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1 One Motivating Example.

Example 1. HIV transmission. Connor et al. (1994, The New

England Journal of Medicine) report a clinical trial to evaluate the

drug AZT in reducing the risk of maternal-infant HIV transmission.

50-50 randomization scheme is used:

• AZT Group—239 pregnant women (20 HIV positive infants).

• placebo group—238 pregnant women (60 HIV positive
infants).



1 One Motivating Example. 4

Given the seriousness of the outcome of this study, it is reasonable to

argue that 50-50 allocation was unethical. As accruing information

favoring (albeit, not conclusively) the AZT treatment became

available, allocation probabilities should have been shifted from
50-50 allocation proportional to weight of evidence for
AZT. Designs which attempt to do this are called Response-Adaptive

designs (Response-Adaptive Randomization).
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If the treatment assignments had been done with the randomized
play the winner rule (RPW rule) (Zelen 1969, JASA, Wei and

Durham,1978, JASA):

• AZT Group— 360 patients

• placebo group—117 patients

then, only 60 (instead of 80) infants would be HIV positive.
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Example 2 (ECMO Trial). Extracorporeal membrane oxygenation

(ECMO) is an external system for oxygenating the blood based on

techniques used in cardiopulmonary bypass technology developed for

cariac surgery. In the literature, there are three well-document clinical

trials on evaluating the clinical effectiveness of ECMO:

(i) the Michigan ECMO study (Bartlett, et al. 1985);

(ii) the Boston ECMO study (Ware, 1989);

(iii) the UK ECMO trial (UK Collaborative ECMO Trials Group, 1996).
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The UK ECMO trial:

50-50 randomization scheme is used:

• ECMO Group—93 infants (28 deaths).

• Conventional group—92 infants (54 deaths).

If ERADE (Hu, Zhang and He, 2007) is used, then

• ECMO Group—121 infants (36 deaths).

• Conventional group—64 infants (38 deaths).
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2 Overview of the Problem.

Clinical Trials: Complex with multiple (competitive) objectives

• maximizing power to detect clinically relevant difference;

• minimizing the expected total number of failures;

• maximizing the individual patient’s experience in the trial;

• minimizing total monetary cost of trial;

• etc.

Randomized designs should be used to remove the potential bias in

clinical trial.
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Example 3. Binary response: treatment A and B.

• pA: P (success|A), qA = 1− pA;

• pB : P (success|B), qB = 1− pB ;

• nA: number of patients on A;

• nB : number of patients on B, n = nA + nB .
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Some important functions:

1 An objective function, φ(nA, nB), power or noncentral parameter;

2 Sample size nA + nB or total number of failures qAnA + qBnB ;

3 Allocation proportion to treatment A, ρ(pA, pB) ∼ nA/n;

Approach 1:

With fixed φ(nA, nB), to minimizing sample size, n = nA + nB , the

solution is called Neyman allocation:

ρ(pA, pB) =
√

pAqA√
pAqA +

√
pBqB

.
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Approach 2:

With fixed φ(nA, nB), to minimizing total number of failures,

qAnA + qBnB , the solution is called optimal allocation (see

Rosenberger et al. (2001, biometrics)):

ρ(pA, pB) =
√

pA√
pA +

√
pB

.

Tymofyeyev, Rosenberger and Hu (2007, JASA) propose a general

framework to find optimal ρ.
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Usually ρ(pA, pB) depends on unknown parameters, how to

implement these optimal allocations?

Solution: Response-Adaptive Randomization can be
applied to achieve above objectives.
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Three-step approach:

1. Find the optimal allocation;

2. Use sequential estimation, substituting estimates from the data

accrued thus far into the optimal allocation;

3. Find an appropriate randomization procedure that will result in

optimal allocation.

We call the resulting randomization procedure a response-adaptive

randomization procedure, because the probability of assignment to

treatments will depend on previous patient responses.
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3 Brief review of Adaptive

Randomization

3.1 Adaptive Randomization for Balancing

Complete randomization: Assign next patient to A with

probability 0.5.

Disadvantages: unbalance among A and B (usually not powerful).
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Some important designs:

• Truncated binomial design.

• Permuted block designs.

• Efron’s biased coin design (Efron, 1971, Biometrika): Assign next

patient to A (or B) with probability 2/3, if there are more

patients in B (or A). Use complete randomization, if equal.

• Wei’s urn design (Wei, 1977, JASA and Wei, 1978, Annals).

• Generalized biased coin design (Smith, 1984, JRSSB).
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3.2 Response-Adaptive Randomization

The preliminary ideas: Thompson (1933, Biometrika) and Robbins

(1952, Bulletin of AMS).

