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Due to lack of proper inference procedure and software, the ordinary linear regression model

is seldom used in practice for the analysis of right censored data. This paper presents an

S-Plus/R program that implements a recently developed inference procedure [Z. Jin, D.Y.

Lin, Z. Ying, On least-squares regression with censored data, Biometrika 93 (2006) 147–161]

for the accelerated failure time model based on the least-squares principle. The program is

user-friendly and yields outputs similar to S-Plus/R function 1m.

© 2006 Elsevier Ireland Ltd. All rights reserved.
ccelerated failure time model

uckley–James estimator

ensored linear regression

ehan estimator

[1] developed a new estimation procedure based on the least-
esampling

. Introduction

or uncensored data, the linear regression model is the most
ommonly used model in data analysis. It is simple and easy
o interpret. The least-squares estimator of the regression
arameters is easy to compute and has many well-known the-
retical properties. For censored failure time data in survival
nalysis, however, the linear regression model has been sel-
om used. The least-squares estimator cannot be calculated

n the regular way due to the existence of censoring.
A modified least-squares estimator was proposed by

uckley and James in 1979 [2]. The theoretical properties
f the Buckley and James estimator were investigated by
any people (Ritov [3] and Lai and Ying [4]). Despite the-
retical advances, the method is seldom used in practice
ue to numerical complexity. The estimating function of
uckley–James estimator is neither monotone nor continuous

∗ Corresponding author. Tel.: +1 212 305 9404; fax: +1 212 305 9408.
E-mail address: zj7@columbia.edu (Z. Jin).

169-2607/$ – see front matter © 2006 Elsevier Ireland Ltd. All rights res
oi:10.1016/j.cmpb.2006.12.005
and its roots may not exist (James and Smith [5]). Although
Buckley and James [2] suggested an iterative algorithm which
was implemented by an S-Plus function bj (Stare et al. [6]),
there are several issues in the algorithm. First, the convergence
of the algorithm is not guaranteed. Second, even if the algo-
rithm converges, it is unclear if it yields a consistent estimator
because the theoretical results were established based on the
local linearity assumption. Moreover, the covariance matrix
of the Buckley–James estimator is difficult to obtain because
it involves the unknown hazard function of the unobserved
error term, which may not be well estimated nonparametri-
cally with censored data. The numerical difficulty increases
as the dimension of covariates increases. In 2006, Jin et al.
squares principle along with rigorous theoretical justification.
The new procedure yields a class of estimators which are
consistent and asymptotically normal. In addition, the new

erved.

mailto:zj7@columbia.edu
dx.doi.org/10.1016/j.cmpb.2006.12.005
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procedure estimates the covariance matrix of the consistent
estimators through a resampling approach.

In this paper, we present an S-Plus/R function named lss

to implement the new procedure developed by Jin et al. [1].
In the next section, we present an outline of statistical theory
and computational methods. In Section 3, we describe the lss

function and its arguments. We use two examples to illustrate
the lss function in Section 4 and conclude the paper with
some remarks in Section 5.

2. Statistical and computational methods

2.1. Linear model in survival analysis

Let Yi and Ci denote the failure time and censoring time (or
their transformations) for the ith patient, respectively, and Xi

be the associated (p × 1) covariate. Consider the linear regres-
sion model

Yi = XT
i ˇ + �i, i = 1, . . . , n (1)

where ˇ is an (p × 1) unknown regression parameter, and �is
are independent and identically distributed with a common
but unknown distribution function F. Because of censoring, Yis
might not be observable. The observed data are (Ỹi, ıi, Xi) (i = 1,
. . ., n), where Ỹi = min(Yi, Ci), ıi = 1{Yi ≤ Ci}, and 1{·} is the indi-
cator function. It is assumed that Yi and Ci are independent
conditionally on Xi.

2.2. Least-squares estimation of ˇ

When Yis are completely observed (without any censoring),
the classical least-squares estimator of ˇ is the solution of the
equation

n∑
i=1

(Xi − X̄)(Yi − XT
i ˇ) = 0 (2)

where X̄ = n−1
∑n

i=1Xi.

