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combined traits showed that the power of the proposed 
methods was higher than the usual principal-components 
analysis and the non-regularized principal-components of 
heritability analysis.  Conclusions:  The penalized principal-
components approach based on heritability can effectively 
handle large number of traits with family structure and pro-
vide power gain for linkage analysis. The cross-validation 
procedure performs well in choosing optimal magnitude of 
penalty.  Copyright © 2007 S. Karger AG, Basel 

 Introduction 

 In some genetic studies, a constellation of traits are 
measured because it is of interest to locate genes associ-
ated with multiple traits. Due to uncertainty of the un-
derlying genetic model, not all the traits measured may 
be influenced by genetic factors. For example, Cheung et 
al.  [1]  measured gene expression levels on over 5,000 
transcription factors of human lymphoblastoid cell lines, 
and found evidence of familial aggregation of a propor-
tion of these expression levels. The follow-up study in 
Morley et al.  [2]  conducted genome-wide linkage scans 
on each of the 3,554 gene expression phenotypes using 
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 Abstract 
  Objective:  To develop a ridge penalized principal-compo-
nents approach based on heritability that can be applied to 
high-dimensional family data.  Methods:  The first principal 
component of heritability for a trait constellation is defined 
as a linear combination of traits that maximizes the heritabil-
ity, which is equivalent to maximize the family-specific vari-
ation relative to the subject-specific variation. To analyze 
high-dimensional data and prevent overfitting, we propose 
a penalized principal-components approach based on heri-
tability by adding a ridge penalty to the subject-specific vari-
ation. We choose the optimal regularization parameter by 
cross-validation.  Results:  The principal-components ap-
proach based on heritability with and without ridge penalty 
was compared to the usual principal-components analysis in 
four settings. The penalized principal-components of heri-
tability analysis had substantially larger coefficients for the 
traits with genetic effect than for the traits with no genetic 
effect, while the non-regularized analysis failed to identify 
the genetic traits. In addition, linkage analysis on the

 Received: October 11, 2006 
 Accepted after revision: March 19, 2007 
 Published online: May 25, 2007 

 Yuanjia Wang, PhD 
 Department of Biostatistics, Columbia University, Mailman School of Public Health 
 722 West 168th Street, Room 604 
 New York, NY 10032 (USA) 
 Tel. +1 212 342 3430, Fax +1 212 305 9408, E-Mail yw2016@columbia.edu 

 © 2007 S. Karger AG, Basel
0001–5652/07/0643–0182$23.50/0 

 Accessible online at:
www.karger.com/hhe 

http://dx.doi.org/10.1159%2F000102991


 Penalized Principal-Components 
Analysis Based on Heritability 

Hum Hered 2007;64:182–191 183

2,882 SNPs and found evidence of two ‘master regulators’ 
that were associated with co-expressions of 31 and 25 
transcription factors, respectively. Bystrykh et al.  [3]  ex-
amined hematopoietic stem cell in recombinant inbred 
mouse strains and found 17 quantitative trait loci (QTLs) 
controlling 10 to 272 gene expression transcripts. Par-
ticularly, there was one QTL on chromosome 4 control-
ling 272 gene expression levels.

  In real life, the number of traits controlled by a hotspot 
QTL varies from tens to hundreds. When the goal of a 
study is to discover genes related to multiple traits, single 
trait analysis can be used on each of the individual trait 
and the results may be compared as done in Morley et al. 
 [2] . However, when the number of traits is large, such 
analysis is computationally intensive and corrections re-
quired to adjust for multiple comparisons may be severe. 
Multivariate linkage analysis was proposed to analyze all 
the traits simultaneously. See for example, Amos et al.  [4] , 
and Jiang and Zeng  [5] . However, multivariate analysis is 
only applicable to moderate number of traits, and the 
power of such analysis may be compromised by the in-
creased degrees of freedom of the distribution of the test 
statistic required when evaluating significance.

  Principal-components analysis (PCA) is used to com-
bine phenotypes and provide scores for subsequent ge-
netic analysis. For example, Dick et al.  [6]  used PCA to 
combine quantitative alcohol-related phenotypes and 
map genes influencing the combined traits in the Collab-
orative Study on the Genetics of Alcoholism (COGA). 
However, the usual principal-components analysis ig-
nores the familial aggregation patterns and heritability 
information in the phenotypes. Since not all of the mea-
sured traits may be influenced by genetic factors, it is de-
sirable to provide combined traits with larger weights on 
those traits that have larger degree of familial aggregation 
or heritability, because they are more likely to be linked 
to genetic factors. Principal-components approach based 
on heritability (PCH) was proposed by Ott and Rabino-
witz  [7]  to exploit the familial information in traits by 
computing linear combinations of traits that have maxi-
mal heritability. Simply put, the PCH approach maximiz-
es the ratio of the relevant family-specific variation to the 
subject-specific variation instead of maximizing the total 
variation, so it captures the genetic information across 
traits. By simulations stuides, Ott and Rabinowitz  [7]  
showed that the PCH approach provides substantial gain 
of power compared to the usual PCA in some situations.