Play-the-winner (PW) rule (Zelen, 1969, JASA): Assign the next

patient to the same treatment if a success; assign the next patient to

the opposite treatment if a failure.

Asymptotic properties:

nA/n → qB/(qA + qB)

Disadvantages: Not a randomized design.
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Randomized play-the-winner (RPW) rule (Wei and

Durham,1978, JASA).

Begin with c balls of A and c balls of B in an urn.

• Draw A:

– assign patient to A;

– replace ball;

– add 1 type A ball if treatment A is successful;

– add 1 type B ball if treatment A is failure.

• Draw B:

– assign patient to B;

– replace ball;

– add 1 type B ball if treatment B is successful;

– add 1 type A ball if treatment B is failure.
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Two main families:

(i) Urn models: PW rule; RPW rule; Generalized Friedman’s urn

models (Wei, 1979, JASA; Smythe, 1996, Stochastic Process. Appl.;

Bai, Hu and Shen, 2002, JMVA); Randomized Polya Urn (Durham,

Flournoy, and Li, 1998, CJS); Ternary Urn (Ivanova and Flournoy,

2001); Drop-the-Loser rule (Ivanova, 2003, Metrika); Generalized

drop-the-Loser rule (Zhang, Chan, Cheung and Hu, 2007, Statistic

Sinica), etc.

(ii) Doubly adaptive biased coin designs: Eisele and Woodroofe (1995,

Annals of Statistics), Hu and Zhang (2004, Annals of Statistics), Hu

and Rosenberger (2003, JASA). ERADE (Hu, Zhang and He, 2007).
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Example: Extracorporeal Membrane Oxygenation
(ECMO) trial using RPW rule:
The RPW rule was used in a clinical trial of extracorporeal membrane

oxygenation (ECMO; Bartlett, et al. 1985, Pediatrics), a surgical

procedure for newborns with respiratory failure.

Total 12 patients.

• ECMO group– 11 patients, all survived.

• Conventional therapy– 1 patient, died.

Valid of this trial??? No statistical conclusion.

Why??? Power and variability.

Another ECMO trial at England, 185 patients (93 in
ECMO and 92 in control), 82 patients died.
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In literature, researchers focused on:

(i) proposing new response-adaptive designs;

(ii) studying some properties;

(iii) comparing designs by simulations.

Some important questions:

• What is relationship among the power, expected failures and the

design?

• How to compare different designs?

• What is a good design?

• etc.
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4 Power and Variability

Let ∆ = pA − pB and consider

H0 : ∆ = 0 versus HA : ∆ 6= 0.

The Wald test is given by

Z =
p̂A − p̂B√

p̂Aq̂A

nA
+ p̂B q̂B

nB

.

Under H0, Z2 is asymptotically chi-square with 1 degree of freedom.
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Under the HA, power is an increasing function of the the noncentrality

parameter:

φ =
(pA − pB)2

pAqA/nA + pBqB/nB

=
n(pA − pB)2

pAqA

ρ+(nA/n−ρ) + pBqB

(1−ρ)−(nA/n−ρ)

.

Now we define a function

f(x) =
(pA − pB)2

pAqA/[ρ + x] + pBqB/[(1− ρ)− x]
.

We have the following expansion:

f(x) = f(0) + f ′(0)x + f ′′(0)x2/2 + o(x2).

After some calculation, we obtain

f ′(0) = (pA − pB)2
(pAqA(1− ρ)2 − pBqBρ2)
(pAqA(1− ρ) + pBqBρ)2
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and

f ′′(0) = −2(pA − pB)2
pAqApBqB

((1− ρ)ρ)3
.

The non-centrality parameter is

n−1φ =
(pA − pB)2

pAqA/ρ + pBqB/(1− ρ)

+(pA − pB)2
(pAqA(1− ρ)2 − pBqBρ2)
(pAqA(1− ρ) + pBqBρ)2

(nA/n− ρ)

−(pA − pB)2
pAqApBqB

((1− ρ)ρ)3
(nA/n− ρ)2

+o((nA/n− ρ)2)

= (I) + (II) + (III) + o((nA/n− ρ)2)
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The first term (I) is determined by ρ, and represents the non-centrality

parameter for a fixed design (with ρ as the target allocation

proportion). Note that Neyman allocation maximizes this term.

The second term (II) represents the bias of the actual allocation from

the optimal allocation. With the design shifting to different side from

the target proportion ρ, the non-centrality parameter will increase or

decrease according the coefficient

(pA − pB)2
(pAqA(1− ρ)2 − pBqBρ2)
(pAqA(1− ρ) + pBqBρ)2

.

