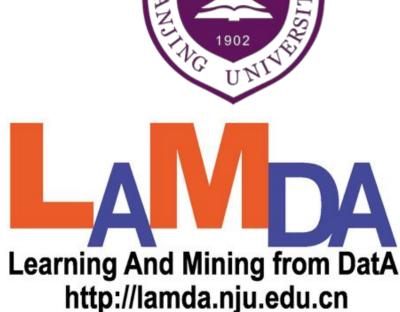
Learning Uniform Semantic Features for Natural Language and **Programming Language Globally, Locally and Sequentially**

Yudong Zhang¹, Wenhao Zheng^{1,3}, Ming Li^{1,2}

National Key Laboratory for Novel Software Technology, Nanjing University, China ²Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing, China Search Product Center, WeChat Search Application Department, Tencent, China



南京大梁

A

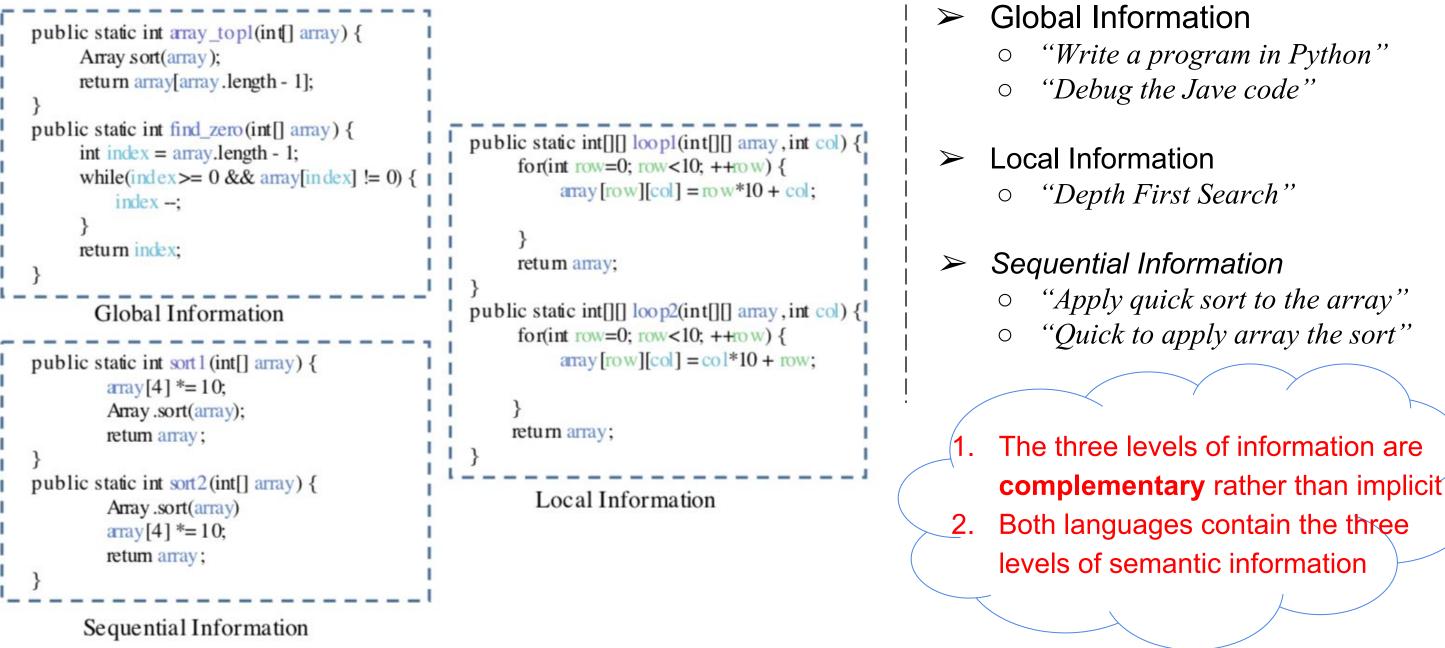
Motivations & Objectives

Motivation

- Learning semantic features for textual data (code snippets & text) sentences) is essential in addressing many software mining tasks
 - Code clone detection, bug localication, code annotation, etc.
- > It is hard to maintain original semantic similarity in the learned features, because those features usually contain incomplete semantic information
- \succ Poor-quality features prevent models from achieving good performances

Three-Level Semantic Information: Global, Local, Sequential

Source Code Snippets



Text Sentences

- - "Write a program in Python"
 - "Debug the Jave code"
- - "Depth First Search"
- Sequential Information
 - "Apply quick sort to the array"
 - "Quick to apply array the sort"

Research Goal

Learn features with complete semantics for both natural and \succ programming languages

Proposed Framework

Framework Structure Pipeline Global-info Encoding layer \succ Multi-info layer \succ \oplus Local-info • Global-info branch, local-info branch, sequential-info branch text GloVe Attention sentence Feature fusion layer \succ Sequential-info Attention layer \succ • Learns importance weights for extracted global, local and Loss Output \otimes Function sequential features Gate Global-info cosine distance Similariity Measurement Local-info code Attention GloVe snippet Cosine distance \succ \oplus statement-level term-level Sequential-info $D_c(e_1, e_2) = 1 - \cos \langle R(e_1), R(e_2) \rangle$ $=1 - \frac{e_1 \cdot e_2}{\|e_1\| \, \|e_2\|}$

Prediction \succ

prediction = sigmoid($a * D_C(e_1, e_2) + b$)

Optimization

Triplet loss \succ

 $Loss(e, p, n) = \max(D_c(e, p) - D_c(e, n) + \alpha, 0)$

Difference between code pipeline and text pipeline

Multi-info Layer

> Code snippets contain both *word-level* and *statement-level* information, so we designed hierarchical network structures in Multi-info layer to extract features

Attention

Layer

Fusion

Layer

Text sentences contain only word-level information \succ

Experiments

Encoding

Layer

Settings

Results

- \succ We evaluate our model on three real-world software mining tasks
 - Duplicate programming question classification, code clone Ο detection, code annotation classification
- Two training strategies
 - Single training (ST): train **seperately** on different tasks
 - Joint Training (JT): train **jointly** on multiple tasks Ο
- Statistics of datasets \succ

Dataset	#Instances	#Train	#Valid	#Test
dup-question	535,254	495,254	20,000	20,000
code-anno	693,026	653,026	20,000	20,000
code-clone	33,690	27,690	3,000	3,000

	dup-question		code-clone		code-anno	
Methods	AUC	F-measure	AUC	F-measure	AUC	F-measure
SourcererCC		_	53.21%	4.80%	-	
CDLH	-	-	62.03%	59.89%	_	-
AP	72.23%	68.13%	57.20%	54.86%	62.18%	53.79%
MaLSTM	70.83%	58.67%	50.56%	55.08%	60.95%	50.29%
UniEmbed(ST)	92.64%	83.34%	70.50%	66.50%	75.15%	68.82%
UniEmbed(JT)	95.44%	87.70%	87.69%	80.31%	78.21%	71.85%

- \succ Our model outperforms other state-of-the-art models on all evaluated tasks, and shows the superiority of the three-level semantic information for complete semantic features
- Joint training achieves better results than single training due to the shared knowledge between tasks \succ

We introduce an approach to extract three-level semantic information, namely global, local and sequential information, in learning complete semantic \succ

features for textual data (code snippets & text sentences).

We propose a novel representation learning framework called UniEmbed, which can learn uniform semantic features for natural language and programming language when both types of data are involved in the same task. Such representations are capable and effective in helping addressing a set of real-world software mining tasks.

AAAI

2019