  When the number of traits is very large such as in Mor-
ley et al.  [2] , the PCH method developed in  [7]  is not di-
rectly applicable. Zou and Hastie  [7]  proposed a sparse 

principal-components analysis that can incorporate large 
numbers of traits. However, their approach is the sparse 
version of the usual PCA and is not appropriate for fam-
ily data. Here is proposed a penalized principal-compo-
nents approach based on heritability (PCH  �  ) that can be 
applied to high-dimensional family data. The method 
stabilizes the PCH estimates by adding a ridge penalty to 
the subject specific variation. Adding this penalty pre-
vents the problem of over-fitting and regularizes the 
principal-components of heritability towards the linear 
combination that maximizes the family-specific varia-
tion. The regularization parameter in the penalty term 
controls the model complexity. A hypothetical example 
examining the function of the ridge penalty was given. A 
cross-validation procedure to choose the optimal regu-
larization parameter was also developed. An extension of 
this approach to provide sparse loadings was briefly dis-
cussed. The methods were illustrated through simulation 
studies. It was shown that the penalized principal-com-
ponents based on heritability approach can provide scores 
with large weights on traits with larger degree of familial 
aggregation for high-dimensional data. Linkage analysis 
using traits combined by PCH  �   approach showed signif-
icant power gain compared to the usual PCA or PCH
in  [7] .

  Methods 

 As in  [7] , traits  Y  can be decomposed into a family-specific 
component  B  and a subject-specific component  W  as

   Y = B  +  W. 

  When the data consists of nuclear families with multiple siblings, 
the variation of the family-specific component,  �  B , can be esti-
mated by the sample between-family variance-covariance matrix 
and the variation of the subject-specific component,  �  W , can be 
estimated by the sample within-family variance-covariance ma-
trix. 

 The usual principal-components analysis (PCA) searches for 
linear combination of traits that maximizes the total variation. 
The leading principal component can be defined as

� �
1

PCA arg max ,T
B W|| ||�

� �
�

� � ��                                                  (1)

  where  �  is the score for the leading principal component, and has 
the same dimension as the vector  Y . However, the PCA does not 
take into account of the family structure information. When fam-
ily data is available, the PCA can only be applied to traits from 
independent subjects (founders). 

 To incorporate family structure information in the traits, a 
principal-components approach based on heritability was pro-
posed in  [7]  to find a linear combination of traits that maximizes 
the family-specific variation relative to the subject-specific varia-
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tion. To be precise, the leading principal component of heritabil-
ity is defined as

1
PCH arg max . 

T
B

T|| || W�

� �
� ��

�
�

�
                                                             (1)

  Note that this maximization is equivalent to maximizing 

� �
,

T
B

T
B W

� �
� �

�
� � �

 which is the definition of heritability. In this sense, the PCH is 
also the linear combination that maximizes the heritability. It is 
well known that the solution to (1) is the first eigenvector of the 
matrix  �  W

–1 
   �  B  (Mardia et al.  [9] ). 

 Unfortunately, using eigen-analysis of  �  W
–1 

   �  B  to solve for the 
PCH is not directly applicable to high-dimensional data. To see 
this, consider the situations where the number of traits is much 
larger than the number of families. For example, in  [2] , there were 
3,554 trait components and 14 families. Facing these cases, PCH 
analysis will always find a linear combination that over-fits the 
observed data: there always exists a linear combination such that 
the within-family variance of that combination is zero, because 
 �  W  has eigenvalues of zeros. Subsequently, the denominator of (1) 
will be zero, so that the PCH will be unidentifiable and extreme-
ly unstable. To be precise, any  �    that satisfies  �  T  Y  ij    having zero 
within-family variance will have a very large value for (1), thus  �   
 is not identifiable. In this case the large value of (1) is simply an 
artifact of the numerator being zero, as oppose to providing a 
good linear combination that have most of its weights on genetic 
trait components.

  To accommodate large number of traits, we propose a ridge 
penalized principal-components approach based on heritability, 
where the first component is defined as

21
PCH arg max . 

T
B

T|| || W || ||�
�

� �
� � � ��

�
�

� �
                                         (2)

  Here  �    is the regularization parameter to be specified. 
 The function of adding the ridge penalty is explained in  figure 

1 . Each vertical ellipse corresponds to the within-family varia-
tion, and the largest ellipse corresponds to the between-family 
variation. The upper arrow corresponds to the direction that 
maximizes the between-family variation and the lower arrow cor-
responds to the direction that minimizes the within-family vari-
ation. The middle arrow corresponds to the direction that pro-
vides the optimal balance between maximizing the between-fam-
ily variation and minimizing the within-family variation, which 
is also the direction of PCH. When � is zero, the PCH  �   is the 
original non-penalized leading principal component of heritabil-
ity. When  �    approaches infinity, the second term in the denomi-
nator of (2) dominates, and the PCH �      approaches the linear com-
bination that maximizes the between-family variation,  �  B . That 
is, PCH  �   approaches principal-components of between-family 
variation, which can be defined as