It is interesting to see that this coefficient equals 0 if and only if

pAqA(1− ρ)2 − pBqBρ2 = 0, that is

ρ =
√

pAqA√
pAqA +

√
pBqB

,

i.e., Neyman allocation.
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Most procedures will be asymptotically unbiased, so we can assume

E(nA/n− ρ) = 0

for large n. Assuming this, the average power lost of the procedure is

then a function of

−(pA − pB)2
pAqApBqB

((1− ρ)ρ)3
E(nA/n− ρ)2,

which is a direct function of the variability of the design.
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So we now have the precise link between power and the variability of

the design. Thus we can use the

V ar(nA/n)

to compare different response-adaptive designs (with same allocation

limit ρ).

The variance of nA/n as small as possible! (Hu and

Rosenberger, 2003, JASA)
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5 Best Adaptive Randomization

Procedures

Lower Bound of V ar(nA/n)?

Let I(pA, pB , nA) be the Fisher’s information, where the expectation

is taken conditional on nA, for estimating pA and pB . Suppose the

following some regularity conditions hold. Then the lower bound of

V ar(nA/n) is given by(
∂ρ(pA, pB)

∂pA

∂ρ(pA, pB)
∂pB

)
I−1(pA, pB , ρ(n, pA, pB))

(
∂ρ(pA, pB)

∂pA

∂ρ(pA, pB)
∂pB

)′

.
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We refer to a response-adaptive design that attains the lower bound as

asymptotically best for that particular target allocation ρ(pA, pB).

If

ρ(pA, pB) = qB/(qA + qB),

then the lower bound is

qAqB(pA + pB)
(qA + qB)3

.

For general cases, see Hu and Rosenberger (2003, JASA) and Hu,

Rosenberger and Zhang (2006, JSPI) for details.
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Asymptotic properties (pA + pB < 1.5) of RPW rule:

nA/n → qB/(qA + qB)

and
√

n(nA/n− qB/(qA + qB)) →D N(0, σ2).

Where

σ2 =
qAqB [5− 2(qA + qB)]

[2(qA + qB)− 1](qA + qB)2
.

Not attain the lower bound
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RPW rule (urn models)

• targets the urn allocation qB/(qA + qB);

• applies to binary responses only.

• does not attain the lower bound.

Can we find a design that

• can target any given allocation ρ;

• attain the low bound;

• and apply to other types of responses?

Yes.
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6 Doubly-Adaptive Biased Coin Design

Doubly-adaptive biased coin design (DBCD) (Eisele and Woodroofe,

1995, Annals of Statist, Hu and Zhang, 2004, Annals of Statist).

Let g be a function from [0, 1]× [0, 1] to [0, 1] satisfied certainly

conditions. The procedure then allocates patient j to treatment A

with probability

g(
nA(j − 1)

j − 1
, ρ̂).

How to choose function g?

Eisele and Woodroofe (1995) use

g(x, ρ) = [1− (
1
ρ
− 1)x]+.



6 Doubly-Adaptive Biased Coin Design 32

Eisele and Woodroofe’s conditions (1995):

(i) g is jointly continuous;

(ii) g(x, x) = x for all x ∈ [0, 1];

(iii) g(x, y) is strictly decreasing in x and strictly increasing in y on

(0, 1)× (0, 1);

(iv) g(x, y) has bounded partial derivatives in both x and y and

∂g(x, y)/∂x|x=ρ,y=ρ 6= 0;

(v) There are positive constants C and γ for which

1
ρ

+
1

1− ρ
≤ C(‖E(ξA)‖γ + ‖E(ξB)‖γ);

(vi) ρ is a continuous function and it is twice continuously

differentiable on a small neighborhood of (pA, pB).

In fact, as pointed out by Melfi, Page and Geraldes (2001), Eisele and



6 Doubly-Adaptive Biased Coin Design 33

Woodroofe’s g(x, ρ) violated their regularity conditions (iv) and (v).

Recently, Hu and Zhang (2004) proposed (γ ≥ 0)

g(x, ρ) =
ρ(ρ/x)γ

ρ(ρ/x)γ + (1− ρ)((1− ρ)/(1− x))γ

• γ = 0, the g(x, ρ) = ρ (the SMLE);

• γ = ∞, determined design.

(vii) There exists δ > 0, such that g(x, y) satisfies

g(x, y) = g(ρ, ρ) + (x− ρ)
∂g

∂x
|(ρ,ρ)

+(y − ρ)
∂g

∂y
|(ρ,ρ) + o(|x− ρ|1+δ) + o(|y − ρ|1+δ)

as (x, y) → (ρ, ρ).
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Let

λ = ∂g/∂x
∣∣
(ρ,ρ)

, η = ∂g/∂y
∣∣
(ρ,ρ)

and

∇(ρ) = (
∂ρ

∂pA
,

∂ρ

∂pB
)′

. Also let

σ2
3 =

(
∇(ρ)|Θ

)′
V∇(ρ)|Θ and σ2

1 = ρ(1− ρ).

