
Calibrated Junction Hypertree: Data Structure for Exploratory
Queries over Join Result

Zezhou Huang

zh2408@columbia.edu

Columbia University

Eugene Wu

ewu@cs.columbia.edu

DSI, Columbia University

ABSTRACT
...

ACM Reference Format:
Zezhou Huang and Eugene Wu. 2021. Calibrated Junction Hypertree: Data

Structure for Exploratory Queries over Join Result. In Proceedings of ACM
Conference (Conference’17). ACM, New York, NY, USA, 3 pages. https://doi.

org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Modern enterprise analytics tasks usually involve heterogeneous re-

lation tables from different sources managed by data warehouse [7].

While there are a large number of tools [9, 13, 17] available to sup-

port big-data analytics and machine learning, they are constrained

to receive one single table as input, and materialize the join of

normalized table can cause blow-up in storage and performance.

To bypass full materialization, recent factorized data management

systems [5, 16, 20, 25] decompose analytics tasks into semiring

aggregates over join, and push down aggregates before join to avoid

blow-up.

While previous factorized data management systems efficiently

execute single query, modern analytics tasks are commonly ex-

ploratory [19], where multiple queries are needed to analyze data

from different perspectives. To execute multiple queries efficiently,

factorized query engine like LMFAO [25] clusters queries in one

batch and relies on heuristics to conduct multi-query optimizations.

However, exploratory queries are usually incremental and interac-

tive [12], where future queries are based on previous query results,

which makes it hard to batch all potential queries in advance. These

queries also have huge overlap with the same aggregates or similar

join graph. Therefore, they are large work sharing opportunities.

We illustrate these exploratory analytics tasks with the following

examples:

Exploratory Data Analysis: First, Exploratory Data Analysis [2,

21, 28] is an essential step for data science. For traditional OLAP

operations like drill down and roll up, users execute the similar

queries over the same aggregation function and join graph, but with

different group-by attributes. Predicting the queries in advance and

pre-compute them through batch optimization is complex and un-

reliable. Instead, data cube [14] has been widely used in industry to

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

exploit the similarity between OLAP queries. Naively building the

base cuboid for all possible group-by attributes over the join graph

could cause blow-up in storage and performance. Calibrated Junc-

tion Hypertree could be considered as data cube for complex join

graph. As shown later, data cube could be considered as calibrated

junction hypertree over one multidimensional table.

What-if Analysis and Streaming: Second, what-if analysis [24]
and stream query processing [1] performs the same query multiple

times over the same relation tables where tuples are appended or in-

tervened (e.g. deletion propogation). While recent work [20] applies

incremental view maintenance to factorization for single query, the

redundancy between queries remains unexploited. Calibrated junc-

tion hypertree can naturally utilize incremental view maintenance

to maintain data structure, and further improve performance by

exploiting work sharing opportunities.

Augmented Machine Learning: Third, data scientists usually

want to augmentmachine learningwith potential datasets from data

warehouse or markets [8, 11]. There could be a substantial number

of candidate datasets to join, and data scientists want to understand

how would each augmentation improve model performance. While

previous factorized data management systems have successfully

decomposed machine learning model into aggregates [16, 26], they

have to retrain each augmented model from scratch, disregarding

the overlap among join graphs. Calibrated junction hypertree can

share the computations between model training and efficiently

augment new datasets.

To this end, we introduce calibrated junction hypertree, a data

structure that is easy to build with low overhead (up to a constant

factor compared to a single query), exploits the work sharing op-

portunities and executes exploratory queries efficiently. The idea of

junction tree originates from probabilistic graphical model [27] to

share the computations between posterior distribution queries, and

has been widely applied to areas including artifical intelligence [6],

computer vision [10], civil engineering [29], medical diagnosis [22],

genetics [18], control engineering [23], etc. In database area, We

find that junction trees have a wide range of applications for data ex-

ploration over semiring aggregations. To the best of our knowledge,

we are the first to apply junction tree beyond probalistic tables. We

illustrate the core idea behind calibrated junction hypertree with a

simple example in Figure 1:

Example 1. Consider relations in Figure 1a and an example ag-
gregation query Q: total count of join result grouped by A and D. The
standard solution is to materialize join result and then apply aggre-
gation. The materialized join result is in Figure 1b. Factorized data
management systems decomposes aggregation as marginalization
and join, and pushes marginalization before join. For example, for
R[A,B] and R[A,C], only the A is used for join. We can marginalize B

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Z. Huang, E. Wu

early by partitioning R[A,B] by A and sum count for each partition.
The marginalized result is sent as a message to R[A,C], where C is
similarly marginalized and pass message to future nodes. The whole
message-passing process is illustrated in Figure 1c. Finally, we have
calibrated junction hypertree in Figure 1d. The key insight is that
calibrated junction hypertree passes messages bidirectionally, and
materialize messages as part of data structure. For example, after
T[A,D] receives message from previous nodes, it pass messages back
to R[A,B] and S[A,C]. Calibrated junction hypertree takes only about
twice as much time of a single query to build because of the bi di-
rection, and can be built offline. The benefit is that three nodes are
now autonomous and can answer the similar queries. Suppose users
want to query the count grouped by attribute B (or C), node R[A,B] (or
S[A,C]) can serve query independently without re-passing messages.
Only a subset of junction tree nodes are involved to execute the query.

