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Item reduction in a scale for screening

Xinhua Liu∗,† and Zhezhen Jin

Department of Biostatistics, Columbia University, New York, NY 10032, U.S.A.

SUMMARY

This paper presents a non-parametric approach for the selection of items in a scale for screening, with the
score defined as the sum of item response indicators. Without specifying parametric models for binary
classification probabilities, the proposed item selection method evaluates the change in classification
accuracy due to adding or deleting one item for a scale with k items. It first removes least useful items
from the scale and then uses a forward stepwise selection procedure to the remaining items to identify a
subset of items for a reduced scale. The reduced scale usually retains or improves classification accuracy
compared to the full scale. The variation in items selected can be assessed with bootstrap samples. In a
simulation study, the proposed procedure shows a fairly good finite sample performance. The method is
illustrated with a data set on patients with and without high risk of developing Alzheimer’s disease who
were administered a 40-item test of olfactory function. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In mental health studies, an underlying trait of interest is often not directly observable and scales
are commonly used to measure it. The scales are composed of a set of items that are correlated
to the latent trait. The scale score, often defined as a sum of the response indicators of the items,
is usually used as a surrogate measure of the latent trait. One rationale for the use of scale score
is that the sum of item responses is a sufficient statistic for the underlying latent trait if the items
and the latent trait satisfy the Rasch model [1, 2] for uni-dimensional scale. The scale score can
also be used to assess the underlying latent trait when the items satisfy the monotone homogeneity
model in non-parametric item response theory (IRT) [3].
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A uni-dimensional scale is particularly useful in screening for individuals at risk of a certain
illness if it measures the underlying latent trait of the illness. In the ideal case, all items in a
scale are consistent, highly correlated with the latent variable, but less correlated to each other.
The items should also have high classification ability, e.g. high sensitivity and specificity or
predictive values [4]. It is possible, however, that a scale is composed of some ‘noisy’ items that
are not useful in classification. To improve the utility of a scale for specific screening purpose,
it is necessary to evaluate all the items in the scale and identify those useful for classification.
Excluding uninformative items from the scale will result in a reduced scale that may maintain or
even improve the classification accuracy of the full scale. Composed of fewer items, the reduced
scale will be more useful in screening for the illness not only because it is easier and quicker to
administer than the full scale but also because it leads to cost reductions.

Studies have shown that the development of Alzheimer’s disease (AD) is associated with olfac-
tory identification deficits [5, 6]. The deficits are usually measured by the standardized University
of Pennsylvania Smell Identification Test (UPSIT) [7]. This self-administered 40-item test (see
Appendix) is a uni-dimensional scale with binary responses on the odour items. The test score is
the total number of odours correctly recognized. It needs about 30 minutes to complete the test.
To improve the clinical utility of UPSIT in screening patients at high risk of AD, clinicians are
interested in selecting items from the full scale so that the reduced scale has similar or improved
classification ability compared to the full scale. For screening purpose, using number of correctly
recognized odours for the scale score is more convenient and meaningful than using weighted sum
of responses in odour identification. Particularly, in classifying patients with high versus low risk
of AD, it makes no sense to use weights with opposite signs for item responses in odour identi-
fication. This implies that a reduced scale for screening should be uni-dimensional with equally
weighted items. The example demonstrates specific requirements for item reduction in a scale for
screening.

In item analysis, IRT has been studied extensively in the fields of education and psychology [2].
In IRT, item response models have parameters characterizing the relationship between the particular
items and a latent trait, assuming that item responses are mutually independent conditional on the
latent trait. The parameters of interest may include a location and slope for each item. Reliable
estimates of the model parameters usually require a very large sample size. Differences in the
item-specific parameters between two classes of disease/disorder status may indicate differential
item functioning (DIF). The method is useful in item evaluation but not useful in item selection
for classification purpose because unequal mean scores distinguishing two classes may not imply
DIF, and DIF can occur even when within-class mean scores are similar [8].

Classification and regression tree analysis [9] are often used in selecting variables for classi-
fication. With preset criteria, items useful for classification can be selected for splits in the tree
structure. The method also requires a very large sample size, while the number of selected items
tends to be small, due to possible multiple uses of some items in the sub-trees. A tree structured
scale is more complicated to use than the sum of item response indicators. Ignoring tree structures,
using sum of responses on the few selected items cannot have good classification ability.

In classifying two classes, when the item responses are binary variables, logistic regression
analysis [10] is more proper than discrimination analysis [11], which assumes normality for
quantitative classifiers [12]. Logistic regression, using logit link between probability of disease
class and a linear combination of predictors, can be applied to data from prospective as well as
case–control studies, and under some conditions [13] can perform well even when the logistic
model is not correct. To identify the items jointly predictive for disease/disorder status, various
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variable selection procedures in logistic regression analysis are available in most statistical software
packages, including forward, backward and stepwise selection procedures based on score test and
Wald test for hypotheses on the regression parameters [14]. The subset of items selected from the
full scale will depend on the model, the selection procedure and the selection criteria. It is known
that none of the selection procedures can guarantee unidirectional estimates for the coefficients of
the response indicators of the selected items, a necessary condition for the uni-dimensional scale
with equally weighted items.