Where Θ = (pA, pB) and

V = diag(
V ar(ξA)

ρ
,
V ar(ξB)

1− ρ
).
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Theorem. If (i)-(iii), (vi) and (vii) are satisfied, and

E‖ξA‖2+ε + E‖ξB‖2+ε < ∞

for some ε > 0, then

n1/2(nA/n− ρ) → N(0, σ2) (1)

in distribution. Where

σ2 =
σ2

1

1− 2λ
+

2η2σ2
3

(1− λ)(1− 2λ)

Main Techniques used: Martingale, Gaussian Approximation and

Matrix theory.
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For binary responses with (ρ = qB/(qA + qB)),

n1/2(nA/n− ρ) → N(0, σ2
DBCD)

in distribution, whenever λ < 1/2, where

σ2
DBCD =

q1q2

(1− 2λ)(q1 + q2)2
+

2η2

(1− λ)(1− 2λ)
q1q2(p1 + p2)

(q1 + q2)3
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If

g(x, ρ) =
ρ(ρ/x)γ

ρ(ρ/x)γ + (1− ρ)((1− ρ)/(1− x))γ
,

then

σ2
DBCD =

q1q2(p1 + p2)
(q1 + q2)3

+
2q1q2

(1 + 2γ)(q1 + q2)3
.

• γ = 0, σ2
DBCD = q1q2(p1+p2+2)

(q1+q2)3
.

• γ = ∞, σ2
DBCD = q1q2(p1+p2)

(q1+q2)3
(Lower bound).

• γ = 2, σ2
DBCD = q1q2(p1+p2+.4)

(q1+q2)3
.
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7 Some recent developments

To compare different designs, it is important to obtain the asymptotic

distribution and asymptotic variance of nA/n.

• Generalized Friedman’s urn models (K treatments):

– Athreya and Karlin (1968, Annals of Mathematical Statistics)

obtained the consistent of nA/n; They conjectured the

asymptotic of nA/n.

– Bai and Hu (2005, Annals of Applied Probability) obtained the

asymptotic normality and asymptotic variance of nA/n.

– Zhang, Hu and Cheung (2006, Annals of Applied Probability)

proposed estimation-adjusted urn models that can target any

given allocation and also apply to different responses.

• Optimal allocation and implementing DBCD

– Two treatments: Binary responses (Rosenberger et al, 2001,
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Biometrics, Rosenberger and Hu, 2004, Clinical Trial),

Continuous responses (Zhang LJ and Rosenberger, 2006,

Biometrics).

– K treatments: Binary responses (Tymofyeyev, Rosenberger and

Hu, 2007, JASA). Continuous responses (Zhu and Hu, 2007).

• Delayed Responses

– Generalized Friedman’s urn: Bai, Hu and Rosenberger (2002,

Annals of Statistics), Hu and Zhang (2004, Bernoulli).

– Drop-the-loser rule: Zhang, Chan, Cheung and Hu (2007,

Statistic Sinica).

– DBCD: Hu, Zhang, Cheung and Chan (2007).

• Non-homogeneous Responses

– Generalized Friedman’s urn: Bai and Hu (1999, 2005, Annals

of Applied Probability).

– DBCD: Duan and Hu (2007).
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8 Further Topics

• Sample size of randomized design.

– Power is a random variable (Hu (2004) for K = 2, two-arm

trials);

– For K > 2, unknown.

• Using covariate information in adaptive designs.

– Some preliminary results: Zhang, Hu, Cheung and Chan (2007,

Annals of Statistics) and Gwise’s Thesis;

– D-optimal designs (Gwise, Hu and Hu, 2006);

– A lot of research problems.

• Best adaptive randomizations.

– Fully randomized procedure (best) that targets any allocation?

Hu, Zhang and He (2007, Submitted)
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– Best adaptive randomization for multi-arm trials.

• Fixing power and minimizing expected failures.

– Simulation studies of K = 2 (Rosenberger and Hu (2004,

Clinical Trial));

– General cases; unknown.

• Survival responses.

• Balance covariates in clinical trials.
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9 Future of RAR

• White Papers on Response-Adaptive Randomization for FDA

(2007).

• Adaptive Trials in the future (The Wall Street Journal, July 10,

2006).

• Hu and Rosenberger’s book: The Theory of Response Adaptive

Randomization in Clinical Trials, John Wiley, 2006.

• 63rd Deming Conference on Applied Statistics

(Bio-pharmaceutical Section of ASA). Over 100 Bio-statisticians

will attend the three hour session about RAR (Dec 4, 2007).
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Thank You!
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