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Optimal survival time-related cut-point
with censored data
Xinhua Liu*† and Zhezhen Jin

In biomedical research and practice, continuous biomarkers are often used for diagnosis and prognosis, with a
cut-point being established on the measurement to aid binary classification. When survival time is examined for
the purposes of disease prognostication and is found to be related to the baseline measure of a biomarker, employ-
ing a single cut-point on the biomarker may not be very informative. Using survival time-dependent sensitivity
and specificity, we extend a concordance probability-based objective function to select survival time-related cut-
points. To estimate the objective function with censored survival data, we adopt a non-parametric procedure for
time-dependent receiver operational characteristics curves, which uses nearest neighbor estimation techniques.
In a simulation study, the proposed method, when used to select a cut-point to optimally predict survival at
a given time within a specified range, yields satisfactory results. We apply the procedure to estimate survival
time-dependent cut-point on the prognostic biomarker of serum bilirubin among patients with primary biliary
cirrhosis. Copyright © 2014 John Wiley & Sons, Ltd.
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1. Introduction

In biomedical research and practice, a biomarker related to the progression of a disease is commonly
used to predict its prognosis. When the biomarker measure is continuous and a binary outcome variable
for a good or poor prognosis is well defined, then we can select a cut-point on the biomarker to aid binary
classification. We define sensitivity and specificity at each possible cut-point as the probability of cor-
rectly classifying patients into the poor-prognosis and the good-prognosis categories, respectively; one
may use the receiver operational characteristics (ROC) curve [1,2], with sensitivity versus 1− specificity
(or the false positive rate), to show how sensitivity changes with changes in specificity across cut-points.
There are several ROC curve-related criteria that are used in optimal cut-point selection. The most com-
monly used is the Youden index [3], defined, at each cut-point, as the sum of the associated sensitivity
and specificity minus one. The cut-point maximizing the index will maximize the total correct classifi-
cation rate, or equivalently minimize the sum of error rates, the false negative rate (= 1 − sensitivity),
and the false positive rate [4]. Less commonly used is the closest-to-(0, 1) criterion [5], which selects
the cut-point minimizing the distance between a point on the ROC curve and an ideal point (0, 1) repre-
senting perfect specificity and sensitivity. A recently proposed criterion selects the cut-point maximizing
the classification concordance probability, which is equivalent to a product of the associated sensitivity
and specificity [6]. If an ROC curve-related criterion is to be used for selecting the cut-point on a contin-
uous biomarker and if prognosis is measured quantitatively, then the measure must be divided into two
groups to distinguish between good and poor prognosis. A clinically meaningful dichotomization on the
prognostic measure should be based on clinical considerations.

When a disease is diagnosed, survival time or time to a serious event (T) is often used for disease
prognosis. The survival curve, which describes the distribution of survival time, can be quantified both
as a function of time t, survival rate r = P(T > t) for time t, and as the quantile of survival time T(r) for
survival rate r. Practically, clinicians can use either for the prognosis of a specific disease. For example,
a 5-year survival rate estimates the probability of a patient surviving for 5 or more years, and median

Department of Biostatistics, Columbia University, New York, NY 10032, U.S.A.
*Correspondence to: Xinhua Liu, Department of Biostatistics, Columbia University, New York, NY 10032, U.S.A.
†E-mail: xl26@columbia.edu

Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 515–524

515



X. LIU AND Z. JIN

survival time indicates the amount of time that a patient would survive beyond, with probability of 0.5.
Dichotomizing survival time T at specified value t means classifying a sample of patients into two groups,
with the D = 1 group having experienced the event up to time t (T ⩽ t), and the D = 0 group experi-
encing it after time t (T > t). Defining sensitivity and specificity for each possible cut-point on X, we
can draw an ROC curve for t. Using a preferred ROC curve-related criterion or objective function at the
time, we can select a cut-point on the biomarker X. Consequently, the selected cut-point depends on the
dichotomization of the survival time. In studies of disease prognosis, survival time is likely to be subject
to right censoring because not all patients who provide biomarker data at the baseline may experience
the event before the end of the study and some of the patients may drop out from the study during fol-
low up. Depending upon the censoring pattern, attrition in the sizes of the dichotomized groups may
also have impact on cut-point selection. Heagerty et al. [7] investigated methods for estimating time-
dependent ROC curves with censored data in evaluating the performance of continuous biomarkers in
predicting time-dependent outcomes. Building on their work, we extend an ROC curve-related criterion
in order to select an optimal survival time-related cut-point corresponding to a specified survival time or
survival rate.