1
PCB arg max .T

B|| ||�
� �

�
� �

  When  �    ranges from zero to infinity, the PCH  �   changes between 
the PCH and the PCB. Therefore the effect of the parameter  �    is 
to regularize the PCH  �   towards the direction of the maximal be-
tween-family variation, PCB. The PCB summarizes genetic infor-

mation by considering the variation between the averaged traits 
between families. It is less optimal to the PCH analysis because 
the latter considers between-family variation relative to the with-
in-family variation: given the between-family variation being the 
same, the traits that have more similar values for subjects within 
the same family (smaller within-family variation) should receive 
greater weights than the traits that have more distinct values for 
those subjects, assuming these traits are influenced by genetic 
factors. A hypothetical numerical example examining the effects 
of regularization is given in the section 3. 

 To find the optimal regularization parameter, a cross-valida-
tion procedure can be used. However, with no response variables 
the usual minimizing prediction error criterion is not directly ap-
plicable. Instead, here maximizing the ‘cross-validated heritabil-
ity’ is used as a criterion. Let  k  index random partitions of families 
into halves, and let  N  denote the total number of the random par-
titions. Let �̂   �

1  k 
       denote the PCH  �   computed from the first half of 

the data using  �    in the  k- th partition. Let  �  B
2  k 

   and  �  W
2  k 

   denote the 
between- and within-families variations computed from the sec-
ond half of the families in the  k -th partition. The regularization 
parameter  �    can then be chosen by

� �
� �

1 2 1

1 2 1

1
CV arg max   

Tk k k
B

Tk k kk
W

ˆ ˆ
.

N ˆ ˆ
� �

�
�

� �

� �

� �

�
�

�
�                                              (3)

  Asymptotically, the quantity being maximized in (3) is an unbi-
ased estimate of the true heritability, and can be regarded as the 
‘cross-validated heritability’. 

 Simulations 

 Simulation Methods 
 In all the simulations, the underlying genetic model 

had a single disease susceptibility locus with two alleles. 
The effect of the first allele on the traits was assumed to 
be additive: carrying one copy of the allele added a con-
stant to the mean of the traits. Carrying the other allele 
had no effect on the traits. The constant effect was the 
same for each family, but was different across the traits. 
A fully informative marker perfectly linked to the un-
derlying locus was simulated. Parents’ marker geno-
types were simulated based on population allele fre-
quencies. Given their genotypes, parents’ traits were 
simulated by adding a multivariate normal random 
variable to the effect of gene. This model can be ex-
pressed as

   Y  =  X  �  +  � ,                                                                                     (4)

  where  �   �   MVN (0,    � ). Here  �    is the effect size of the 
gene,  X  is the number of the disease susceptible alleles 
carried by a subject, and  �  is the variance-covariance ma-
trix of the residual multivariate normal random variable. 
Offsprings’ genotypes were simulated based on Mende-
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lian transmissions, and their traits were simulated based 
on the model (4). 

 Under this model, the family-specific component  �  B  
and the subject-specific component  �  W  can be computed 
as (see Appendix)

   �  B  =  Cov ( X  11 ,  X 12) �  �  T ,                                                               (5)

  and
   �  W   =   �  + { V ar ( X  11 ) –  Cov ( X  11 ,  X  12 )} �  �  T ,                                (6)

  where  X  11  and  X  12 , respectively, are the numbers of the 
disease susceptible alleles carried by any two siblings 
from a same family. Let  p  denote the population frequen-
cy of the disease susceptible allele. In the first two sets of 
simulations,  p  was assumed to be 1/2. Therefore  �  B  = 
 �  �  T /4 and  �  W  =  �  +  �  �  T /4 :  The allele frequency was de-
creased to 0.2 in the third set of simulations involving 
linkage analysis. It’s easy to see from these calculations 
that when there are no environmental factors, the family-
specific component is induced by parental genotype sta-
tus at the disease susceptibility, while the subject-specific 
component is induced by the differences of offsprings’ 
inheritance of the parental disease susceptible alleles. 

 To examine properties of the PCH and the PCH  �  , and 
compare them with some other alternatives, consider 
four hypothetical settings summarized in  table 1 . In each 
of the four settings, there were five trait items. The first 
setting corresponds to the scenario in which all five items 

were of the same importance. In the second setting, only 
the first two items had genetic effect. In the third setting, 
the genetic components in the last three items had a larg-
er effect than the first two, but the variance of the noise 
components for these items which contributed to the 
within-family variation were smaller. In the fourth set-
ting, the genetic components in the last three items were 
larger than the first two, and the variance of the noise 
components in these items were also larger.