To identify the items distinguishing two classes in the same direction for a reduced scale, one may
use one-sided tests for each item, with proper controls of family wise error rate (FWER) or false
discovery rate (FDR) for the multiple tests [15]. The control may be based on either re-sampling
or raw p-values obtained from correlated one-sided tests [16]. Note that larger between-item
correlations may cause redundancy among the items selected by the multiple tests based procedure.
A selection procedure in logistic regression analysis may help remove redundant items to obtain a
final subset of the items. This two-stage approach may greatly increase the likelihood, while still
cannot guarantee for the selected items to have unidirectional estimates of the coefficients [17].

Recently, Pepe et al. [18] showed that fitting a logistic regression model to data could yield poor
classification performance. Hastie et al. [19] also noted that it is hard to verify regression models,
especially in high dimensions. In general, regression model-based item selection requires correct
model specification. To satisfy the necessary condition for uni-dimensional scale with equally
weighted items, model parameters have to be constrained in the same direction. This may greatly
complicate parametric model-based selection procedures.

In this paper, we propose a simple non-parametric approach for selecting items for a parsimonious
uni-dimensional scale with equally weighted items useful for screening specific illness. The reduced
scale has fewer items than the full scale but retains or even improves classification ability.

The criteria useful to evaluate the classification ability of a scale include prediction or clas-
sification error [19], receiver operating characteristic (ROC) curve and the area under the ROC
curve [4, 20]. The ROC curve shows how sensitivities change either with specificities or with
false-positive proportions (1-specificities) for all possible cutoff scores, where pairs of sensitivity
and specificity are defined at the same cut-off point. The area under the ROC curve (AUC) is a
summary of the ROC curve. It represents the probability that the measure from a subject with the
illness indicates a greater suspicion than that from a subject without the illness [21]. In this paper,
the classification accuracy is defined similarly to AUC, as the probability that the score from a
subject randomly selected from one class is less than that from the subject randomly selected from
the counterpart class. Based on evaluation of the change in classification accuracy due to inclusion
or exclusion of an item, we select items for a reduced uni-dimensional scale. In the next section,
we present the proposed method. Then we evaluate finite sample performance of the proposed
procedure with a simulation study in Section 3. In Section 4, we illustrate the method using data
from a study of the 40-item scale (UPSIT) administered to test olfactory functioning in patients
with and without high risk of AD in a follow-up study [17]. Section 5 presents some discussions.

2. METHOD

Suppose that a full scale has m items in the set Wm and response on each item is binary, i.e.
Xt ∈ {0, 1} for item t, t = 1, . . . ,m. The score on the full scale, defined as S(Wm) = ∑m

t=1 Xt ,
takes integer values between zero and m. The score on a reduced scale S(Wk), defined on k items
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in Wk ⊂Wm, 1�k<m, can be viewed as a weighted sum of responses on all items in Wm ,

S(Wk) =
m∑
t=1

I (itemt ∈Wk)Xt

where I (itemt ∈Wk) takes value 1 if itemt in the reduced scale, and 0 otherwise.
Suppose that subjects with the illness (D = 1) tend to have higher score than the subjects without

the illness (D = 0). For a scale with k items in Wk , let SD(Wk) be the score for subject in class
D, 1�k�m, D = 0, 1; we define classification accuracy as

CA(Wk) = P(S0(Wk)<S1(Wk))

with values ranging between zero and one. Note that CA(Wk) is part of the AUC for a score with
k items in Wk defined by using linear interpolation between adjacent points [20],

AUC(Wk) =CA(Wk) + P(S0(Wk) = S1(Wk))/2

The ROC curve is defined on the set of points {(FPP(c), TPP(c)); c= 0, 1, . . . , k}, with
TPP(c)= P(S1(Wk)�c) as true positive proportion or sensitivity, and FPP(c)=P(S0(Wk)�c)
as false-positive proportion or 1-specificity. Therefore, CA(Wk) retains the invariance property of
AUC(Wk), i.e. the classification accuracy only depends on the ranks of S(Wk)s in the sense that
the untransformed score S(Wk) and any transformed score g(S(Wk)) with function g that reserves
the rank of S(Wk) would lead to the same CA(Wk).

2.1. The change in classification accuracy

Let XD
it be the response indicator of item t for subject i in class D, j = 1, . . . ,m; i = 1, . . . , nD;

D = 0, 1. Then the score for the scale with items in Wk ⊂Wm , 1�k < m, from the i th subject in
class D, is

SD
i (Wk) =

m∑
t=1

XD
it I (itemt ∈Wk)

We may estimate classification accuracy for the scale with the k items in Wk by

A(Wk) = 1

n0n1

n0∑
i=1

n1∑
j=1

I (S0i (Wk)<S1j (Wk))

The estimator has a form similar to the area under empirical ROC curve [22]. As a U -statistic,
A(Wk) is easy to calculate and its statistical properties are easy to establish. Obviously, E[A(Wk)]=
CA(Wk).