Recently, Gönen and Sima [8] considered a single cut-point model for the selection of an optimal cut-
point with censored data. They examined five criteria, including the Wald, log-rank, and partial likelihood
ratio statistics, three chi-square-based metrics, and two related to concordance probabilities. The authors
defined the concordance probability-based criteria either non-parametrically or semi-parametrically using
a proportional hazards model with a single predictor, which was also assumed for the criteria using the
Wald and partial likelihood ratio statistics. Through simulations performed under a variety of scenarios,
the authors showed that the partial likelihood ratio test statistic has the best performance. However, the
authors did not provide a way to check their fundamental assumption that the cut-point on the biomarker
is unique.

It is more realistic to relax the single cut-point assumption and to not restrict the pattern of association
between a continuous biomarker X and survival time T . To evaluate the contribution of X in predicting
prognosis, one may either use statistical models or some summary measure such as Harell’s C-index or the
concordance probability [9,10]. Supposing that a smaller X is associated with a larger T , the concordance
probability C = P(T1 < T2 | X1 > X2) or C∗ = P(X1 > X2 | T1 < T2) describes the discrimination
accuracy of X in predicting survival time. A value above 0.50 may indicate some relationship between
X and T , while a value above 0.60 would be considered meaningful. It is known that when T is a binary
variable, the concordance probability C∗ is equivalent to the area under the ROC curve. For a continuous
T , the concordance probabilities are well defined with censored data and can be consistently estimated
[11], even when censoring is random [12, 13].

As each cut-point on the baseline biomarker is established through a specific dichotomization of sur-
vival time, it is natural to expect that the cut-points corresponding to different time points of follow-up
may not be the same. For example, for a given disease, the cut-point on a biomarker related to survival
time longer than 3 years can be different from that related to survival time longer than 5 years. Multiple
survival time-related cut-points, together with their respective sensitivities and specificities, would yield
an informative profile for use in evaluating a patient’s prognosis.

In this paper, we propose a survival time-related objective function. The criterion is based on a concor-
dance probability related to time-dependent sensitivity and specificity which does not require parametric
models. To select a cut-point optimizing the objective function for a given survival time or survival rate,
we adopt a non-parametric procedure and conduct a simulation study to examine its finite sample per-
formance. We also apply the method to select survival time-related cut-points on the biomarker of serum
bilirubin to be used for prognosis of primary biliary cirrhosis.

2. Method

2.1. Objective function for optimal survival time-related cut-point

We consider an extension to an ROC curve-related criterion used for the selection of a cut-point for binary
classification. Let X(D) be a continuous measure of biomarker X in group D with distribution functions
FD(x) for D = 0, 1. Suppose that the group (D = 1) tends to have larger values for X, then for a cut-
point x, the specificity Spe(x) = P(X(D=0) ⩽ x) = F0(x), and the sensitivity Sen(x) = P(X(D=1) > x) =
1 − F1(x) = S1(x), where F1(x) is the false negative error rate FN(x), and 1 − F0(x) is the false positive
error rate FP(x). Among the functions of cut-point x, the most commonly used criterion is the Youden
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index, J(x) = Sen(x) + Spe(x) − 1 = 1 − (FN(x) + FP(x)), which takes value in [−1, 1]. As Gönen
and Sima [8] have shown, maximizing J(x) is equivalent to maximizing the area under the ROC curve
for an indicator variable obtained by dichotomizing the continuous biomarker, that is, the area under the
two lines connecting the three points of the ROC curve with the two lines starting from the ends of the
chance line and meeting at a point associated with the dichotomization. In contrast, the recently proposed
criterion Cc(x) = P(X(0) ⩽ x < X(1)) = Sen(x) Spe(x) takes value in [0,1]. This concordance probability
for binary classification can be expressed as a rectangular area with width and length being the sensitivity
and specificity associated with a cut-point on continuous X, such that its vertex (1 − Spe(x), Sen(x))
lies on the ROC curve. A cut-point maximizing the concordance probability will thus maximize the
rectangle [6].

