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1 INTRODUCTION
The theory of Hypertree Decompositions [7] lays the foundations
for many important problems including Semiring Aggregation [8],
Probabilistic GrpahicalModel [14],Marginalize a Product Function[3],
Factorised Database[16], Finite model Theory[4], etc. In the context
of Semiring Aggregation, the insight behind Hypertree Decom-
positions is that many aggregation functions can be decomposed
into join and marginalization operators, where the marginalization
operators can be pushed down and the query time can be decreased
by orders of magnitude. Consider the following toy example:

Example 1. Consider the example tables T1(A,B) and T2(B,C) in
Figure 1a and the query γCOUNT(T1(A, B) 1 T2(B, C)), where each
attribute’s domain is O(n). The sizes of both relations are thus O(n2)
and the size of join result (Figure 1b) is O(n3). Notice that, attribute
A and C are not used for the join, and we can "marginalize“ them
early before join. To marginalize attribute A, we scan each table T1
and T2, and for each unique attribute value of B, we sum its count.
The marginalization results are shown in Figure 1c, whose size is
O(n). Then, joining the marginalized tables can be achieved in O(n).
We have successfully reduced the query time of aggregation from
O(n3) to O(n) by decomposing aggregation function and pushing
down marginalization. The aggregation through marginalization can
be written in algebra form

∑
A,B,C T1(A, B) 1 T2(B, C). The marginal-

ization of attributes can be pushed down if attributes are not used in
outer query:

∑
B((

∑
A T1(A, B)) 1 (

∑
C T2(B, C))).

The introduction of marginalization operator has exhibited new
optimization opportunities for Semiring Aggregation Queries. (Fun-
damental question: in which order shall we marginalize atttribute)
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(a) Tables to join.
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(b) Join result.
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(c) Marginalized results.

Figure 1: Example aggregation query. (a) Tables to compute
total count. (b) Join result. (c) Marginalized result.

One naive optimization is to consider marginalization as general-
ized projection [10] and greedily push down the generalized pro-
jection over the query plan found by traditional optimizer [17].
However, this approach is suboptimal as the marginalization result
is likely to be much smaller than the original relation, which will
lead to better query plan.

Fractional Hypertree Width [9] has been widely used to quantify
the complexity of Hypertree Decompositions for Semiring Aggrega-
tion Queries. For example, the query complexity of Semiring Aggre-
gation Queries like Marginalize a Product Function, and Quantified
Conjunctive Query is well known to be the Fractional Hypertree
Width of the query hypergraph [2, 4, 12]. Similar theoretic result
has shown that the size bound of factorised representation is the
Fractional Hypertree Width of the query hypergraph [16]. These
studies have inspired database systems like EmptyHeaded [1] to
search for query plan that minimize the Fractional HypertreeWidth
of the query hypergraph.

However, previous works that optimize Hypertree Decomposi-
tions based on Fractional Hypertree Width are limited for two rea-
sons. Firstly, it is well known that finding the Fractional Hypertree
Width with minimum Fractional Hypertree Width is NP-hard [5].
EmptyHeaded assumes that the number of relations and attributes
is small enough to exhaustively search all marginalization orders,
which is not scalable. Secondly, Fractional Hypertree Width pro-
vides an upper bound of the intermediate result size, which is likely
to overestimate the result size. Recent work [15] has shown that
skewness can lead the real result size asymptotically smaller than
the bound provided by Fractional Hypertree Width. Optimizing
Hypertree Decompositions solely by Fractional Hypertree Width
may lead to suboptimal query plan in practice.
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This paper presents a greedy algorithm to efficiently findmarginal-
ization ordering of Hypertree Decompositions over relational tables
based on cardinality estimation. Greedy algorithm has been widely
used in Probabilistic Grpahical Model [6] to search for small Tree
Decompositions over large networks and have achieved great per-
formance over real-world datasets [13]. However, unlike probabilis-
tic tables, relational tables can be highly skewed and sparse, and
naively applying the heuristics from Probabilistic Grpahical Model
will lead to poor performance. To account for the characterises of
relational tables, we propose simple heuristics based on cardinality
estimation [11] of join and marginalization result. We demonstrate
the effectiveness of the algorithm with two important applications
over relational tables: finding efficient query plan for Semiring Ag-
gregation1 and finding efficient Factorised Representation for join
query.
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1Semiring Aggregation has been shown to be general enough [2, 12, 17] to express
problems including Inference in Probabilistic Grpahical Model, Marginalize a Product
Function, Quantified Conjunctive Query, Machine Learning, etc.
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