Note that the test score on the scale with k items in Wk for subject i in class D can be expressed
as SD

i (Wk) = SD
i (Wk \{itemh}) + XD

ih, where itemh ∈Wk, 1<k�m. This relationship is useful to
calculate the changes in estimated classification accuracy, either

�k(−Xh |Wk) = A(Wk) − A(Wk \{itemh})
due to excluding itemh from the item set Wk , or

�k(+Xh |Wk−1) = A(Wk−1 ∪ {itemh}) − A(Wk−1)

due to adding itemh into Wk−1 for a new set Wk .
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Let di j (k) = S1j (Wk) − S0i (Wk) and zi j (h) = X1
jh − X0

ih, then

�k(−Xh |Wk) = 1

n0n1

n0∑
i=1

n1∑
j=1

[I {zi j (h)>0, di j (k) = 1} − I {zi j (h)<0, di j (k) = 0}]

= 1

n0n1

n0∑
i=1

n1∑
j=1

U−h(i, j |Wk)

and

�k(+Xh |Wk−1) = 1

n0n1

n0∑
i=1

n1∑
j=1

[I {zi j (h)>0, di j (k − 1) = 0} − I {zi j (h)<0, di j (k − 1)= 1}]

= 1

n0n1

n0∑
i=1

n1∑
j=1

U+h(i, j |Wk−1)

In summary, we can write the change � = A(Wk) − A(Wk−1) for Wk−1 ⊂Wk in the form of
U -statistic that

�= 1

n0n1

n0∑
i=1

n1∑
j=1

Ui j

where Ui j can be either U−h(i, j |Wk) or U+h(i, j |Wk−1). The change in estimated classification
accuracy has mean �= E(�) = E(Ui j ) and variance

se2(�) = (n0 − 1)�01 + (n1 − 1)�10 + �11 − (n0 + n1 − 1)�2

n0n1

where �01 = E(Ui jUik), j �= k; �10 = E(Ui jUhj ), i �= h; and �11 = E(U 2
i j ) for i, h = 1, . . . , n0;

j, k = 1, . . . , n1. By the Central Limit Theory on U -statistic, as nD → ∞, D = 0, 1, we have
√
n0n1 (A(Wk) − A(Wk−1)) → N(�k, �

2
k)

where Wk−1 ⊂Wk and �k =CA(Wk) − CA(Wk−1) is the change in classification accuracy due
to inclusion or exclusion one item from a scale with k items. It is easy to see that se(�) can be
estimated by plugging in the empirical counterparts of �01, �10 and �11. We denote the estimator
as ŝe(�).

Under the null hypothesis H0: �k = 0 with Wk−1 ⊂Wk , the test statistic,

TS= A(Wk) − A(Wk−1)

ŝe(A(Wk) − A(Wk−1))

will have approximate N(0, 1) distribution. We propose to use it as a basis for item selection along
with a prespecified threshold value �. The relevant hypotheses are H0: �k�0 versus H1: �k>0.

Particularly, we will use a prespecified threshold value �0 and the test statistic

TS(−X j |Wk) = �k(−X j |Wk)

ŝe(�k(−X j |Wk))
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to decide whether or not to remove item j from Wk . When TS(−X j |Wk)<�0, we will exclude
item j from Wk . Similarly, we will use a prespecified threshold value �1 and the test statistic

TS(+Xh |Wk−1) = �k(+Xh |Wk−1)

ŝe(�k(+Xh |Wk−1))

to decide whether or not to add itemh ∈Wm\Wk−1 into Wk−1 for a new set Wk . We will have item
set Wk ={itemh} ∪ Wk−1 when TS(+ Xh |Wk−1)��1.

2.2. Item selection procedure

It is obvious that item j in Wk for a scale with score S(Wk) is least useful for classification if
excluding it from Wk leads to no change or an increase in the estimated classification accuracy or
�k(−X j |Wk)�0. Consequently, we first identify the least useful items from the full scale, if any,
and then apply hypothesis test-based stepwise selection procedure to the remaining items.

Starting with the item set Wm for the full scale, we will identify the least useful item, if any, and
remove it. For 1<k�m, we will exclude itemk0 from Wk if the corresponding change in estimated
classification accuracy �k(−Xk0 |Wk)�0, where

�k(−Xk0 |Wk) = min
item j∈Wk

{A(Wk) − A(Wk \{item j })}

The deletion process will stop when no more items can be removed. The resulting item set is
denoted as WJ , 1<J<m. This process will produce a sequence of subsets {Wk; J < k�m} such
that WJ ⊂ · · · ⊂Wm , with a sequence of estimated classification accuracies {A(Wk); J < k�m}
satisfying A(WJ )� · · ·�A(Wm).

Although the item set WJ has less items, it might still have some unstable items that make little
contributions to the classification accuracy. It is important to identify relatively stable items in WJ
to form a further reduced scale without sacrificing much in classification accuracy. This can be
accomplished by the following hypothesis test-based selection procedure along with prespecified
positive threshold values �0 and �1 (�0��1):

(i) Identify the item in WJ that has the largest value of the test statistic for classification
accuracy. Let Q1 denote the resulting singleton item set. Specifically, the initial item set
Q1 ={itemh} ⊂WJ satisfying

TS(A(Q1))= max
item j∈WJ

TS(A({item j }))��1

where TS(A({item j }))= A({item j })/ŝe(A({item j })) with

A({item j }) =
n0∑
i=1

n1∑
h=1

I (X0
i j<X1

hj )

n0n1
=

n0∑
i=1

I (X0
i j = 0)

n0

n1∑
h=1

I (X1
hj = 1)

n1
= Ŝp( j)Ŝe( j)

and

ŝe2(A({item j })) = Ŝe( j)Ŝp( j)

n0n1
[1 + (n0 − 1)Ŝp( j) + (n1 − 1)Ŝe( j)

−(n0 + n1 − 1)Ŝp( j)Ŝe( j)]
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Here Ŝp( j) and Ŝe( j) are the estimators of specificity Sp( j)= P(X0
j = 0) and sensitivity

Se( j)= P(X1
j = 1) for item j , respectively.