  Using  �  B  and  �  W  computed from (5) and (6), the val-
ues of PCA, PCB, PCH and PCH  �   (with  �  = 1, 10 or 100) 
in the above settings were summarized in  table 2 . In the 
first setting, because all items were independent and 
identically distributed, it was not surprising that all meth-
ods chose the same linear combination. In the second 

Table 1. Four hypothetical settings to compare PCH with alterna-
tives

Settings � �

� � � �� �	 	� �	 	� �	 	� �	 	� �	 	� �	 	� �� �	 	� �	 	� �	 	� �	 	
 � 
 �

� � � �� �	 	� �	 	� �	 	� �	 	� �	 	� �	 	� �� �	 	� �	 	� �	 	� �	 	
 � 
 �

� ��	 �	 �	 �	 �	 �					
 �

1 1 0 0 0 0
1 0 1 0 0 0

1 1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1

1 1 0 0 0 0
1 0 1 0 0 0

2 0 0 0 2 0 5 0 5
0 0 0 0 5 2 0 5
0 0 0 0 5 0 5 2

1
1

3 2
2
2

. .
. .
. .

� ��	 �	 �	 �	 �	 �	� �� �	� �	� �	� �	
 �

� � � �� �	 	� �	 	� �	 	� �	 	� �	 	� �	 	� �� �	 	� �	 	� �	 	� �	 	
 � 
 �

3 0 0 5 0 0 0
0 5 3 0 0 0 0
0 0 1 0 5 0 5
0 0 0 5 1 0 5
0 0 0 5 0 5 1

1 0 5 0 0 0 0
1 0 0 5 0 0 0

4 2 0 0 1 0 5 0 5
2 0 0 0 5 1 0 5
2 0 0 0 5 0 5 1

. .

. .
. .

. .

. .

.
.

. .
. .
. .

Table 2. Various principal-components under the four set-
tings

                 Setting 1 Setting 2 Setting 3 Setting 4

a The numbers following the commas are heritabilities
bT�Bb/bT (�B + �W)b.

b PCH is equivalent to PCH� = 0.

a

0 447 0 0 324 0 224
0 447 0 0 324 0 224
0 447 0 577 0 0 513 0 375 0 548PCA 0 357
0 447 0 577 0 513 0 548
0 447 0 577 0 513 0 548

. . .

. . .

. . , . , . ., .

. . . .

. . . .

� � � � � � � �� � � �	 	 	 	� � �	 	 	 	� � �	 	 	 	� � �	 	 	 	� � �	 	 	 	� � �	 	 	 	� � �� � �	 	 	 	� � �	 	 	 	� � �	 	 	 	� � �	 	 	 	
 � 
 � 
 � 
 �

0 395

0 447 0 707 0 267 0 267
0 447 0 707 0 267 0 267
0 447 0 357 0 0 25 0 535 0 380 0 535PCB
0 447 0 0 535 0 535
0 447 0 0 535 0 535

, .

. . . .

. . . .

. , . , . . , . .

. . .

. . .

����������

� � � � � � �� � �	 	 	� � �	 	 	� � �	 	 	� � �	 	 	� � �	 	 	� � �	 	 	� � �� � �	 	 	� � �	 	 	� � �	 	 	� � �	 	 	
 � 
 � 
 �

b

0 398

0 447 0 707 0 161 0 603
0 447 0 707 0 161 0 603
0 447 0 357 0 0 25 0 562 0 383 0PCH
0 447 0 0 562
0 447 0 0 562

, .

. . . .

. . . .

. , . , . . , .

. .

. .

��	 �	 �	 �	 �	 �	 ��	 �	 �	 �	
 �

� � � � � �� � �	 	 	� � �	 	 	� � �	 	 	� � �	 	 	� � �	 	 	� � �	 	 	� � �� � �	 	 	� � �	 	 	� � �	 	 	� � �	 	 	
 � 
 � 
 �

λ=1

302 0 417
0 302
0 302

0 447 0 707 0 186
0 447 0 707 0 186
0 447 0 357 0 0 25 0 557PCH
0 447 0 0 557
0 447 0 0 557

. , .

.

.

. . .

. . .

. , . , . .

. .

. .

� ��	 �	 �	 �	 �	 �	 ��	 �	 �	 �	
 �

� � � � � �� � �	 	 	� � �	 	 	� � �	 	 	� � �	 	 	� � �	 	 	� � �	 	 	� � �� � �	 	 	� � �	 	 	� � �	 	 	� � �	 	 	
 � 
 � 
 �

λ=10

0 447
0 447

0 383 0 447 0 410
0 447
0 447

0 447 0 707 0 241
0 447 0 707 0 241
0 447 0 357 0 0 25 0 543PCH
0 447 0 0 543
0 447 0 0 543

.

.
, . . , .

.

.

. . .

. . .

. , . , . .

. .

. .