In the presence of censoring, we can only observe Ỹi. Then
Eq. (2) cannot be used directly. In 1979, Buckly and James [2]
modified Eq. (2) by using:

Ŷi(ˇ) = ıiỸi + (1 − ıi)

{∫ ∞
ei(ˇ)

u dF̂ˇ(u)

1 − F̂ˇ(ei(ˇ))
+ XT

i ˇ

}
(3)

to replace Yi, where ei(ˇ) = Ỹi − XT
i

ˇ and

F̂ˇ(t) = 1 −
∏

i:ei(ˇ)<t

[
1 − ıi∑n

j=11{ej(ˇ) ≥ ei(ˇ)}

]
,

i.e., F̂ˇ is the Kaplan–Meier estimator of F based on {ei(ˇ), ıi}
(i = 1, . . ., n).

There are two difficult issues in the original Buckley–James

estimator: one is that there is no computationally efficient
algorithm that guarantees a consistent estimator, the other
is that there is no reliable method to estimate the covariance
matrix of the resulting estimators.
n b i o m e d i c i n e 8 6 ( 2 0 0 7 ) 45–50

To overcome these difficulties, Jin et al. [1] developed a
new inference procedure to obtain a class of consistent and
asymptotically normal estimators, which we describe below.

2.2.1. Point estimator ˆ̌ (m)

Define

U(ˇ, b) =
n∑

i=1

(Xi − X̄)(Ŷi(b) − XT
i ˇ), (4)

or

U(ˇ, b) =
n∑

i=1

(Xi − X̄){Ŷi(b) − Ȳ(b) − (Xi − X̄)
T

ˇ}, (5)

where Ȳ(b) = n−1
∑n

i=1Ŷi(b).
When U(ˇ, b) = 0, we have

ˇ = L(b) =
{

n∑
i=1

(Xi − X̄)
⊗2

}−1 [
n∑

i=1

(Xi − X̄){Ŷi(b) − Ȳ(b)}
]

, (6)

where a⊗2 means aaT for a vector a.
The expression (6) leads to an iterative algorithm:

ˆ̌ (m) = L( ˆ̌ (m−1)), m ≥ 1. (7)

Jin et al. [1] set the Gehan-type rank estimator ˆ̌ G as the
initial estimator ˆ̌ (0), which can be obtained by minimizing the
following convex function:

n∑
i=1

n∑
j=1

ıi

∣∣ei(ˇ) − ej(ˇ)
∣∣ +

∣∣∣∣∣M − ˇT
n∑

k=1

n∑
l=1

ık(Xl − Xk)

∣∣∣∣∣ ,

where M is a prespecified extremely large number [7]. The min-
imization can be done with function l1fit in S-Plus and rq in
R package quantreg [9]. Then, ˆ̌ (m) is consistent and asymptot-
ically normal for every m, see Jin et al. [1]. As a result, a class of
consistent and asymptotically normal estimators { ˆ̌ (m) : m ≥ 1}
can be obtained.

2.2.2. Covariance matrix of ˆ̌ (m)

Jin et al. [1] also show that the covariance matrix of ˆ̌ (m) can be
approximated by a resampling procedure. First, we generate n
(the number of observations) independent and identically dis-
tributed positive random variables Zi(i = 1, 2, . . ., n) satisfying
E(Zi) = var(Zi) = 1. In the program, we use the standard expo-
nential distribution to generate Zis. Then we implement the
similar iterative procedure in Section 2.2.1 for the point esti-
mation with data perturbed by Zis. The details are given below:

Similar to Kaplan–Meier estimator of F, define

F̂∗
b(t) = 1 −

∏
i:ei(b)<t

[
1 − Ziıi∑n

j=1Zj1{ej(b) ≥ ei(b)}

]
, (8)
and

Ŷ∗
i (b) = ıiỸi + (1 − ıi)

{∫ ∞
ei(b)

u dF̂∗
b
(u)

1 − F̂∗
b
(ei(b))

+ XT
i b

}
, (9)
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∗(b) =
{

n∑
i=1

Zi(Xi − X̄)
⊗2

}−1 [
n∑

i=1

Zi(Xi − X̄){Ŷ∗
i (b) − Ȳ∗(b)}

]
.