Depending on the distributions of FD(x), the two criteria based on the Youden index and the concor-
dance probability may or may not produce the same optimum. Between the two, we prefer the latter for
the following reasons. For an ROC curve above the chance line, the area under the curve always covers
the area represented by Cc(x); this can be expressed as Cc(x) ⩽ P(X(0) < X(1)) for all possible values of x.
In contrast, part of the J(x)-related area under the two lines for the dichotomized variable may not always
be under the ROC curve, which suggests inconsistency in some cases. Comparing the cut-points xJ and
xC, which maximizes the Youden index and the concordance probability, respectively, the concordance
probability Cc(xJ) is always smaller than Cc(xC), except when xJ = xC, in which case Cc(xJ) = Cc(xC).
When X(D) ∼ N(𝜇𝐷, 𝜎

2), the two criteria will have the same optimum, that is, xJ = xC, but the variance
of the non-parametric cut-point estimator optimizing the Youden index may be much larger than that of
the concordance probability optimizer, Var

(
x̂J

)
> Var

(
x̂C

)
[6].

Dichotomizing survival time T at t for two classes, D(t) = 0 if T > t and D(t) = 1 if T ⩽ t, as used
by Heagerty et al. [7], the time-dependent sensitivity and specificity for cut-point x on biomarker X are
defined as

Sen(x | t) = P(X(D(t)=1) > x) = P(X > x | T ⩽ t),
Spe(x | t) = P(X(D(t)=0) ⩽ x) = P(X ⩽ x | T > t).

Then, the concordance probability for the binary outcome will be

Cc(x | t) = P(X(D(t)=0) ⩽ x < X(D(t)=1)) = Spe(x | t) Sen(x | t).

Because the survival curve describes the distribution of survival time T for a particular disease, r(t), the
survival rate or probability of surviving beyond time t is useful for articulating the disease prognosis.
Similarly useful is a quantile of the survival time T(r), for example, T(0.5), the median survival time.
Therefore, an alternative dichotomization for binary outcome can be based on the survival rate, that is,

Sen(x | r) = P(X(D(r)=1) > x) = P(X > x | r(T) > r),
Spe(x | r) = P(X(D(r)=0) ⩽ x) = P(X ⩽ x | r(T) ⩽ r).

The concordance probability is then

Cc(x | r) = P(X(D(r)=0) ⩽ x < X(D(r)=1)) = Sen(x | r) Spe(x | r).

The optimal cut-point can be obtained by maximizing either Cc(x | t) or Cc(x | r). However, the max-
imization may not give a stable cut-point estimate, especially when X and T are not highly correlated,
the data are subject to censoring, and the sample size is not large. To avoid this problem, we construct
the objective function by using locally time-averaged criterion with concordance probabilities in the
neighborhood of time t or r,

Q(x | t) = ∫s∈H(t)
Cc(x | s)wt(s)ds, or Q(x | r) = ∫e∈G(r)

Cc(x | e)wr(e)de.

Here, H(t) is a set of survival time in the neighborhood of t with length of LH(t) = ∫s∈H(t) wt(s)ds, and
G(r) is a set of survival rate in the neighborhood of r with length of LG(r) = ∫e∈G(r) wr(e)de, while wt()
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and wr() are weight functions. The optimal cut-point Xt for a given t will maximize the objective function
over set Ξ containing candidate cut-point values, that is, Xt = max

x∈Ξ
Q(x | t). Similarly, the optimal cut-

point Xr for a given r maximizes the objective function over setΞ, that is, Xr = max
x∈Ξ

Q(x | r). The objective

function, established from locally time-averaged concordance probability, can help reduce the variation
in the cut-point estimates for a specified time point.

When it is necessary to set a constant specificity in the selection process, for example, Spe(x | t) = 0.8,
the concordance function can be defined by the sensitivity for x satisfying the condition. Particularly,
Cc(x | t) = 0.8 Sen(x | t) for x satisfying Spe(x | t) = 0.8, or Cc(x | r) = 0.8 Sen(x | r) for x satisfying
Spe(x | r) = 0.8. Consequently, maximizing the objective function Q(x | t) or Q(x | r) has to be over a
subset of Ξ with possible cut-points satisfying the condition.

Once a cut-point xt for survival time t is obtained, we can define the sensitivity and specificity at
the point as Sen(xt) = ∫t∈H(t)

Sen(xt | s)wt(s)
LH(s)

ds and Spe(xt) = ∫s∈H(t)
Spe(xt | s)wt(s)

LH(s)
ds, respectively. Alter-

natively, we can define the sensitivity and specificity at cut-point xr for survival rate r as Sen(xr) =
∫e∈G(r)

Sen(xr | e)wr(e)
LG(e)

de and Spe(xr) = ∫e∈G(r)
Spe(xr | e)wr(e)

LG(e)
de.