� ��	 �	 �	 �	 �	 �	 ��	 �	 �	 �	
 �

� � � � �� �	 	 	� �	 	 	� �	 	 	� �	 	 	� �	 	 	� �	 	� �� �	 	� �	 	� �	 	� �	 	
 � 
 � 


λ=100

0 299
0 299

0 381 0 523 0 400
0 523
0 523

0 447 0 707 0 264
0 447 0 707 0 264
0 447 0 357 0 0 25 0 5PCH
0 447 0
0 447 0

.

.
, . . , .

.

.

. . .

. . .

. , . , . .

.

.

� � �� �	� �	� �	� �	� �	� �	 	� �� �	 	� �	 	� �	 	� �	 	� 
 �

� � � �� �	 	� �	 	� �	 	� �	 	� �	 	� �	 	� �� �	 	� �	 	� �	 	� �	 	
 � 
 �

0 271
0 271

36 0 380 0 533 0 399
0 536 0 533
0 536 0 533

.

.
, . . , .

. .

. .

� � � �� �	 	� �	 	� �	 	� �	 	� �	 	� �	 	� �� �	 	� �	 	� �	 	� �	 	
 � 
 �
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setting, the usual PCA chose the last three items which 
had no genetic effect, while the other three methods chose 
the first two items that had genetic effect. In this setting, 
the PCA was not an appropriate choice of analysis meth-
od. Also note that the PCB and the PCH provided the 
same results because the normal residual variances con-
tributing to the within-family variation for the two ge-
netic components were identical (equals to 1). In the last 
two settings, by comparing the heritability, PCH was bet-
ter than PCA and PCB. This is because the PCH consid-
ered the between-family variation relatively to the with-
in-families variation. In the third setting, both PCB and 
PCH put larger weights on the last three trait items be-
cause these items had larger effect than the first two, and 
also happened to have smaller within-family variation. In 
the fourth setting, PCH put more weights on the first two 
items, because they had smaller within-family variations. 
In contrast, PCB put more weights on the last three items, 
because the PCB did not capture the within-family varia-
tion information, resulting in lower heritability.

  It can also be seen from  table 2  that when  �  was zero, 
the PCH  �   was equivalent to the PCH; when  �  was very 
large, the PCH  �   approached the PCB; and when  �  ranged 
between zero and infinity, the PCH  �   ranged between the 
PCH and the PCB. This property was also illustrated in 
 figure 1 . The cross-validation procedure (3) can help to 
determine a best value that balance the need to maximize 
heritability and the need to stabilize estimates for high-
dimensional data.

  To examine the performance of the proposed ridge pe-
nalized PCH approach, two sets of simulations were car-
ried out under settings 3 and 4. In real life situations, we 
have no knowledge of which transcripts are controlled by 
a master QTL and which are not. The simulation experi-

ments were designed to investigate whether the proposed 
approach can be applied to a range of expressions and 
distinguishing the genetically influenced components 
from the noise components. We consider the cases when 
the noise components outnumber the genetic compo-
nents, because in real life applications, the genetic com-
ponents would only be a proportion of all the traits under 
investigation. In all simulations, only a small proportion 
of traits were simulated to have genetic effect. Through 
these experiments, we show the potential of using PCH  �   
as a multivariate screening tool on hundreds of tran-
scripts without knowing which ones may be controlled by 
genetic factors and which ones are independent of the ge-
netic factors. Ideally, the combined traits would have 
large weights for the genetic traits and small weights for 
the non-genetic traits, so that the combined trait would 
have large heritability.

  In both simulations, 25 families with four siblings in 
each family were used. In each simulation, there were 200 
replications. In each replicate,  �  was chosen by maximiz-
ing ‘crossed validated heritability’ defined in (3). The 
number of random partitions was 40. Fifty values of  �  
were equally spaced on the intervals (0, 100) and (0, 120), 
respectively, in each set of simulation. In each replication, 
the  �  yielding highest cross-validated heritability, CV  �  , 
was chosen to compute PCH  �  .

  In the first set of simulations, we augmented the set-
ting 3 in  table 1  to simulate trait constellations with 50 
and 100 components. In each constellation, the first five 
components were influenced by a single genetic locus and 
the other components were random noise with no genet-
ic effect. The augmented vector of the genetic effect size 
was therefore  �  = (1, 1, 2, 2, 2, 0, …, 0) T . The augmented 
variance-covariance matrix of the multivariate Gaussian 
random variable was

0
0

s
e

� �� �	 �	 �� �	
 �

  Here  �  s  was the original 5  !    5 matrix in setting 3 (see 
 table 1 ), and  �  e  was 

1 0
1 0

0 0 1

�
�

� ��� �� �� �� �� �� ��� ��� �

 In this set of simulations  �    was a 4-dimensional matrix 
with each element equals to 0.1. In these experiments 
among the 45 or 95 non-genetic traits, the Gaussian ran-
dom variables for the first five non-genetic components 
were correlated, and the remaining 40 or 90 non-genetic 
traits were independent. 