(ii) For 1<k�J , identify the item itemk0 that has the largest value of the test statistic for
H0: �k�0 versus H1: �k>0 from the item set WJ \Qk−1. Let Qk = Qk−1 ∪ {itemk0} if

TS(+Xk0 |Qk−1) = max
item j∈WJ\Qk−1

TS(+X j |Qk−1)��1

(iii) Identify unstable items in Qk that their removal leads to little loss or even an improvement
in estimated classification accuracy. Specifically, itemh is excluded from Qk, 1<k�J , if

TS(−Xh |Qk) = min
item j∈Qk

TS(−X j |Qk)<�0

The exclusion process will stop if no more items can be removed.
(iv) Repeat steps (ii) and (iii) until no more items could be added and removed or stop the

process if an item that has been removed tends to be added in again.

The final item set is denoted as QH . We will use the items in QH for a reduced scale.

2.3. Evaluation of variability in selected items

In studies of rare diseases and uncommon conditions, the sample used to select items in a scale
for screening may not be very large. The variation of selected items can be assessed by bootstrap
approach [23] with the proposed procedure. Bootstrap samples can be obtained by sampling with
replacement from the original study sample, where the sampling unit is the study subject with
a cluster of observed responses on the items in the full scale. The empirical distributions of the
number of selected items, the estimated classification accuracy for the full scale, the reduced scale,
and the difference in estimated classification accuracies between the full and reduced scales can
be used for inference. Moreover, the selection frequency of each item in a number of bootstrap
samples (say 1000) provides an empirical estimate of how often an item is selected. The spectrum
of item selection may help identify the most frequently selected items.

3. A SIMULATION STUDY

To examine the finite sample performance of the selection procedure with different thresholds,
we conducted a simulation study for a hypothetical uni-dimensional scale with 13 items, among
which six items are useful for distinguishing two classes. The data were generated from logistic
models in which logit function links item response probabilities to an underlying latent trait Z ,

logit P(Xt = 1|D, Z) = �Dt + �D
t Z , t = 1, . . . , 13, D = 0, 1

where �Dt is the location parameter and �D
t is the slope parameter. The �D

t reflects the degree
of association between item responses and the latent trait. The larger the �D

t is, the stronger
the association is. Table I lists preset values for �Dt and �D

t used in data generation. We preset
six items, {8, . . . , 13} with different parameters by class. The two classes have equal sample
size, N = 50, 100, and 200. In each case, we generated 1000 data sets. In each data set, we first
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Table I. Parameters in logistic models for data generation.

Item t 1 2 3 4 5 6 7 8 9 10 11 12 13

�0t −2 −1 −1 −1 −0.5 −0.5 −0.5 −2 −2 −2 −2 −2 −2

�0t 1 1 2 3 1 2 3 1 1 1 1 1 1

�1t −2 −1 −1 −1 −0.5 −0.5 −0.5 −1 −1 −1 −0.5 −0.5 −0.5

�1t 1 1 2 3 1 2 3 1 2 3 1 2 3

Table II. Proposed method: performance of selected scales.

Scale size H A(WH ) � (per cent) �>0
Criteria (�0, �1) mean (SD) mean (SD) mean (SD) (per cent)

N = 50
Full scale 13 0.5485 (0.0577)
W = {8, . . . , 13} 6 0.6043 (0.0583) 10.46 (6.45) 96.4
I: (0.52, 0.5244) 4.75 (1.04) 0.6148 (0.0566) 12.41 (5.99) 99.5
II: (0.84, 0.8416) 4.04 (0.85) 0.6054 (0.0583) 10.65 (6.32) 97.5
III: (1.036, 1.0364) 3.86 (0.79) 0.5977 (0.0588) 9.24 (6.65) 93.0
IV: (1.28, 1.2816) 3.19 (0.67) 0.5849 (0.0608) 6.90 (7.07) 84.4

N = 100
Full scale 13 0.5476 (0.0425)
W = {8, . . . , 13} 6 0.6025 (0.0419) 10.16 (4.20) 99.4
I: (0.52, 0.5244) 5.37 (0.89) 0.6067 (0.0413) 10.93 (3.96) 100
II: (0.84, 0.8416) 4.85 (0.82) 0.6024 (0.0418) 10.15 (4.15) 99.8
III:(1.036, 1.0364) 4.52 (0.78) 0.5984 (0.0424) 9.40 (4.33) 99.1
IV: (1.28, 1.2816) 4.13 (0.75) 0.5922 (0.0426) 8.27 (4.45) 97.8