Likewise, we define the positive predictive value (PPV) and the negative predictive value (NPV) with
cut-point xt for survival time t as

PPV(xt) = P(T ⩽ t |X > xt) = ∫s∈H(t)

Sen(xt | s)FT (s)wt(s)
LH(s)(1 − FX(xt))

ds and

NPV(xt) = P(T > t |X ⩽ xt) = ∫s∈H(t)

Spe(xt | s)(1 − FT (s))wt(s)
LH(s)FX(xt)

ds,

where FT () and FX() are the distribution functions of T and X, respectively. Similarly, we can define the
predictive values PPV and NPV with cut-point xr for survival rate r.

2.2. Estimation of survival time-related cut-point

A typical dataset will include a baseline biomarker, along with the observed survival time and event indi-
cator of subject i, (Xi, Yi, di), i = 1,… , n. Suppose that censoring time U is a random variable. The
observed time Yi = Ti di + Ui(1 − di) with event indicator di = I(Ti ⩽ Ui). In theoretical derivation,
we assume that the censoring time U is independent of the true survival time T . To minimize the loss
of information from the data, we can use Akritas’ nearest neighbor estimation method [14], as recom-
mended by Heagerty et al. [7], to estimate the bivariate distribution function of (X,T) to obtain consistent
estimators of time-dependent sensitivity and specificity while allowing the censoring process to depend
on X. Suppose that F̂(x) is the empirical distribution function of X. Using a nearest neighbor kernel
function with smoothing parameter 𝜆𝑛, we can obtain a semi-parametric efficient estimator Ŝ𝜆𝑛(x, t) for
S(x, t) = P(X > x, T > t). Let Ŝλn(t) = Ŝλn(−∞, t), then the estimators of time-dependent sensitivity and
specificity are

Ŝenλn(x | t) =
1 − F̂(x) − Ŝλn(x, t)

1 − Ŝλn(t)
and Ŝpeλn(x | t) = 1 −

Ŝλn(x, t)
Ŝλn(t)

,

which are monotonically increasing and decreasing with x, respectively. The kernel function and smooth-
ing parameter 𝜆𝑛 can be chosen in the usual way to warrant that ROC curve estimates are consistent and
invariant to monotonic transformations of X. Using the available R-function “survivalROC” provided by
Heagerty [15] with the option of some kernel functions and λn ⩽ O(n−1∕3), we can easily calculate the
concordance probability estimator Ĉc(x | t) = Ŝen(x | t)Ŝpe(x | t).

To estimate the objective function, we need to define H(t) or G(r). Based on the Kaplan–Meier estimate
of the survival curve [16], we have the estimate r̂(t) for r(t). Using the estimated standard error (se) of
r̂(t) we can have an interval estimate

(
r̂l, r̂u

)
for r(t), and we can define H(t) with a time interval (tl, tu)

where tl = T̂
(
r̂u

)
and tu = T̂

(
r̂l

)
. Alternatively, for the (1 − r)th quantile of survival time T(r), we can

obtain a point estimate T̂(r) from the estimated survival curve, which is the survival time with estimated
survival rate r̂′ = r. Then, the se (r̂)-based interval

(
r̂′l , r̂′u

)
has a corresponding interval for the survival
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time, with interval bounds T̂
(
r̂′u
)

and T̂
(
r̂′l
)
, which can also be estimated using the survival curve. We

use the interval to define G(r). Then, with a specified weight function, we can use

Q̂(x | t) =
∑

s∈H(t)
Ĉc(x | s)wt(s) and Q̂(x | r) =

∑
e∈G(r)

Ĉc(x | e)wr(e)

to estimate the objective functions we proposed in Section 2.1. Applying a non-parametric searching pro-
cedure, we can find the optimal cut-point maximizing the objective function at a specific survival time t,
that is, X̂t = max

x∈W
Q̂(x | t). Maximizing the objective function at survival rate r, we have X̂r = max

x∈W
Q̂(x | r),

where set W contains possible cut-point values. It should be noted that it is likely to underestimate the
cut-point when the selection process includes the points with sensitivity estimates of one. In the case
when a high survival rate or a short survival time is given for selecting a cut-point, there are few sub-
jects experiencing the event, the sensitivity estimates can be one for some biomarker values. To avoid the
underestimation, the selection can be restricted to biomarker values with sensitivity less than the value 1
(e.g., 0.99).

With cut-point estimate X̂t and L̂H(t) =
∑

tj∈H(t)
wt(tj), we can also estimate the associated sensitivity

and the specificity using Ŝen
(
x̂t

)
=

∑
s∈H(t)

Ŝen(x̂t | s)wt(s)
L̂H(t)

and Ŝpe
(
x̂r

)
=

∑
s∈H(t)

Ŝpe(x̂t | s)wt(s)
L̂H(t)

, respectively.