� = 0

� �=

Direction between families

Direction within families

  Fig. 1.  Interpretation of the regularization parameter  �    in 
PCH  �  . 
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 In the second set of simulations, we augmented setting 
4 in  table 1  to simulate trait constellations with 50 and 
100 components. In this set, the variance-covariance ma-
trix of the non-genetic trait components  �  e  had a diago-
nal structure with elements equal to 0.35. Therefore, in 
these experiments the Gaussian random variables for all 
non-genetic components were independent.

  The previous two sets of simulations investigate the 
proposed methods by comparing the estimated loadings 
of PCH  �   to that of PCA and PCH. We conducted a third 
set of simulations to investigate the type I error rate and 
the power of proposed methods through testing of link-
age using the combined traits as phenotypes. We gener-
ated 100 families, where there were 20 families with 3 
siblings, 30 families with 3 siblings, 25 families with 4 
siblings and 25 families with 5 siblings. The allele fre-
quency was decreased to 0.2. The number of replications 
in these analyses was 1,000. In each replication, we com-
puted PCA using standard principal-components analy-
sis, PCH using methods in  [7] , and PCH  �   using the pro-
posed methods. The  �  was selected by cross validation. 
We then subject the combined traits from these three ap-
proaches to a Haseman-Elston regression to test for link-
age  [10] .

  The first setting of the linkage analysis was an analogy 
of scenario 2 and was summarized in  table 5 , setting 5. 
We simulated 200 traits with 10 components having pos-
itive genetic effect. The mean of the genetic traits was 1.5 
and the variance was 0.25. The next 15 non-genetic traits 
had mean 0, correlation 0.5 and variance 3.0. The re-
maining non-genetic traits had mean 0 and variance 
0.5.

  The second setting of the linkage analysis was an anal-
ogy of scenario 3 and was summarized in  table 5 , setting 
6. The number of traits was still 200, but there were 25 
traits with positive genetic effects. The first 10 traits had 
mean 1 and variance 3, and the next 15 traits had mean 2 
and variance 1. The correlation among these traits was 
0.1. The remaining 175 traits were un-correlated and had 
mean 0 and variance 2.

  Simulation Results 
 The empirical mean and mean-squared-error of the 

PCH  �   in the first set of simulations were recorded in the 
top panel of  table 3 . The first five rows recorded the esti-
mated coefficients for the genetic trait components, while 
the next 5 rows recorded coefficients for the subsequent 
non-genetic trait components. The other coefficients for 
the remaining non-genetic trait components were omit-
ted from the table. The minimal value of these coeffi-

Table 3. Results for the 5 genetic components and the subsequent 
5 non-genetic components of PCH�: settings 3 and 4a

� 50 traits 100 traits

mean (�̂ ) MSE (�̂ ) mean (�̂ ) MSE (�̂ )

Setting 3
0.161 0.150 0.032 0.195 0.027
0.161 0.212 0.025 0.248 0.019
0.562 0.578 0.139 0.526 0.180
0.562 0.529 0.150 0.488 0.180
0.562 0.540 0.147 0.524 0.183
0 0.036 0.018 0.053 0.008
0 0.015 0.013 0.022 0.019
0 0.016 0.014 0.088 0.009
0 0.032 0.015 0.008 0.009
0 0.005 0.014 0.027 0.008

Setting 4
0.603 0.463 0.186 0.392 0.237
0.603 0.529 0.189 0.452 0.240
0.302 0.370 0.029 0.361 0.046
0.302 0.355 0.033 0.311 0.048
0.302 0.418 0.032 0.324 0.047
0 0.006 0.014 0.028 0.009
0 0.021 0.014 0.071 0.010
0 0.018 0.016 0.051 0.010
0 0.065 0.014 0.054 0.008
0 0.019 0.019 0.011 0.010

a Only the weights of the first 10 traits were reported.

Table 4. Results for the 5 genetic components and the subsequent 
5 non-genetic components of PCH� = 0 (no regularization): set-
ting 3a

� 50 Components 100 Components

mean (�̂ ) MSE (�̂ ) mean (�̂ ) MSE (�̂ )

0.161 0.018 0.034 0.029 0.032
0.161 0.065 0.034 0.002 0.030
0.562 0.066 0.346 0.170 0.340
0.562 0.097 0.357 0.027 0.329
0.562 0.185 0.335 0.059 0.332
0 0.269 0.022 0.036 0.009
0 0.091 0.022 0.003 0.010
0 0.010 0.018 0.047 0.012
0 0.087 0.018 0.261 0.011
0 0.092 0.018 0.030 0.010

a Results of PCH for setting 4 were similar to setting 3.
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cients was 0.0001 and the maximal was 0.058. As desired, 
the coefficients for the genetic components were large, 
and the coefficients for the non-genetic components were 
small. The behavior of the cross-validation criterion (3) 
in a typical simulation was depicted in  figure 2 a. The 
maxima in this particular simulation occurred at  �  = 
58.63, and the value of CV  �   in (3) was 2.29.

