
Greedy Algorithm for Marginalization Ordering of Hypertree
Decompositions over Relational Tables

Zezhou Huang
zh2408@columbia.edu
Columbia University

Eugene Wu
ewu@cs.columbia.edu

DSI, Columbia University

ABSTRACT
...

ACM Reference Format:
Zezhou Huang and EugeneWu. 2021. Greedy Algorithm for Marginalization
Ordering of Hypertree Decompositions over Relational Tables. In Proceed-
ings of ACM Conference (Conference’17). ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The theory of Hypertree Decompositions [7] lays the foundations
for many important problems including Semiring Aggregation [8],
Probabilistic GrpahicalModel [14],Marginalize a Product Function[3],
Factorised Database[16], Finite model Theory[4], etc. In the context
of Semiring Aggregation, the insight behind Hypertree Decom-
positions is that many aggregation functions can be decomposed
into join and marginalization operators, where the marginalization
operators can be pushed down and the query time can be decreased
by orders of magnitude. Consider the following toy example:

Example 1. Consider the example tables T1(A,B) and T2(B,C) in
Figure 1a and the query γCOUNT(T1(A, B) 1 T2(B, C)), where each
attribute’s domain is O(n). The sizes of both relations are thus O(n2)
and the size of join result (Figure 1b) is O(n3). Notice that, attribute
A and C are not used for the join, and we can "marginalize“ them
early before join. To marginalize attribute A, we scan each table T1
and T2, and for each unique attribute value of B, we sum its count.
The marginalization results are shown in Figure 1c, whose size is
O(n). Then, joining the marginalized tables can be achieved in O(n).
We have successfully reduced the query time of aggregation from
O(n3) to O(n) by decomposing aggregation function and pushing
down marginalization. The aggregation through marginalization can
be written in algebra form

∑
A,B,C T1(A, B) 1 T2(B, C). The marginal-

ization of attributes can be pushed down if attributes are not used in
outer query:

∑
B((

∑
A T1(A, B)) 1 (

∑
C T2(B, C))).

The introduction of marginalization operator has exhibited new
optimization opportunities for Semiring Aggregation Queries. (Fun-
damental question: in which order shall we marginalize atttribute)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

A B Count

a1 b1 3

a2 b1 4

B C Count

b1 c1 3

b1 c2 4

T1 T2

A B C Count

a1 b1 c1 9

a1 b1 c2 12

a2 b1 c1 12

a2 b1 c2 16

T1 ⋈ T2

B Count

b1 7

∑A T1

B Count

b1 7

∑C T2
(a) Tables to join.

A B Count

a1 b1 3

a2 b1 4

B C Count

b1 c1 3

b1 c2 4

T1 T2

A B C Count

a1 b1 c1 9

a1 b1 c2 12

a2 b1 c1 12

a2 b1 c2 16

T1 ⋈ T2

B Count

b1 7

∑A T1

B Count

b1 7

∑C T2

(b) Join result.

A B Count

a1 b1 3

a2 b1 4

B C Count

b1 c1 3

b1 c2 4

T1 T2

A B C Count

a1 b1 c1 9

a1 b1 c2 12

a2 b1 c1 12

a2 b1 c2 16

T1 ⋈ T2

B Count

b1 7

∑A T1

B Count

b1 7

∑C T2

(c) Marginalized results.

Figure 1: Example aggregation query. (a) Tables to compute
total count. (b) Join result. (c) Marginalized result.

One naive optimization is to consider marginalization as general-
ized projection [10] and greedily push down the generalized pro-
jection over the query plan found by traditional optimizer [17].
However, this approach is suboptimal as the marginalization result
is likely to be much smaller than the original relation, which will
lead to better query plan.

Fractional Hypertree Width [9] has been widely used to quantify
the complexity of Hypertree Decompositions for Semiring Aggrega-
tion Queries. For example, the query complexity of Semiring Aggre-
gation Queries like Marginalize a Product Function, and Quantified
Conjunctive Query is well known to be the Fractional Hypertree
Width of the query hypergraph [2, 4, 12]. Similar theoretic result
has shown that the size bound of factorised representation is the
Fractional Hypertree Width of the query hypergraph [16]. These
studies have inspired database systems like EmptyHeaded [1] to
search for query plan that minimize the Fractional HypertreeWidth
of the query hypergraph.