Furthermore, with the estimated survival rate function r̂(t) and the empirical distribution function F̂(x),
we can estimate the PPV by PPV

(
x̂t

)
=

∑
s∈H(t)

Ŝen(x̂t | s)(1−r̂(s))wt(s)
L̂H(t)(1−F̂(x̂t)) and estimate the NPV by NPV

(
x̂t

)
=

∑
s∈H(t)

Ŝpe(x̂t | s)r̂(s)wt(s)
L̂H(t)F̂(x̂t) . With X̂r and L̂G(r) =

∑
tj∈G(r)

wr(tj), we can estimate the associated sensitivity and the

specificity, as well as the predictive values in a similar way.
Heagerty et al. pointed out that the bootstrap method [17] can be used to estimate the confidence inter-

val (CI) of a time-dependent ROC curve. Similarly, we propose to use the bootstrap method to evaluate
variation in the cut-point estimates. Using a simple random sampling scheme with replacement, we can
draw nb independent bootstrap samples from the study sample. With each bootstrap sample, we estimate
the cut-point for a given survival time or survival rate. Based on the empirical distribution of the survival
time-related cut-point estimates, we can calculate the summary statistics of mean and standard deviation
and construct a 95% CI of the survival time-related cut-point. In particular, we will use the mean as the
bootstrap estimator of the cut-point, X̂b(t) or X̂b(r), and use the standard deviation for the se of the esti-
mator, Sb(t) or Sb(r). Then, with a reasonably large nb, we can use X̂b(t) ± 1.96 Sb(t) for the bounds of
the 95% CI of Xt or use X̂b(r) ± 1.96 Sb(r) for the 95% CI bounds of Xr.

3. A simulation study

We conducted a simulation study to examine the finite sample performance of the non-parametric cut-
point selection procedure, with samples of size n = 100 and 150 for censoring proportions of 20%
and 40%. For the continuous biomarker X and the true survival time T , we assumed that log(X) and
log(T) follow bivariate normal distribution with mean 𝜇 = (0, 1), standard deviation of 𝜎 = (0.4, 1),
and correlation coefficient of 𝜌 with the value specified so that the concordance probability C = P(T1 <

T2 | X1 > X2) equals to 0.70. For the independent censoring variable U, we assumed that it has a uniform
distribution U(0, θ) with pre-specified values of θ to meet the preset censoring proportion. Let d = I(T <

U), taking the value of one if T is observed or zero if T is censored by U. The observed time variable Y =
Td+U(1−d). Let t(r) be the time point with survival rate r and D(r) = I(T ⩽ t(r)). The true cut-point Xr is
calculated by maximizing the concordance probability P(X(D(r)=0) ⩽ x < X(D(r)=1)), for r = 0.3, 0.4, 0.5,
0.6, 0.7, and 0.8. A 0/1 nearest neighbor kernel function is used in estimating time-dependent sensitivities
and specificities with the nearest neighbor method, that is, Kλn(xi − xj) = I

(|||F̂(xi) − F̂(xj)
||| < λn

)
with

2𝜆n ∈ (0, 1) for the percentage of observations included in each neighborhood. The objective function
is evaluated with equal weights and G(r) specified by r̂ ± 0.67se (r̂) for the bounds of a 50% CI of T(r).
For each setting, we applied the procedure to the 500 generated datasets. We calculated the se of the
cut-point estimator and coverage probability by the bootstrap method. Particularly, from the ith dataset
(i = 1,… , 500), we drew 100 bootstrap samples using simple random sampling with replacement to
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Table I. Survival time-related cut-point estimates from 500 simulated datasets (CA =
0.70).

Survival time Cut-point X(r)

20% Rate T̂(r) X̂(r) X̂b(r) Coverage
censored r Bias (SD) Bias

(√
MSE

)
Bias

(√
MSE

)
%

n = 150 0.8 – 0.0076 (0.1313) – 0.0639 (0.0977) – 0.0530 (0.0802) 90.6
0.7 0.0042 (0.1640) – 0.0407 (0.0775) – 0.0313 (0.0620) 94.4
0.6 – 0.0051 (0.2040) – 0.0227 (0.0660) – 0.0166 (0.0538) 95.0
0.5 – 0.0085 (0.2707) – 0.0078 (0.0624) – 0.0034 (0.0501) 95.8
0.4 – 0.0064 (0.3606) 0.0066 (0.0634) 0.0094 (0.0510) 95.0
0.3 – 0.0105 (0.5083) 0.0217 (0.0676) 0.0230 (0.0561) 95.2

