(c): Testing for an unspecified function with nuisance random intercepts and random slopes
in example 2.
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Figure 2. Power of various tests in scenarios (d) (top two panels), (e) (middle two panels),
and (f) (bottom two panels) based on 1,000 simulations.
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(d): Testing for a varying coefficient with a nuisance smooth term in example 3, sine function.
(e): Testing for a varying coefficient with a nuisance smooth term in example 3, polynomial
function.
(f): Testing for linearity of a smooth additive function with a nuisance smooth term in
example 4; corr(ti1, ti2)=0.7.
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Figure 3. Scatterplot of the SBP versus age (top panel) and log(SBP) versus age (bottom
panel) in 6309 Framingham samples

10 20 30 40 50 60 70

80
10

0
12

0
14

0
16

0
18

0
20

0

Age

S
B

P

10 20 30 40 50 60 70

4.
4

4.
6

4.
8

5.
0

5.
2

Age

lo
g(

S
B

P
)



On testing an unspecified function through a linear mixed effects model with multiple variance components 25

Figure 4. Fitted age-specific genetic effect β̂(s) (solid lines) and its pointwise confidence
interval (dashed lines) for SNPs rs7136259 (top panel), rs17249754 (middle panel) and
rs11065898 (bottom panel)
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