To analyze the complexity, The materialized join result in Fig-

ure 1b is of size |D|
ρ∗(Q)

[4] where |D| is relation size and ρ
∗
(Q)

is fractional edge cover number of Q. The intermediate result for

factorized query in Figure 1c is of size |D|
fhtw(Q)

[3, 15] where

fhtw(Q) is the fractional hypertree width of Q. Finally, under the

assumptions that junction hypertree nodes are dangling tuples

free, the Calibrated junction hypertree φ also takes |D|
fhtw(Q)

to

build. However, given a future query Q’, the intermediate result

is |D|
fshtwφ(Q

′
)
, where fshtwφ(Q

′
) is the fractional hypersubtree

width of Q’ given calibrated junction hypertree φ. Intuitively, the

more similar φ and Q’ are, the smaller fshtwφ(Q
′
) is. We have

1 ≤ fshtwφ(Q
′
) ≤ fhtw(Q

′
) ≤ ρ

∗
(Q

′
), and the gap between any

two could be infinitely large. We will provide formal definition of

fractional hypersubtree width, and extends it to situation where

junction nodes are not dangling tuple free.

A C cnt

a1 c1 3

a1 c2 5

S

A B cnt

a1 b1 2

a1 b2 3

R

A D cnt

a1 d1 4

a1 d2 2

T

A B C D cnt

a1 b1 c1 d1 24

a1 b1 c1 d2 12

a1 b1 c2 d1 40

a1 b1 c2 d2 20

a1 b2 c1 d1 36

a1 b2 c1 d2 18

a1 b2 c2 d1 60

a1 b2 c2 d2 30

R ⋈ S ⋈ T

(a) Relations.

A C cnt

a1 c1 3

a1 c2 5

S

A B cnt

a1 b1 2

a1 b2 3

R

A D cnt

a1 d1 4

a1 d2 2

T

A B C D cnt

a1 b1 c1 d1 24

a1 b1 c1 d2 12

a1 b1 c2 d1 40

a1 b1 c2 d2 20

a1 b2 c1 d1 36

a1 b2 c1 d2 18

a1 b2 c2 d1 60

a1 b2 c2 d2 30

R ⋈ S ⋈ T

(b) Join result.

A B A C A D

A C cnt

a1 c1 15

a1 c2 25

S

A B cnt

a1 b1 2

a1 b2 3

R

A D cnt

a1 d1 160

a1 d2 80

T

A cnt

a1 5

A cnt

a1 40

msg msg

(c) Passing messages to compute query.

A B A C A D

A C cnt

a1 c1 15

a1 c2 25

S

A B cnt

a1 b1 2

a1 b2 3

R

A D cnt

a1 d1 160

a1 d2 80

T

A cnt

a1 5

A cnt

a1 40

msg msg

A C cnt

a1 c1 90

a1 c2 150

S

A B cnt

a1 b1 96

a1 b2 144

R

A cnt

a1 48

A cnt

a1 6

msg msg

(d) Build calibrated junction Hypertree.

Figure 1: junction tree

REFERENCES
[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.-H. Hwang,

W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, et al. The design of the borealis

stream processing engine. In Cidr, volume 5, pages 277–289, 2005.

[2] Z. Abedjan, L. Golab, and F. Naumann. Profiling relational data: a survey. The
VLDB Journal, 24(4):557–581, 2015.

[3] M. Abo Khamis, H. Q. Ngo, and A. Rudra. Faq: questions asked frequently. In

Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, pages 13–28, 2016.

[4] A. Atserias, M. Grohe, and D. Marx. Size bounds and query plans for relational

joins. In 2008 49th Annual IEEE Symposium on Foundations of Computer Science,
pages 739–748. IEEE, 2008.

[5] N. Bakibayev, T. Kočiskỳ, D. Olteanu, and J. Závodnỳ. Aggregation and ordering

in factorised databases. arXiv preprint arXiv:1307.0441, 2013.
[6] T. Braun and R. Möller. Lifted junction tree algorithm. In Joint German/Austrian

Conference on Artificial Intelligence (Künstliche Intelligenz), pages 30–42. Springer,
2016.

[7] S. Chaudhuri and U. Dayal. An overview of data warehousing and olap technology.

ACM Sigmod record, 26(1):65–74, 1997.
[8] N. Chepurko, R. Marcus, E. Zgraggen, R. C. Fernandez, T. Kraska, and D. Karger.

Arda: automatic relational data augmentation formachine learning. arXiv preprint
arXiv:2003.09758, 2020.