n = 100 0.8 – 0.0018 (0.1748) – 0.0580 (0.1060) – 0.0436 (0.0798) 96.0
0.7 0.0047 (0.2199) – 0.0425 (0.0892) – 0.0284 (0.0661) 96.4
0.6 – 0.0047 (0.2765) – 0.0244 (0.0752) – 0.0140 (0.0583) 97.0
0.5 0.0088 (0.3613) – 0.0079 (0.0707) – 0.0007 (0.0552) 97.4
0.4 – 0.0063 (0.4446) 0.0081 (0.0713) 0.0123 (0.0569) 96.6
0.3 – 0.0077 (0.6176) 0.0216 (0.0782) 0.0250 (0.0636) 96.2

40%
censored

n = 150 0.8 – 0.0048 (0.1413) – 0.0645 (0.0987) – 0.0543 (0.0811) 90.8
0.7 0.0042 (0.1828) – 0.0413 (0.0795) – 0.0336 (0.0643) 94.0
0.6 0.0046 (0.2333) – 0.0211 (0.0669) – 0.0172 (0.0551) 95.2
0.5 0.0080 (0.3031) – 0.0051 (0.0653) – 0.0022 (0.0518) 96.6
0.4 – 0.0022 (0.4032) 0.0076 (0.0657) 0.0116 (0.0537) 96.6
0.3 0.0332 (0.6706) 0.0213 (0.0732) 0.0244 (0.0600) 97.4

n = 100 0.8 – 0.0010 (0.1763) – 0.0585 (0.1076) – 0.0440 (0.0804) 96.0
0.7 – 0.0079 (0.2249) – 0.0414 (0.0888) – 0.0294 (0.0668) 96.2
0.6 0.0008 (0.2915) – 0.0240 (0.0794) – 0.0151 (0.0587) 97.4
0.5 – 0.0111 (0.3850) –0.0086 (0.0717) – 0.0020 (0.0551) 97.8
0.4 0.0041 (0.4905) 0.0075 (0.0737) 0.0123 (0.0574) 97.4
0.3∗ 0.0190 (0.7914) 0.0280 (0.0838) 0.0289 (0.0659) 97.8

SD, standard deviation; MSE, mean squared error.
Bias = Mean − True.
∗One dataset and some bootstrap samples were excluded as they yielded least survival rate
estimates above 0.3.

obtain 100 cut-point estimates for X. We used the bootstrap mean X̂b(r) and bootstrap standard deviation
Sb(r) to construct a 95% CI with bounds X̂b(r) ± 1.96 Sb(r). We estimated the coverage probability using
the proportion of the 95% CIs that covered the true cut-point values.

Table I presents the bias (= Mean – True) and square root of mean squared error with the proposed
estimator X̂(r) and the bootstrap estimator X̂b(r) and the estimated coverage probability in each of the
four settings with specified censoring proportion and sample size. As expected, the mean squared errors
decrease with increased sample size and decreased censoring proportion, while the pattern is not apparent
with the magnitude of bias. The cut-point estimators for median survival time have consistently smaller
bias and mean squared error than the cut-point estimators for the other survival time. Compared to X̂(r),
the bootstrap estimator X̂b(r) performs better, as it has consistently smaller mean squared errors. Except
for r = 0.8, the bias of X̂b(r) is not large, and the estimated coverage probability by the bootstrap method
(nb = 100) has a reasonable range of 94.0 ∼ 97.8%. In the case with an increased sample size (n = 150)
and decreased censoring proportion (20%), the estimated coverage probability is improved to be 94.4 ∼
95.8% for 0.3 ⩽ r ⩽ 0.7.

In each of the four settings, the mean squared error of the estimated cut-point is found to be the largest
for r = 0.8 and becomes smaller for lower survival rates. This is consistent with the fact that, given a
high survival rate of 0.8, only a small number of subjects experiencing the event can contribute to the
estimation of the sensitivity for the objective function, resulting in a larger bias and mean squared error
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with the cut-point estimates. On the other hand, when the smallest survival rate estimate is above specified
survival rate r0, the cut-point for r0 is not estimable. In our case with sample size of 100 and censoring
proportion of 40%, one dataset and some of the bootstrap samples are excluded in estimating cut-point
for r0 = 0.3 when the lowest survival rate estimates are above 0.3. When the least survival rate estimate
is below but close to 0.3, as seen in some of the samples with 40% censored data, the interval of G(0.3)
is narrower, resulting in a relatively larger mean squared error.