N = 200
Full scale 13 0.5485 (0.0309)
W = {8, . . . , 13} 6 0.6044 (0.0311) 10.28 (3.19) 100
I: (0.52, 0.5244) 5.72 (0.73) 0.6059 (0.0311) 10.54 (3.00) 100
II: (0.84, 0.8416) 5.38 (0.71) 0.6041 (0.0312) 10.21 (3.06) 100
III: (1.036, 1.0364) 5.20 (0.71) 0.6027 (0.0314) 9.96 (3.08) 100
IV: (1.28, 1.2816) 4.91 (0.73) 0.5999 (0.0329) 9.44 (3.19) 100

Note: A(WH ): estimated classification accuracy of selected scale. �= (A(WH ) − A(W13))/A(W13) × 100 per
cent: per cent improvement.

generated 2N independent random numbers from a standard normal distribution for latent trait
Z . Then for each value of Z , we generated 13 independent binary responses with probabilities
specified by the logistic models. We apply the proposed procedure with four sets of threshold
values (�0, �1) = (0.52, 0.5244), (0.84, 0.8416), (1.036, 1.0364), (1.28, 1.2816) according to 70th,
80th, 85th, and 90th percentiles of standard normal distribution, respectively.

Table II showed that the estimated classification accuracies A(W13) for the full scale, and A(W6)

for the preset six-item scale withW6 ={X8, . . . , X13}, all had consistent mean regardless of sample
size. The standard deviations of these estimated quantities, however, decreased with increasing

Copyright q 2007 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:4311–4327
DOI: 10.1002/sim



ITEM REDUCTION IN A SCALE FOR SCREENING 4319
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Figure 1. Mean classification accuracy of reduced scales.

sample size. It is not surprising that the improvement in estimated classification accuracy with the
preset scale was not always positive when class size is not large.

As expected, with a given data set, the items selected with higher threshold values were in a
subset of the items selected with lower threshold values. Consequently, increasing threshold values
resulted in fewer selected items and lower classification accuracies. The trend was clear in the
cases with class size of 50 while became less apparent as class size increased to 200 (Figure 1).
Among the four sets of threshold values, (�0, �1) = (0.84, 0.8416) yielded results similar to that
of the preset six-item scale.

Table III listed the frequencies of items being selected based on different selection criteria. It
is interesting to note that in all the cases, the most frequently selected items were the six preset
items useful for classification. The frequencies of correctly selected items increased with sample
size while decreased with increasing threshold values. In contrast, the frequencies of incorrectly
selected items decreased with sample size or threshold values increased.

As a reviewer suggested, we compared performance of proposed method with that of logistic
model-based forward and backward selection procedures for item selection using the same 1000
generated data sets with class size of 100.

The forward selection procedure computed the score test statistic on null hypothesis of zero
coefficient for each item not in logistic model and identified the largest of these statistics. If it was
significant at the preset level, then the corresponding item was added into the model. The process
was repeated until none of the remaining effects met the specified criterion. The backward selection
procedure started with fitting logistic model with all items. Wald test on null hypothesis of zero
coefficient for each item was examined. The least significant item that did not meet the preset
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Table III. Proposed method: frequency of items selected in 1000 simulated data sets.

Item

1 2 3 4 5 6 7 8 9 10 11 12 13

N = 50 (�0, �1)
I: (0.52, 0.5244) 102 96 29 12 120 27 15 622 557 584 910 843 830
II: (0.84, 0.8416) 48 55 19 7 61 16 10 504 445 485 856 766 766
III: (1.036, 1.0364) 34 37 10 4 41 11 8 432 377 428 812 729 735
VI: (1.28, 1.2816) 13 17 5 3 29 5 8 337 305 366 743 681 679

N = 100 (�0, �1)
I: (0.52, 0.5244) 74 80 10 1 113 14 6 785 667 717 988 962 951
II: (0.84, 0.8416) 35 38 5 1 72 9 2 681 552 619 976 944 914
III: (1.036, 1.0364) 24 26 5 0 44 7 0 602 491 547 962 917 890
VI: (1.28, 1.2816) 12 14 4 0 22 5 0 499 395 486 946 879 870

N = 200(�0, �1)
I: (0.52, 0.5244) 51 48 0 0 78 2 0 920 803 824 1000 997 995
II: (0.84, 0.8416) 23 23 0 0 42 1 0 870 707 737 999 994 988
III: (1.036, 1.0364) 11 19 0 0 29 0 0 831 655 685 999 990 977
VI: (1.28, 1.2816) 3 14 0 0 16 0 0 756 570 607 998 982 962

Table IV. Logistic model based selections: performance of selected scales.

Class size Scale H A(WH ) � (per cent)
N = 100 mean (SD) mean (SD) mean (SD) per cent (�>0)

Full scale 13 0.5476 (0.0425)
Backward selection
�= 0.05 5.82 (1.35) 0.5279 (0.0504) −3.6538 (4.3790) 20.8
�= 0.10 6.98 (1.36) 0.5356 (0.0474) −2.2287 (3.2228) 25.3
�= 0.15 7.74 (1.39) 0.5386 (0.0462) −1.6783 (2.7892) 29.5

Forward selection
�= 0.05 5.69 (1.39) 0.5260 (0.0507) −4.0046 (4.5413) 18.8
�= 0.10 6.87 (1.44) 0.5347 (0.0478) −2.3974 (3.3585) 23.4
�= 0.15 7.67 (1.44) 0.5378 (0.0465) −1.8213 (2.8763) 27.8

Note: A(WH ), estimated classification accuracy; �, per cent improvement.

level for staying in the model was removed. The process of model fitting and testing individual
effect of items was repeated until no other effect in the model could meet the specified level for
removal.