However, previous works that optimize Hypertree Decomposi-
tions based on Fractional Hypertree Width are limited for two rea-
sons. Firstly, it is well known that finding the Fractional Hypertree
Width with minimum Fractional Hypertree Width is NP-hard [5].
EmptyHeaded assumes that the number of relations and attributes
is small enough to exhaustively search all marginalization orders,
which is not scalable. Secondly, Fractional Hypertree Width pro-
vides an upper bound of the intermediate result size, which is likely
to overestimate the result size. Recent work [15] has shown that
skewness can lead the real result size asymptotically smaller than
the bound provided by Fractional Hypertree Width. Optimizing
Hypertree Decompositions solely by Fractional Hypertree Width
may lead to suboptimal query plan in practice.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Z. Huang, E. Wu

This paper presents a greedy algorithm to efficiently findmarginal-
ization ordering of Hypertree Decompositions over relational tables
based on cardinality estimation. Greedy algorithm has been widely
used in Probabilistic Grpahical Model [6] to search for small Tree
Decompositions over large networks and have achieved great per-
formance over real-world datasets [13]. However, unlike probabilis-
tic tables, relational tables can be highly skewed and sparse, and
naively applying the heuristics from Probabilistic Grpahical Model
will lead to poor performance. To account for the characterises of
relational tables, we propose simple heuristics based on cardinality
estimation [11] of join and marginalization result. We demonstrate
the effectiveness of the algorithm with two important applications
over relational tables: finding efficient query plan for Semiring Ag-
gregation1 and finding efficient Factorised Representation for join
query.

REFERENCES
[1] C. R. Aberger, A. Lamb, S. Tu, A. Nötzli, K. Olukotun, and C. Ré. Emptyheaded:

A relational engine for graph processing. ACM Transactions on Database Systems
(TODS), 42(4):1–44, 2017.

[2] M. Abo Khamis, H. Q. Ngo, and A. Rudra. Faq: questions asked frequently. In
Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, pages 13–28, 2016.

[3] S. M. Aji and R. J. McEliece. The generalized distributive law. IEEE transactions
on Information Theory, 46(2):325–343, 2000.

[4] H. Chen and V. Dalmau. Decomposing quantified conjunctive (or disjunctive)
formulas. In 2012 27th Annual IEEE Symposium on Logic in Computer Science,
pages 205–214. IEEE, 2012.

[5] W. Fischl, G. Gottlob, and R. Pichler. General and fractional hypertree decomposi-
tions: Hard and easy cases. In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, pages 17–32, 2018.

[6] D. Geiger and M. Fishelson. Optimizing exact genetic linkage computations.
In 7th Annual International Conf. on Computational Molecular Biology, pages
114–121, 2003.

[7] G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions and tractable
queries. Journal of Computer and System Sciences, 64(3):579–627, 2002.

[8] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. In Proceed-
ings of the twenty-sixth ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 31–40, 2007.

[9] M. Grohe and D. Marx. Constraint solving via fractional edge covers. ACM
Transactions on Algorithms (TALG), 11(1):1–20, 2014.

[10] A. Gupta, V. Harinarayan, and D. Quass. Aggregate-query processing in data
warehousing environments. 1995.

[11] H. Harmouch and F. Naumann. Cardinality estimation: An experimental survey.
Proceedings of the VLDB Endowment, 11(4):499–512, 2017.

[12] M. Joglekar, R. Puttagunta, and C. Ré. Aggregations over generalized hypertree
decompositions. arXiv preprint arXiv:1508.07532, 2015.

[13] K. Kask, A. Gelfand, L. Otten, and R. Dechter. Pushing the power of stochastic
greedy ordering schemes for inference in graphical models. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 25, 2011.

[14] D. Koller and N. Friedman. Probabilistic graphical models: principles and techniques.
MIT press, 2009.

[15] H. Q. Ngo, C. Ré, and A. Rudra. Skew strikes back: New developments in the
theory of join algorithms. ACM SIGMOD Record, 42(4):5–16, 2014.

[16] D. Olteanu and J. Závodnỳ. Size bounds for factorised representations of query
results. ACM Transactions on Database Systems (TODS), 40(1):1–44, 2015.

[17] M. Schleich, D. Olteanu, M. Abo Khamis, H. Q. Ngo, and X. Nguyen. A layered
aggregate engine for analytics workloads. In Proceedings of the 2019 International
Conference on Management of Data, pages 1642–1659, 2019.

1Semiring Aggregation has been shown to be general enough [2, 12, 17] to express
problems including Inference in Probabilistic Grpahical Model, Marginalize a Product
Function, Quantified Conjunctive Query, Machine Learning, etc.

	Abstract
	1 Introduction
	References