Although the estimable survival time-related cut-point is limited by the range of estimable survival
rates, the procedure had a fairly good finite sample performance in cut-point estimation, particularly, in
the case where the bootstrap estimator X̂b(r) is employed. The simulation study also suggests that the use
of a larger sample is helpful when the censoring proportion is not small. For 40% censoring, n ⩾ 150
is preferred.

4. Application

We applied the methods to a dataset of 418 patients with primary biliary cirrhosis, presented in Fleming
and Harrington [18], to estimate survival time-related cut-points on the prognostic biomarker of serum
bilirubin. In the sample, the patients ranged in age between 26 and 78 years, with a mean age of 51
years; 89.5% were female. The longest follow up time was 13.13 years. During the follow up period,
38.5% of the patients (n = 161) died. Figure 1 displays the estimated survival curve along with the 95%
confidence band, while Figure 2 shows the number of patients at risk and cumulative deaths over time. At
baseline, blood samples were taken from all patients, and a set of serum variables including bilirubin was
measured. The serum bilirubin levels ranged between 0.3 and 28 mg/dl with a median of 1.40 mg/dl and
had a skewed distribution (Figure 3). In the prediction of prognosis, higher serum bilirubin was related to
shorter survival time; the discrimination accuracy C = P(T1 < T2 | X1 > X2) had an estimate of 0.7482
and C∗ = P(X1 < X2 | T1 > T2) = 0.7507.

Because the lowest survival rate estimate of 0.3534 was lower than 0.4, we applied the proposed non-
parametric procedure to estimate the cut-point on the biomarker for survival rates ranging between 0.4
and 0.9. We used the bootstrap method to estimate the survival time-related cut-points and 95% CI.
Specifically, we used a simple random sampling scheme with replacement to draw 500 bootstrap samples
from the study sample. With each sample, we estimated cut-points for survival rates of 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, and cut-points for survival times of 3 and 5 years. Based on the empirical distribution of
the cut-point estimates, we calculated the bootstrap estimate and 95% CI for each survival time-related
cut-point. With each estimated cut-point, we also calculated the associated sensitivity, specificity, and
predictive values.

Table II displays cut-point estimates for specified survival rates and times using the bootstrap method,
as well as estimated survival time quantiles and survival rates for given times. Also listed are the sensitiv-
ities, specificities, and the predictive values for the selected cut-points. The estimated cut-point of serum
bilirubin (mg/dl) decreased from 2.33 to 1.40 mg/dl with increasing time for survival rates decreasing
from 0.9 to 0.4. The associated sensitivity estimates were in the range of 0.6811–0.7435, and the speci-
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Figure 1. The estimated survival curve with 95% confidence band for of 418 patients with primary biliary
cirrhosis.
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Figure 3. Histogram of baseline serum bilirubin.

ficity estimates were in the range of 0.6851–0.7650, suggesting that these cut-points could be useful. The
NPVs were all above 0.61, indicating that the patients with serum bilirubin below the cut-points may have
good probabilities to survive beyond the expected time. The PPVs of the cut-points were above 0.61 for
the survival rates of 0.6 or lower, suggesting that fair predictions of death for those with serum bilirubin
above the cut-points worked only for longer time periods.

As information on median survival time is often used for disease prognosis, when a single cut-point is
required, we recommend using a cut-point estimated for the median survival time. The estimated median
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Table II. Cut-point estimates on serum bilirubin for prognosis of primary biliary cirrhosis.

Survival Bootstrapping (nb = 500) Sensitivity Specificity Predictive values

Rate Time (95% CI) X̂b(r)
(
seX̂b(r)

)
95% CIb Sen

(
X̂b(r)

)
Spe

(
X̂b(r)

)
PPV

(
X̂b(r)

)
NPV

(
X̂b(r)

)
0.9 1.68 (0.98, 2.11) 2.331 (0.414) 1.521, 3.142 0.6962 0.6851 0.2074 0.9352
0.8 3.15 (2.48, 3.89) 2.139 (0.219) 1.710, 2.568 0.7343 0.6990 0.3970 0.8843
0.7 5.01 (4.00, 6.22) 1.897 (0.203) 1.498, 2.295 0.7435 0.7045 0.5369 0.8439
0.6 7.12 (6.09, 8.68) 1.748 (0.224) 1.309, 2.187 0.6853 0.6884 0.6175 0.7411
0.5 9.36 (7.70, 10.47) 1.482 (0.256) 0.980, 1.983 0.6839 0.7185 0.7198 0.6835
0.4∗ 11.12 (9.39, 13.13) 1.390 (0.230) 0.939, 1.841 0.6811 0.7650 0.8112 0.6170