Tables IV presents the descriptive statistics for the number of items selected, the estimated
classification accuracy and per cent improvement for the reduced scales with items selected by
logistic model-based selection procedures using commonly accepted criteria on significance level
of two-sided tests, 0.05, 0.10, 0.15. The two model-based selection procedures yielded similar
results. The number of selected items and the estimated classification accuracy of the reduced
scales increased with significance level. They seemed to be slightly larger with backward selection
than with forward selection procedure. Compared to the full scale, the reduced scales tended to
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Table V. Logistic model based selection: frequency of items selected in 1000 simulated data sets.

Item number

1 2 3 4 5 6 7 8 9 10 11 12 13

Backward selection
�= 0.05 111 147 336 529 150 340 495 293 377 550 815 814 859
�= 0.10 185 224 428 630 211 427 591 425 489 674 891 885 919
�= 0.15 249 284 507 673 261 506 636 524 573 744 928 915 942

Forward selection
�= 0.05 113 149 335 516 147 333 474 279 352 543 807 802 844
�= 0.10 184 216 429 609 208 422 580 409 477 653 886 883 917
�= 0.15 249 277 504 668 259 501 633 510 559 734 921 910 942

Note: Class size N = 100.

have somewhat lower classification accuracy. Table V showed that with the logistic model-based
procedures, not all important items were more frequently chosen compared to the unimportant
ones.

In summary, the proposed procedure showed a fairly good finite sample performance in the
simulation study. Empirically, the threshold values could be in the range of 0.6–1.3. To reduce
the possibility of excluding useful items, one may choose several threshold values and examine
the corresponding results. Nevertheless, increasing class size may reduce the impact of threshold
values and give more stable result.

4. APPLICATION

To illustrate the proposed method, we use the olfaction test data collected from 127 patients
with mild cognitive impairment (MCI) who were at risk to develop AD [17]. The patients were
administered UPSIT, a 40-item olfactory test, at baseline, and followed for at least two years. There
were 31 patients who met criteria of AD diagnosis within two years after baseline evaluation, being
considered in the group with high risk of developing AD (D = 1). The low-risk group (D = 0)
had 96 patients who did not develop AD in the two years of follow-up.

The purpose of the analysis is to identify the items in the 40-item olfactory test for a reduced
scale that may efficiently classify the two groups of MCI patients. The test score of UPSIT is
the sum of odours correctly recognized by a patient, with low score indicating poor olfactory
functioning. For our purposes, we used a scale score defined as the number of odours incorrectly
identified such that a high score indicates poor olfactory functioning.

In this sample, Cronbach’s coefficient alpha estimate [24] for UPSIT items was 0.8843, indicating
a good consistency of items in relation to the underlying trait of olfactory functioning. Figures 2
and 3 show a wide range in the proportion of incorrect odour recognition (9.45–64.57 per cent),
in the item sensitivity (16.13–74.19 per cent), in the item specificity (37.5–93.75 per cent), and
in the item classification accuracy (0.1378–0.4476). Most items had high specificity with low
sensitivity.

We first used the popular logistic model-based selection procedures for item selection with
commonly used inclusion and exclusion criteria �in = �out = � = 0.10. The backward selection
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Proportion of incorrect odour recognition 
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Figure 2. Item classification accuracy and proportion of response.

procedure selected eight items (X4, X5, X8, X10, X14, X21, X32, X33) with estimated coefficients
for X4 and X5 in the opposite direction of the other six estimated coefficients. The forward and
stepwise selection procedures selected six items (X8, X10, X16, X32, X33, X38) with estimated
coefficient for X16 in the opposite direction of the other five estimated coefficients. The result
implied that the highest likelihood for being in the high-risk class was not given to those who
could not correctly recognize any items in the selected subset of the odours. Obviously, this was
not biologically meaningful.

Alternatively, we applied logistic model-based selection procedures only to the items with
potential to distinguish two classes in the same direction. By one-sided Fisher exact test, there
were 18 pre-selected items with raw p-values below 0.05, while using the resampling technique
[13] the multiple test adjusted p-values were less than 0.50. With � = 0.10 for the backward,
forward, and stepwise logistic regression selection procedures, we obtained the same six-item
subset W6 ={X8, X10, X21, X32, X33, X38} with estimated coefficients in the same
direction. The estimated classification accuracy of the six-item scale was 0.7984, exceeding the
0.7678 (ŝe= 0.0450) of the 40-item full scale. This result suggested that the six odours could
be used for a reduced uni-dimensional scale to screen patients at high risk of AD, with number
of incorrectly identified odours as test score. It is interesting to note that the result was invariant
when the threshold value was changed to � = 0.15.
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Figure 3. Item sensitivity and specificity.