(10)

hen, Eq. (10) leads to an iterative process ˆ̌ ∗
(m) = L∗( ˆ̌ ∗

(m−1)),
≥ 1.
Let the initial value ˆ̌ ∗

(0) of this iteration process be ˆ̌ ∗
G, which

s the minimizer of

n

i=1

n∑
j=1

ZiZjıi

∣∣ei(ˇ) − ej(ˇ)
∣∣ +

∣∣∣∣∣M − ˇT
n∑

k=1

n∑
l=1

ZkZlık(Xl − Xk)

∣∣∣∣∣ ,

here M is the prespecified extremely large number [1]. Again,
he minimization can be done with function l1fit in S-Plus
nd rq in R.

For a given sample of (Z1, . . ., Zn), the iteration procedure
ˆ ∗

(k) = L∗( ˆ̌ ∗
(k−1)) yields a ˆ̌ ∗

(k) (1 ≤ k ≤ m). By generating random
amples of (Z1, . . ., Zn) repeatedly N times, we can obtain N real-
zations of ˆ̌ ∗

(m), denoted by ˆ̌ ∗
(m),j (j = 1, . . . , N). For each m ≥ 1,

he covariance matrix of ˆ̌ (m) can be estimated by

2 = 1
N − 1

N∑
j=1

( ˆ̌ ∗
(m),j − ¯̌ ∗

(m))( ˆ̌ ∗
(m),j − ¯̌ ∗

(m))
T

, (11)

here ¯̌ ∗
(m) = (1/N)

∑N

j=1
ˆ̌ ∗

(m),j, see Jin et al. [1] for more
etails.

. Program description

.1. General description

he lss function is designed similar to the 1m function in S-
lus [8] and R-package [9] for fitting regular linear regression
odels. Thus, the lss function largely follows the syntax of

m function.
The convergence criterion for the procedure in Section 2 is

et to be∣∣ ˆ̌ (m),l − ˆ̌ (m−1),l

∣∣
max

(∣∣ ˆ̌ (m),l

∣∣ , 0.01
) < � (12)

or all l = 1,2, . . ., p, where ˆ̌ (m),l stands for the lth component
f ˆ̌ (m)(p × 1), and � is a prespecified very small number con-
rolling the convergence. The iteration stops and the output is
iven when the iterative procedure converges or reaches the
respecified maximum iteration number.
In lss function, two additional functions are used. One is
amed eres. The function eres computes the Kaplan–Meier

stimator F̂ˇ(t) and the integral
(∫ ∞

ei(ˇ)
u dF̂ˇ(u)

)
/
(

1 − F̂ˇ(ei(ˇ))
)

n Eq. (3) as well as the generalized Kaplan–Meier estimator

ˆ ∗
b
(t) and the integral

(∫ ∞
ei(b)

u dF̂∗
b
(u)

)
/
(

1 − F̂∗
b
(ei(b))

)
in Eq. (9).

he other function is named betag function, which is used to
btain the initial values ˆ̌ G and ˆ̌ ∗

G.
b i o m e d i c i n e 8 6 ( 2 0 0 7 ) 45–50 47

3.2. Arguments

The lss function can be called with following syntax:

lss(formula, data, subset, mcsize

= 500, maxiter = 50, tolerance = 0.001, trace

= F, gehenonly = F, cov = F, na.action = na.exclude)

The required arguments are:

• formula: specifies a model to be fitted. The response and
covariates of the model are separated by a ∼ operator. The
response, on the left side of ∼, should be a Surv object [8,9]
with two columns, of which the first column is the survival
time or censored time and the second column is the cen-
soring indicator. The covariates or predictors X, on the right
side of ∼, should be columns with the same length as Surv

object, e.g., lss(Surv(time, status)∼X).

The optional arguments are:

• data: a data frame which contains the Surv objects
and covariates. If this argument is not specified, a
data$variable format can be used in the formula speci-
fication.

• subset: specifies subset of the original data frame data that
should be used for the model fit.

• mcsize: specifies the resampling number which is the num-
ber of random samples of (Z1, . . ., Zn), i.e., the value of N in
covariance calculation Eq. (11) in Section 2. The default is
500.