Time Rate (95% CI) X̂b(t)
(
seX̂b(t)

)
Sen

(
X̂b(t)

)
Spe

(
X̂b(t)

)
3 years 0.801 (0.764, 0.841) 2.140 (0.216) 1.716, 2.563 0.7333 0.6982 0.3924 0.8856
5 years 0.699 (0.654, 0.748) 1.896 (0.204) 1.497, 2.295 0.7435 0.7045 0.5369 0.8439

CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; se, standard error.
∗Excluding 101 datasets that had least survival rate estimates above 0.4.

survival time in the study sample was 9.36 years, and the estimated cut-point on serum bilirubin for
median survival time was 1.48 mg/dl with 95% CI = (0.98, 1.98) mg/dl. The specificity of 0.684 sug-
gested that patients who survived for 9.36 or more years are likely to have serum bilirubin below the
cut-point, while sensitivity of 0.716 implied that patients who died before 9.36 years tend to have higher
levels of serum bilirubin. The PPV of 0.72 quantified the risk of death by the median survival time for the
patients with serum bilirubin above the cut-point; while the NPV of 0.68 estimated probability of survival
beyond the time for the patients with serum bilirubin at or below the cut-point. Also useful is the 5-year
survival rate and the related cut-point. At the survival time of 5 years, the survival rate estimate was very
close to 0.7, and the related cut-point estimate was 1.90 mg/dl with 95% CI = (1.50, 2.29) mg/dl. The
associated sensitivity and specificity both were above 0.7. The NPV was about 0.84, while the PPV was
low (0.54), indicating that the cut-point was useful in predicting survival beyond 5 years but not good
enough in predicting risk of death within 5 years.

5. Discussion

Instead of assuming a single cut-point model, we considered a more realistic scenario where a continu-
ous prognostic biomarker has a relationship with survival time. To select a survival time-related cut-point
on the biomarker with censored data, we used an objective function based on the extension of a selection
criterion using concordance probability for binary classification, which incorporated time-dependent sen-
sitivity and specificity. Using a nearest neighbor estimation method to estimate time-dependent sensitivity
and specificity with censored data, we evaluated the objective function and searched for the optimal cut-
point. The non-parametric procedure seemed to work well in selecting survival time-related cut-points
and yielded satisfactory results in a simulation study.

The procedure is flexible with choices of different weight functions and sets of H(t) or G(r) for the
objective function using locally time-averaged concordance probability. Although there are many options
for the weight function, we used a constant weight for computational simplicity. We used the se-based
interval for H(t) and G(r) because it can be interpreted as a CI for r(t) or T(r). The wider the interval, the
more observed time points within the interval would be used for the objective function, which would not
only increase the computational cost but, in some cases, would also introduce noise. For a wider interval,
using a weight function that has more weights on the points around the center helps to reduce the impact
of the points closer to the bounds.

In the simulation study, we used nb = 100 for the bootstrap procedure to save computational time. To
better estimate the variance of the cut-point estimator, however, it is recommended to use a large nb. In
the application we used nb = 500.

Using a prognostic biomarker to predict disease prognosis, an informative profile should include the
estimates of the survival time quantile for a given r or the estimated survival rate for a given t in a certain
range. It should include the related cut-point estimates and their CI estimates. It would be informative as
well to provide sensitivities, specificities, and predictive values associated with the selected cut-points. If
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the cut-point estimates have similar values over a wide range of survival times or survival rates, the use
of a single cut-point would be effective.

There are some limitations to the method. First, the estimated cut-point for a higher survival rate may
have larger variation as shown in the simulation study. Secondly, using censored data, the cut-point for a
low survival rate or a long survival time may not always be estimable.

A useful survival time-related cut-point should correspond to a clinically meaningful dichotomization
of survival time (or rate) for ‘good’ versus ‘poor’ prognosis. As median survival time is often used for
disease prognosis, the cut-point for a survival rate of 0.5 would be of clinical interest. To estimate it,
investigators should make efforts to follow patients for a sufficient amount of time and reduce dropout
rates so that the median survival time can be estimated precisely. When the cut-point is only estimable
for survival rates above 0.5, a profile with a narrow range of survival rates would still be useful if some
clinically meaningful survival rate is in the range. Similarly, if a survival time (for example, 5 years) is
of clinical interest, then to estimate the cut-point for the time, we would better collect data far beyond
that time point.
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