In contrast, the proposed method identified 20 items as least useful items to be excluded from the
full scale. With threshold values (�0, �1) = (0.84, 0.8416), the stepwise selection procedure sug-
gested inclusion of H = 7 items for a reduced scale that W7 ={X8, X10, X21, X32, X33, X37,
X38}. The estimated classification accuracy A(W7) was 0.8165, also exceeding the 0.7678 of the
full scale. The result was unchanged when the threshold values were increased to (�0, �1) = (1.036,
1.0364).

To evaluate the variation in item selections, we applied the proposed selection procedure to
1000 bootstrap samples obtained from the original data set (n = 127). Table VI shows that the
median number of selected items in the bootstrap samples was six, and the estimated classi-
fication accuracy with the reduced scales, A(WH ), was consistently larger than that produced
using the full scale. Specifically, in 99.7 per cent of the bootstrap samples A(WH ) was larger than
A(W40). This suggested that the 40-item scale could be greatly reduced for the binary classification.
Figure 4 shows the item selection spectrum of the bootstrap samples. Thirty-two items had been
selected with low frequencies (�23.1 per cent of the bootstrap samples), items X14 and X21 were
selected in 47.4 and 41.7 per cent of the bootstrap samples, respectively. The most frequently
selected six items, selected in 51.5–71.8 per cent of the bootstrap samples, were also in W7
selected by the proposed procedure using the original data set. It seemed that item X14 might
be also important. Nevertheless, to obtain a confirmative result, we need to increase sample size,
especially in the high-risk class.
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Table VI. Performance of scales selected in 1000 bootstrap samples.

Statistics Mean (SD) Median (range)

Reduced scale size H 6.06 (1.29) 6 (3, 10)

Reduced scale: A(WH ) 0.8364 (0.0434) 0.8387 (0.6996, 0.9721)

Full scale: A(W40) 0.7702 (0.0429) 0.7717 (0.6182, 0.9273)

A(WH ) − A(W40) 0.0671 (0.0361) 0.0675 (−0.0521, 0.2070)

A(WH )−A(W40)
A(W40)

× 100 per cent 10.69 (4.84) 10.55 (−3.05, 31.97)

Note: Selection criteria (�0, �1) = (0.84, 0.8416).
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Figure 4. Proportion of items selected in 1000 bootstrap samples.

In this application, item set W6 obtained by 2-stage selection, in which logistic model-based
selection procedures was applied to the items pre-selected with one-sided Fisher exact test, hap-
pened to be included in W7 selected by the proposed method. The parametric model-based selec-
tion approaches, however, had different basis from the proposed non-parametric method. Based on
evaluation of classification accuracy in the selection process, our approach is more relevant to the
goal of selecting items to retain or improve classification accuracy for a uni-dimensional scale
with equally weighted items.
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5. DISCUSSION

We have proposed a non-parametric method for item reduction in a uni-dimensional scale for
screening, based on evaluation of classification accuracy. Because the classification accuracy is
invariant to the rank reserved transformations on the scores, the validity of the proposed item
selection procedure depends only on the assumption that

P(D = 1|X1, . . . , Xm) = P

(
D = 1

∣∣∣∣
m∑
t=1

Xt I (itemt ∈WH )

)

This assumption does not require specifying the relationship between the probability P(D = 1|
X1, . . . , Xm) and the item response indicators X1, . . . , Xm explicitly. Consequently, the selection
procedure is robust.

Note that examining all the possible item combinations in a search for the set of items that will
maximize estimated classification accuracy can be time consuming, especially when the number
of items in the full scale is large. Besides, the selected item set may include unstable items that
make little contribution to the estimated classification accuracy. In contrast, the proposed method
based on test statistics for the hypotheses on the change in classification accuracy could quickly
select the items that have good classification ability along with relative stability.

The proposed selection procedure begins with removing the least useful items from the scale
and then applies stepwise selection to the remaining items. To decide whether or not to include
an item for a reduced scale, the proposed stepwise selection requires pre-specified values for
thresholds �0 and �1. Obviously, smaller threshold values may lead to the selection of more
items, of which some could be unstable. On the other hand, higher threshold values may lead
to qualifying fewer items for a reduced scale, resulting in a smaller estimate of classification
accuracy. An upper bound on the thresholds will be necessary for the estimated classification
accuracy of a reduced scale to exceeding that of the full scale. Based on a simulation study,
we would empirically recommend using few threshold values between 0.6 and 1.3. Meanwhile,
examination of item selection frequencies through bootstrap samples may help assess the variation
in the item selection. The most frequently selected items could be used for reduced scale. Another
important message from the simulation study is that large sample size in both classes may reduce
the impact of threshold values on selection result.

The method is applicable when items in a scale have K (>2) response levels in that K −1 binary
indicators can be produced; for example, I (X = j) for j = 2, . . . , K . If the K response levels are
ordinal, we may use the binary indicator I (X� j) for j = 1, . . . , K − 1.

Similar to logistic regression analysis, the proposed method can accommodate data from both
prospective and case–control studies [25]. To improve the usefulness of a reduced scale for screen-
ing, we would prefer a large sample from a prospective study. As item selection results always
depend on study samples, the reduced scale is only applicable to screen populations comparable
to the study population. Therefore, it is important, though it will be challenging, to further develop
methods that may combine data from multiple resources to efficiently identify items for a reduced
scale, which will be relatively invariant across populations.