• maxiter: specifies the maximum iteration number. The
iterations will be stopped after maxiter iterations if the con-
vergence criterion is not met. The default is 50.

• tolerance: specifies the value of convergence criterion � in
Eq. (12). The default is 0.001.

• trace: takes logical values T or F. If it is set to be T, then the
summary of every iteration will be kept. The default is F.

• gehanonly: takes logical values T or F. If gehanonly=T,
only Gehan estimator ˆ̌ G will be calculated and the least-
squares estimator ˆ̌ (m) will not be calculated. The default is
gehanonly=F.

• cov: takes logical values T or F. If cov=T, the covariance
matrices of the Gehan estimator and the least-squares esti-
mator will be printed. The default is cov=F.

• na.action: takes values na.exclude or na.fail. The
default is na.exclude, which deletes the observations with
missing values. The other choice is na.fail, which returns
an error if any missing values are found.

3.3. Output

When gehanonly=F, the output consists of:
• The number of observations without any missing values,
the number of events, and the number of censored data.

• Iteration number.
• The number of resampling.
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Table 1 – Gehan estimator for mayo PBC data

Estimate Standard error Z value Pr(>|Z|)
Age −0.024 0.006 −4.107 0.00004
log(alb) 1.537 0.524 2.933 0.0034

log(bili) −0.558 0.064 −8.756 <0.00001
Edema −0.931 0.256 −3.642 0.0003
log(protime) −2.547 0.930 −2.738 0.0062

• The Gehan estimator, the standard error of the Gehan esti-
mator, the Z score and the p-value for testing the hypothesis
of ˇ = 0 based on Gehan estimation.

• The least-squares estimator, the standard error of the least-
squares estimator, the Z score and the p-value for testing the
hypothesis of ˇ = 0.

• The covariance matrices of the Gehan estimator and the
least-squares estimator, when cov is set to be T.

When gehanonly=T, the output will not have any results
related to the least-squares estimation.

If one specifies trace=T, which can be used only when
gehanonly=F, the output will also include:

• The initial estimator ˆ̌ G.
• Point estimator ˆ̌ (m) at each iteration.
• Convergence criteria and status.

4. Example

In this section, we use two examples to illustrate the use of
lss function.

4.1. Stanford heart transplantation data

We fit two models as in Miller and Halpern [10]. The first model
regresses the base-10 logarithm of the survival time on the
patient’s age and the mismatch score T5. The model can be
fitted as following:

lss(Surv(log10(time), status) age + t5, data = stan, mcsize

= 500, trace = T, gehanonly = F, cov = F, na.action

= na.exclude)

The output:
n b i o m e d i c i n e 8 6 ( 2 0 0 7 ) 45–50

In addition, trace=T gives following information:

Both Gehan estimator and least-squares estimator of the
T5 mismatch score are highly nonsignificant, consequently,
the T5 is deleted from analysis and the following second model
is fitted with the variable age.

The second model regresses the base-10 logarithm of the
survival time on age and age2 as in Miller and Halpern [10].
We also only included the patients who survived for at least
10 days after transplantation as those in their model fitting.
This model can be fit by command

lss(Surv(log10(time), status) age + I(age∧2), data

= stan, subset=time >= 10, mcsize=500, trace = F, cov = T)

This gives the results:

If we specify gehanonly=T, the program will compute the

Gehan estimator only and the output will not show the Least-

Squares Estimator and LSE Covariance Matrix.
In the second model, both Gehan and least-squares esti-

mators are similar and significant at the usual significance
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Table 2 – Least-squares estimator for mayo PBC data

Estimate Standard error Z value Pr(>|Z|)
Age −0.024 0.006 −3.995 0.00006
log(alb) 1.457 0.509 2.865 0.0042
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log(bili) −0.583 0.061 −9.514 <0.00001
Edema −0.839 0.209 −4.017 0.00006
log(protime) −2.281 0.856 −2.665 0.0077

evel 0.05. The results show that the age effect on the base-
0 logarithm survival is quadratic. The results can be used
o compare the mean difference of the survival time between
ubjects with different age levels. Let age1 and age2 be the two
ifferent age levels, then the difference of two base-10 log-
rithm survival times is ˇ1(age2 − age1) + ˇ2(age2