  When increasing the number of traits to 100, the esti-
mated PCH  �   had similar behaviors with having 50 traits. 
The minimal value of the non-genetic coefficients omit-
ted from the top panel of  table 3  was 0.0003, and the max-
imal was 0.088. The behavior of the cross-validation in a 
typical simulation depicted in  figure 2 b also was similar. 
The maxima was at  �  equaled to 65.2, and the value of (3) 
was 2.39.

  The performance of the PCH  �   in the second set of sim-
ulations was recorded in the bottom panel of  table 3 . This 
set was an augmentation of setting 4. The mean-squared-
error for the coefficients were slightly larger than that in 
the setting 3. The general behavior of the PCH  �   was sim-
ilar to that in the first set. It can be seen from the both 

sets of simulations that the proposed PCH  �   method had 
substantially larger coefficients for the traits with genetic 
effect than for the non-genetic traits.

  It is interesting to compare the penalized PCH with 
the non-penalized PCH, or PCH  �  = 0 . The PCH  �  = 0  was 
computed by an eigen-analysis of the generalized inverse 
of  �  W  multiplied by  �  B . Here the same set of data that 
generated the top panel of  table 3  was used. The mean
and the mean-squared-error of the estimated leading
PCH  �  = 0  were summarized in  table 4 . It can be seen that 
these estimates without regularization were random fluc-
tuations and did not capture the genetic trait compo-
nents.

  Results from the first set of linkage analysis were sum-
marized in the top panel of  table 6 . The type I error rates 
from all three approaches were approximated the same as 
the specified  �    level. The power for testing for linkage us-
ing proposed PCH  �   was above 95% for all values of  �  lev-
els, while the power using standard principal component 
analysis (PCA) was only 24% with  �  level equals to 0.05. 
The power for PCH was very low and approximately the 
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Table 5. Simulation settings for linkage 
analysis
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  Fig. 2.  Cross-validation to choose  � : set-
ting 3, 50 and 100 trait components. 
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same as the type I error rate. In this setting, the PCA did 
not capture most of the genetic variability since the vari-
ance for the non-genetic traits were larger than the vari-
ance for the genetic traits resulting PCA giving more 
weights to the non-genetic traits. The PCH was computed 
using generalized inverse because of the singularity of 
 �  W . Without regularization, the PCH approach will ran-
domly combine all the traits. Therefore PCH did not cap-
ture any genetic variation and the power for testing for 
linkage using PCH as a phenotype is similar to the type 
I error rate.

  Results from the second set of linkage analysis were 
summarized in the bottom panel of  table 6 . The power for 
PCH  �   was similar to that in the first set. Note that the 
usual PCA captured more genetic variation in this setting 
than that in the previous one. However, it still had lower 
heritability leading to loss of information. The power for 
testing linkage using PCA was 53% with  �    level 0.1, which 
is considerably lower than the power of PCH  �  . The mag-
nitude of power gain of PCH  �   for other  �    levels is large. 
PCH with no regularization again had no power for de-
tecting linkage due to the random combination of traits 
as we also see from setting 5. Both sets of linkage analysis 
suggest that the ridge regularized PCH has good power 
for detecting linkage compared to the un-regularized 
PCH and the usual PCA.

  Discussion 

 Here is proposed a penalized principal-components 
approach based on heritability that can be applied to 
high-dimensional traits. The method finds a linear com-

bination of original traits that maximizes the familial-
component variation of the trait constellation relative to 
the regularized subject-component variation. The opti-
mal regularization parameter can be chosen by a cross-
validation procedure that maximizes an unbiased esti-
mate of the heritability. The computation of the PCH  �   is 
fastened by a singular value decomposition of  �  W  +  �  I = 
UDV  T . Without regularization, the matrix  D  is not in-
vertible. It was shown that the proposed penalized PCH 
method had scores with substantially larger weight on the 
genetic trait components, while the PCH analysis without 
regularization failed to distinguish the genetic trait com-
ponents from the non-genetic components. Simulations 
show that using PCH  �   as phenotype in testing for linkage 
has good power, while using the standard PCA results in 
loss of power and using PCH has no power at all (when 
there is a large number of traits thus  �  W  is singular).