[9] S. Das, Y. Sismanis, K. S. Beyer, R. Gemulla, P. J. Haas, and J. McPherson. Ricardo:

integrating r and hadoop. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data, pages 987–998, 2010.

[10] J. Deng, N. Ding, Y. Jia, A. Frome, K. Murphy, S. Bengio, Y. Li, H. Neven, and

H. Adam. Large-scale object classification using label relation graphs. In European
conference on computer vision, pages 48–64. Springer, 2014.

Calibrated Junction Hypertree: Data Structure for ExploratoryQueries over Join Result Conference’17, July 2017, Washington, DC, USA

[11] R. C. Fernandez, Z. Abedjan, F. Koko, G. Yuan, S. Madden, and M. Stonebraker.

Aurum: A data discovery system. In 2018 IEEE 34th International Conference on
Data Engineering (ICDE), pages 1001–1012. IEEE, 2018.

[12] D. Fisher, S. M. Drucker, and A. C. König. Exploratory visualization involving

incremental, approximate database queries and uncertainty. IEEE computer
graphics and applications, 32(4):55–62, 2012.

[13] A. Ghoting, R. Krishnamurthy, E. Pednault, B. Reinwald, V. Sindhwani,

S. Tatikonda, Y. Tian, and S. Vaithyanathan. Systemml: Declarative machine

learning on mapreduce. In 2011 IEEE 27th International Conference on Data
Engineering, pages 231–242. IEEE, 2011.

[14] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pel-

low, and H. Pirahesh. Data cube: A relational aggregation operator generalizing

group-by, cross-tab, and sub-totals. Data mining and knowledge discovery, 1(1):29–
53, 1997.

[15] M. Joglekar, R. Puttagunta, and C. Ré. Aggregations over generalized hypertree

decompositions. arXiv preprint arXiv:1508.07532, 2015.
[16] M. A. Khamis, H. Q. Ngo, X. Nguyen, D. Olteanu, and M. Schleich. Ac/dc: In-

database learning thunderstruck. In Proceedings of the Second Workshop on Data
Management for End-To-End Machine Learning, pages 1–10, 2018.

[17] A. Kumar, F. Niu, and C. Ré. Hazy: making it easier to build and maintain big-data

analytics. Communications of the ACM, 56(3):40–49, 2013.

[18] S. L. Lauritzen and N. A. Sheehan. Graphical models for genetic analyses. Statis-
tical Science, pages 489–514, 2003.

[19] D. Mottin, M. Lissandrini, Y. Velegrakis, and T. Palpanas. New trends on ex-

ploratory methods for data analytics. Proceedings of the VLDB Endowment,
10(12):1977–1980, 2017.

[20] M. Nikolic and D. Olteanu. Incremental view maintenance with triple lock

factorization benefits. In Proceedings of the 2018 International Conference on
Management of Data, pages 365–380, 2018.

[21] J. Peng, W. Wu, B. Lockhart, S. Bian, J. N. Yan, L. Xu, Z. Chi, J. M. Rzeszotarski,

and J. Wang. Dataprep. eda: Task-centric exploratory data analysis for statistical

modeling in python. In Proceedings of the 2021 International Conference on
Management of Data, pages 2271–2280, 2021.

[22] A. L. Pineda and V. Gopalakrishnan. Novel application of junction trees to the

interpretation of epigenetic differences among lung cancer subtypes. AMIA
Summits on Translational Science Proceedings, 2015:31, 2015.

[23] J. C. Ramirez, G. Munoz, and L. Gutierrez. Fault diagnosis in an industrial process

using bayesian networks: Application of the junction tree algorithm. In 2009
Electronics, Robotics and Automotive Mechanics Conference (CERMA), pages 301–
306. IEEE, 2009.

[24] S. Roy and D. Suciu. A formal approach to finding explanations for database

queries. In Proceedings of the 2014 ACM SIGMOD international conference on
Management of data, pages 1579–1590, 2014.

[25] M. Schleich, D. Olteanu, M. Abo Khamis, H. Q. Ngo, and X. Nguyen. A layered

aggregate engine for analytics workloads. In Proceedings of the 2019 International
Conference on Management of Data, pages 1642–1659, 2019.

[26] M. Schleich, D. Olteanu, and R. Ciucanu. Learning linear regression models

over factorized joins. In Proceedings of the 2016 International Conference on
Management of Data, pages 3–18, 2016.

[27] G. R. Shafer and P. P. Shenoy. Probability propagation. Annals of mathematics
and Artificial Intelligence, 2(1):327–351, 1990.

[28] M. Staniak and P. Biecek. The landscape of r packages for automated exploratory

data analysis. arXiv preprint arXiv:1904.02101, 2019.
[29] F. Zhu, H. A. Aziz, X. Qian, and S. V. Ukkusuri. A junction-tree based learning

algorithm to optimize network wide traffic control: A coordinated multi-agent

framework. Transportation Research Part C: Emerging Technologies, 58:487–501,
2015.

	Abstract
	1 Introduction
	References

