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1 INTRODUCTION
Modern enterprise analytics tasks usually involve heterogeneous re-

lation tables from different sources managed by data warehouse [7].

While there are a large number of tools [9, 13, 17] available to sup-

port big-data analytics and machine learning, they are constrained

to receive one single table as input, and materialize the join of

normalized table can cause blow-up in storage and performance.

To bypass full materialization, recent factorized data management

systems [5, 16, 20, 25] decompose analytics tasks into semiring

aggregates over join, and push down aggregates before join to avoid

blow-up.

While previous factorized data management systems efficiently

execute single query, modern analytics tasks are commonly ex-

ploratory [19], where multiple queries are needed to analyze data

from different perspectives. To execute multiple queries efficiently,

factorized query engine like LMFAO [25] clusters queries in one

batch and relies on heuristics to conduct multi-query optimizations.

However, exploratory queries are usually incremental and interac-

tive [12], where future queries are based on previous query results,

which makes it hard to batch all potential queries in advance. These

queries also have huge overlap with the same aggregates or similar

join graph. Therefore, they are large work sharing opportunities.

We illustrate these exploratory analytics tasks with the following

examples:

Exploratory Data Analysis: First, Exploratory Data Analysis [2,

21, 28] is an essential step for data science. For traditional OLAP

operations like drill down and roll up, users execute the similar

queries over the same aggregation function and join graph, but with

different group-by attributes. Predicting the queries in advance and

pre-compute them through batch optimization is complex and un-

reliable. Instead, data cube [14] has been widely used in industry to
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exploit the similarity between OLAP queries. Naively building the

base cuboid for all possible group-by attributes over the join graph

could cause blow-up in storage and performance. Calibrated Junc-

tion Hypertree could be considered as data cube for complex join

graph. As shown later, data cube could be considered as calibrated

junction hypertree over one multidimensional table.

What-if Analysis and Streaming: Second, what-if analysis [24]
and stream query processing [1] performs the same query multiple

times over the same relation tables where tuples are appended or in-

tervened (e.g. deletion propogation). While recent work [20] applies

incremental view maintenance to factorization for single query, the

redundancy between queries remains unexploited. Calibrated junc-

tion hypertree can naturally utilize incremental view maintenance

to maintain data structure, and further improve performance by

exploiting work sharing opportunities.

Augmented Machine Learning: Third, data scientists usually

want to augmentmachine learningwith potential datasets from data

warehouse or markets [8, 11]. There could be a substantial number

of candidate datasets to join, and data scientists want to understand

how would each augmentation improve model performance. While

previous factorized data management systems have successfully

decomposed machine learning model into aggregates [16, 26], they

have to retrain each augmented model from scratch, disregarding

the overlap among join graphs. Calibrated junction hypertree can

share the computations between model training and efficiently

augment new datasets.

To this end, we introduce calibrated junction hypertree, a data

structure that is easy to build with low overhead (up to a constant

factor compared to a single query), exploits the work sharing op-

portunities and executes exploratory queries efficiently. The idea of

junction tree originates from probabilistic graphical model [27] to

share the computations between posterior distribution queries, and

has been widely applied to areas including artifical intelligence [6],

computer vision [10], civil engineering [29], medical diagnosis [22],

genetics [18], control engineering [23], etc. In database area, We

find that junction trees have a wide range of applications for data ex-

ploration over semiring aggregations. To the best of our knowledge,

we are the first to apply junction tree beyond probalistic tables. We

illustrate the core idea behind calibrated junction hypertree with a

simple example in Figure 1:

Example 1. Consider relations in Figure 1a and an example ag-
gregation query Q: total count of join result grouped by A and D. The
standard solution is to materialize join result and then apply aggre-
gation. The materialized join result is in Figure 1b. Factorized data
management systems decomposes aggregation as marginalization
and join, and pushes marginalization before join. For example, for
R[A,B] and R[A,C], only the A is used for join. We can marginalize B
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early by partitioning R[A,B] by A and sum count for each partition.
The marginalized result is sent as a message to R[A,C], where C is
similarly marginalized and pass message to future nodes. The whole
message-passing process is illustrated in Figure 1c. Finally, we have
calibrated junction hypertree in Figure 1d. The key insight is that
calibrated junction hypertree passes messages bidirectionally, and
materialize messages as part of data structure. For example, after
T[A,D] receives message from previous nodes, it pass messages back
to R[A,B] and S[A,C]. Calibrated junction hypertree takes only about
twice as much time of a single query to build because of the bi di-
rection, and can be built offline. The benefit is that three nodes are
now autonomous and can answer the similar queries. Suppose users
want to query the count grouped by attribute B (or C), node R[A,B] (or
S[A,C]) can serve query independently without re-passing messages.
Only a subset of junction tree nodes are involved to execute the query.

To analyze the complexity, The materialized join result in Fig-

ure 1b is of size |D|
ρ∗(Q)

[4] where |D| is relation size and ρ
∗
(Q)

is fractional edge cover number of Q. The intermediate result for

factorized query in Figure 1c is of size |D|
fhtw(Q)

[3, 15] where

fhtw(Q) is the fractional hypertree width of Q. Finally, under the

assumptions that junction hypertree nodes are dangling tuples

free, the Calibrated junction hypertree φ also takes |D|
fhtw(Q)

to

build. However, given a future query Q’, the intermediate result

is |D|
fshtwφ(Q

′
)
, where fshtwφ(Q

′
) is the fractional hypersubtree

width of Q’ given calibrated junction hypertree φ. Intuitively, the

more similar φ and Q’ are, the smaller fshtwφ(Q
′
) is. We have

1 ≤ fshtwφ(Q
′
) ≤ fhtw(Q

′
) ≤ ρ

∗
(Q

′
), and the gap between any

two could be infinitely large. We will provide formal definition of

fractional hypersubtree width, and extends it to situation where

junction nodes are not dangling tuple free.
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(b) Join result.
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(c) Passing messages to compute query.
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(d) Build calibrated junction Hypertree.

Figure 1: junction tree
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