  Here the variation of the family-specific component 
was estimated by the sample between-family variance-co-
variance matrix, and the variation of the subject-specific 
component was estimated by the sample within-family 
variance-covariance matrix. For more compli cated pedi-
gree data other than nuclear families, the family-specific 
and subjects-specific component variation can be esti-
mated using the variance components model  [11] 

   Y = G  +  E, 

  where  Y  is a  k  !  p  matrix of  p  traits measured from  k  sub-
jects from a pedigree,  G  is the unobserved polygenic ef-
fect, and  E  is the residual environmental effect. The cova-
riance of  Y  can be decomposed as  �  Y  =  �  G   �  2 	  +
 �  E   �   I , where  	  is the kinship matrix with   
   ij  denoting 
the kinship coefficient [Chapter 5 of  12 ] between the  i -th 

Setting � level PCH� PCH PCA

Type I
error

power Type I
error

power Type I
error

power

5 0.1 0.105 0.986 0.091 0.101 0.094 0.237
0.05 0.055 0.98 0.046 0.054 0.045 0.163
0.025 0.029 0.975 0.025 0.028 0.023 0.121
0.01 0.006 0.971 0.013 0.014 0.011 0.087
0.005 0.005 0.966 0.009 0.005 0.005 0.071

6 0.1 0.102 0.988 0.109 0.096 0.102 0.533
0.05 0.052 0.984 0.047 0.055 0.057 0.428
0.025 0.032 0.977 0.021 0.028 0.028 0.355
0.01 0.014 0.967 0.006 0.016 0.010 0.300
0.005 0.005 0.956 0.003 0.007 0.003 0.266

Table 6. Results of linkage analysis:
settings 5 and 6
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and the  j -th subject. The matrix  �  G  is the family-specific 
or the polygenic effect variation, and  �  E  is the subject-spe-
cific variation or the residual environmental effect varia-
tion. They can be estimated by maximum likelihood esti-
mation using normal distribution working assumption. 
After estimating  �  G  and  �  E , the proposed penalized PCH 
approach for general pedigrees can then be defined as 
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 When dealing with extremely large number of traits, 
it is desirable to obtain PCH  �   with sparse loadings. In 
these cases, a LASSO ( L 1) type penalty can be added. The 
resulting sparse PCH solves
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  This is similar to the elastic-net approach introduced by 
Zou et al.  [8] . The cross-validation procedure in (3) can 
be applied to choose  �  1  and  �  2 . However, the computation 
is intensive because it is required to search  �  1  and  �  2  on a 
2-dimensional grid.

  After combining traits by the penalized principal-
components of heritability approach, genetic analysis can 
then be applied to the combined phenotypes. When it is 
desirable to incorporate information from available gen-
otypes to guide the formation of the principal-compo-
nents, a supervised principal-components analysis as 
proposed by Bair et al.  [13]  may be considered. A canon-
ical correlation analysis that searches for a linear combi-
nation of traits having maximal correlations with geno-
types can also be considered. With high-dimensional 
data, sparse canonical correlation analysis was proposed 
in Hastie et al.  [14] . However, these methods are compu-
tationally intensive.

  To interpret results from the combined traits, one 
would check the loadings for each trait component. Traits 
with large loadings are expected to have larger genetic ef-
fects based on heritability. If the combined traits are 
mapped to a genomic location (hotspot), these traits with 
large loadings are expected to be the traits mapped to this 
hotspot.

  In reality, it may be rare that thousands of traits are 
controlled by a single locus. Here we have only considered 
the first penalized principal components of heritability. 
The subsequent second and third PCH  �   capture variation 
in the traits that is not explained by the first PCH  �  .   Using 
the second or the third PCH  �   as phenotypes in a linkage 
analysis may reveal a second locus contributing to the 
variation in traits that is orthogonal to the first PCH  �  .

  Directly applying proposed methods to thousands of 
traits may not be desirable because the number of the 
noise components may overwhelm limited number of ge-
netic components. Having too many noise components 
may dilute the effect of genetic traits and cause all trait 
components to have small weights. In this case, heritabil-
ity based clustering  [15]  can be applied first to divide 
traits into clusters with hundreds of components, and the 
penalized principal components of heritability approach 
can be applied to traits within the clusters. Another ap-
proach to directly handle thousands of traits is to apply a 
LASSO type penalty as in (7).

  Finally, it is worth to note that the proposed methods 
can not be used to determine which traits to include for 
collineared traits. For example, for two perfectly corre-
lated traits, without prior subject information the cross-
validation procedure can not distinguish which trait is 
more important than the other.

  An R source code computing PCH  �   and cross-valida-
tion is available from the authors upon request.

  Appendix 

 Assume that the frequencies of the two alleles at the disease 
susceptibility locus are  p  and  q , respectively. Let  X  ij  be the number 
of the disease susceptible alleles carried by the  j -th subject in the 
 i -th family. Considering six different combinations of parental 
genotypes, one can verify that

   E ( X  ij ) = 2 p  2  + 2 pq, E ( X  2  ij ) = 4 p  2  + 2 pq ,

  and

   E ( X  ij  X  ik ) = 2 p  4  + 9 p  3  q  + 10 p  2  q  2  +  pq  3 .

  Noting that  Var ( Y  ij ) =  Var ( X  ij ) �  �  T    +  � , it is easy to obtain for-
mulae (4) and (5). 
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