APPENDIX A

Description of the University of Pennsylvania Smell Identification Test (UPSIT). The self-
administered 40-item scratch-and-sniff multiple choice odour identification test consists of four
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booklets containing 10 odorant apiece, with one odorant per page. The stimuli are released by
scratching each strip with a pencil tip in a standardized manner. Above each odorant strip is a
multiple-choice question with four alternative responses for each item. Subjects are instructed to
scratch the label, then sniff the label and choose a response category closest to the smell that they
experienced.

Item, odorant Item, odorant Item, odorant Item, idorant

X01 pizza X11 onion X21 lilac X31 paint thinner
X02 bubble gum X12 fruit punch X22 turpentine X32 grass
X03 menthol X13 licorice X23 peach X33 smoke
X04 cherry X14 cheddar cheese X24 root beer X34 pine
X05 motor oil X15 cinnamon X25 dill pickle X35 grape
X06 mint X16 gasoline X26 pineapple X36 lemon
X07 banana X17 strawberry X27 lime X37 soap
X08 clove X18 cedar X28 orange X38 natural gas
X09 leather X19 chocolate X29 wintergreen X39 rose
X10 coconut X20 gingerbread X30 watermelon X40 peanut

ACKNOWLEDGEMENTS

This research was partially supported by the NSF Career award DMS-0134431 to Zhezhen Jin. We thank
Drs Devanand and Tabert for providing us the data from their prospective study at the Memory Disorders
Center of the New York State Psychiatric Institute and Columbia University, funded by National Institute
on Aging grant R01-AG17761. We also thank the reviewers for their helpful comments and thank Dr
Zeger for his valuable suggestions.

REFERENCES

1. Lord FM, Novick MR. Statistical Theories of Mental Test Scores. Addison-Wesley: Reading, MA, 1968.
2. Van Der Linden WJ, Hambleton RK. Handbook of Modern Item Response Theory. Springer: New York, 1997.
3. Sijtsma K, Molenaar IW. Introduction to Nonparametric Item Response Theory. Sage Publications: California,

2002.
4. Zhou XH, Obuchowski NA, McClish DK. Statistical Methods in Diagnostic Medicine. Wiley: New York, 2002.
5. Doty RL, Reyes PF, Gregor T. Presence of both odor identification and detection deficits in Alzheimer’s disease.

Brain Research Bulletin 1987; 18:597–600.
6. Devanand DP, Michaels-Marston KS, Liu X, Pelton GH, Padilla M, Marder K, Bell K, Stern Y, Mayeux R.

Olfactory deficits in mild cognitive impairments predict Alzheimer’s disease on follow-up. American Journal of
Psychiatry 2000; 157:1399–1405.

7. Doty RL, Shaman P, Dann M. Development of the University of Pennsylvania Smell Identification Test: a
standardized microencapsulated test of olfactory function. Physiology Behavior 1984; 32:489–502.

8. Holland PW, Wainer H. Differential Item Functioning. Erlbaum: Hillsdale, NJ, 1993.
9. Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and Regression Trees. Wadsworth: Pacific Grove,

CA, 1984.
10. Hosmer DW, Lemeshow S. Applied Logistic Regression (2nd edn). Wiley: New York, 2000.
11. Hand DJ. Discrimination and Classification. Wiley: New York, 1981.
12. Press SJ, Wilson S. Choosing between logistic regression and discriminant analysis. Journal of the American

Statistical Association 1978; 73:699–705.
13. Li K-C, Duan N. Regression analysis under link violation. The Annals of Statistics 1989; 17:1009–1052.
14. Furnival GM, Wilson RW. Regressions by leaps and bounds. Technometrics 1974; 16:499–511.

Copyright q 2007 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:4311–4327
DOI: 10.1002/sim



ITEM REDUCTION IN A SCALE FOR SCREENING 4327

15. Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. The
Annals of Statistics 2001; 29:1165–1188.

16. Westfall PH, Tobias RD, Rom D, Wolfinger RD, Hochberg Y. Multiple Comparisons and Multiple Tests Using
the SAS System. SAS Institute Inc.: Cary, NC, 1999.

17. Tabert MH, Liu X, Doty RL, Serby M, Albers M, Zamora D, Pelton G, Marder K, Devanand DP. A 10-item
smell identification scale related to risk of Alzheimer’s disease. Annals of Neurology 2005; 58:155–160.

18. Pepe MS, Cai T, Longton G. Combining predictors for classification using the area under the receiver operating
characteristic curve. Biometrics 2006; 1:221–229.

19. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning. Springer: New York, 2001.
20. Pepe MS. The Statistical Evaluation of Medical Tests for Classification and Prediction. Oxford University Press:

New York, 2004.
21. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve.

Radiology 1982; 143:29–36.
22. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver

operating characteristics curves: a nonparametric approach. Biometrics 1988; 44:837–845.
23. Efron B, Tibshirani RJ. An Introduction to the Bootstrap. Chapman & Hall: New York, 1993.
24. Cronbach LJ. Coefficient alpha and the internal structure of tests. Psychometrika 1951; 16:297–334.
25. Prentice RL. Use of the logistic model in retrospective studies. Biometrics 1976; 32:599–606.

Copyright q 2007 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:4311–4327
DOI: 10.1002/sim