2 − age2
1). As

he age effect is quadratic, the effect of 1-year age difference
n survival time depends on the actual age levels. For exam-
le, if age1 = 50 years, and age2 = 51 years, then the difference
f two base-10 logarithm survival times is −0.062 based on
oth estimators, which indicates that the survival time of 51
ears old in average about exp{−0.062}= 94.0% of the survival
ime of 50 years old. But if age1 = 40 years, and age2 = 41 years,
hen the difference of two base-10 logarithm survival times is
0.028 based on both estimators, which indicates that the sur-
ival time of 41 years old in average about exp{−0.028}= 97.2%
f the survival time of 40 years old.

Both model fits took less than 3 min of computational time.

.2. Mayo primary biliary cirrhosis data

he Mayo primary biliary cirrhosis data can be found in
leming and Harrington [11]. Among the 418 subjects in the
tudy, there were 161 deaths. As usual, the response of the
odel is the natural logarithm of survival time. Five covari-

tes: age, log(albumin), log(bilirubin), edema and log(protime),
re included in the model. The least-squares estimator was
btained after six iterations. The command:

ss(Surv(log(time), status) age + log(alb)

+log(bili)+edema + log(protime), data = pbc, mcsize

= 500, trace = T, tolerance = 0.001, cov = F)

Tables 1 and 2 show the Gehan estimator and the least-
quares estimator, respectively.

Both the Gehan estimator and the least-squares estimator
ndicate that the increase in age, bilirubin, edema and protime
ould shorten the survival time significantly at the usual sig-
ificance level 0.05, while the increase of albumin level would
rolong the survival time significantly at the usual significance

evel 0.05.
Specifically, the Gehan estimator can be interpreted as

ollows: (1) for any given age level and fixed bilirubin,
dema and protime, on average, the presence of albumin
n natural logarithm scale would lead to the survival time
xp{1.537}= 465.1% of that for patients without any change

n albumin level; (2) for any given age level and fixed albumin,
dema and protime, on average, one unit increase in biliru-
in in natural logarithm scale would lead to the survival time
xp{−0.558}= 55.5% of that for patients without any change
b i o m e d i c i n e 8 6 ( 2 0 0 7 ) 45–50 49

in bilirubin level; (3) for any given age level and fixed albumin,
bilirubin and protime, on average, in the presence of edema
would lead to the survival time exp{−0.931}= 39.1% of that for
patients without edema; (4) for any given age level and fixed
albumin, bilirubin and edema, on average, one unit increase
in protime in natural logarithm scale would lead to the sur-
vival time exp{−2.547}= 7.8% of that for patients without any
change in protime level.

The least-squares estimator can be similarly interpreted.
The computational time for this example took about 1 h

and 23 min.

5. Remark

The Cox proportional hazards model (Cox, 1972) has been
usually used in the analysis of censored failure time data.
The interpretation of the results from the Cox model is done
with the concept of hazard ratio which is the ratio of two
conditional probabilities. Consequently, the Cox model does
not provide direct physical interpretation. In this regard, the
usual linear regression model or the accelerated failure time
model provides an attractive alternative to the Cox model as
pointed out by D.R. Cox (Reid, 1994, p. 450) [12], ‘accelerated
life model are in many ways more appealing [than the propor-
tional hazards model] because of their quite direct physical
interpretation’.

In theory, both Gehan and least-squares estimators are
valid asymptotically. But the least-squares estimator is the
most often used in linear regression analysis of uncensored
data. The purpose of the lss program is to obtain the least-
squares estimator. However, we would like to leave the choice
of estimators to users.

The Wald tests on regression coefficients provide a guid-
ance for variable selection. On the other hand, how to assess
the goodness of fit for censored linear regression is an open
question and requires further investigation.

With the lss function, which has solid theoretical jus-
tification, we hope that the linear regression model or the
accelerated failure time model for censored data is accessible
for practitioners.

6. Availability of the program

The program can be freely downloaded from CRAN webpage
http://cran.r-project.org/src/contrib/Descriptions/lss.html or
http://www.columbia.edu/∼zj7.
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