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SUMMARY

In this paper, we propose a non-parametric approach for comparing diagnostic accuracies in multi-
reader receiver operating characteristic (ROC) studies. The approach constructs a test from each reader
by extending the conventional non-parametric method and then combines all the individual test statistics
to draw an overall conclusion on the relative accuracies of di�erent diagnostic tests. The method can
handle both continuous and ordinal data. Compared to the existing non-parametric methods, the method
is robust and e�ectively deals with the possible heterogeneity among readers. It can also be applied to
the analysis of correlated ROC studies. The method is applied to a real example and its �nite sample
performance is examined through simulation studies. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In diagnostic medicine, it is very common that the diagnostic test result is read by a reader
and thus depends on the reader’s interpretation. To assess the intrinsic abilities of such diag-
nostic tests in discriminating the diseased subjects from the non-diseased ones, multi-reader
ROC studies are often conducted, in which each patient is examined by several readers
with multiple diagnostic tests. In such studies, the comparison of the accuracies of di�er-
ent diagnostic tests is challenging due to the complicated correlation structure among the test
results, see Reference [1]. The test responses, which are from di�erent patients, interpreted
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1240 Y. YANG AND Z. JIN

by the same reader are correlated, so are the test responses from the same patient. Moreover,
since the diagnostic test results depend on reader’s subjective interpretation, they might vary
among di�erent readers.
Several approaches have been proposed in the literature for the analysis of such data.

Dorfman et al. [2] proposed a mixed-e�ects ANOVA model in which pseudo-values of the
summary measures of ROC curve for each subject are computed by jackknife method, then
a mixed-e�ects ANOVA model is used for comparing the accuracies of two diagnostic tests.
Obuchowski and Rockette [3] applied a mixed-e�ects ANOVA model directly to the estimated
summary measures of the ROC curve for each combination of readers and tests, and used a
corrected F test statistic to test the equality of the accuracies of diagnostic tests. Two types of
regression models have also been studied for the analysis of the multi-reader ROC study data:
Tosteson and Begg [4], and Toledano and Gatsonis [5] discussed an indirect ROC regression
model in which all test responses are assumed from a location-scale family and a regression
model is �tted for the test responses, the ROC curves are then derived from the estimated
regression parameters. Pepe [6], and Cai and Pepe [7] described a direct regression model
on ROC curves. The common theme of the two types of regression models is that they both
include readers and test types as covariates. The accuracies of di�erent diagnostic tests are
compared by the estimated coe�cients of those covariates. The validity of these approaches,
however, depends critically on the correct model speci�cation.
Recently, a non-parametric method is proposed by Lee and Rosner [8]. The approach con-

structs an average ROC curve over all readers and compares the areas under the average
ROC curves. Speci�cally, if there are K readers who examine a sample of subjects with a
diagnostic test t, then each subject would have K measured test results from the test t. Lee
and Rosner [8] constructed a Mann–Whitney U -statistic for each pair of diseased and non-
diseased subjects by comparing the K2 pairs of measured test results from test t, the area
under the average ROC curve is then estimated by the average of Mann–Whitney U -statistics
from all pairs of diseased and non-diseased subjects. This method is easy to implement, but
it fails to take the possible heterogeneity among di�erent readers into account by comparing
a reader’s scores for each diseased subject with every other reader’s scores for each non-
diseased subject. Since the diagnostic test results depend on readers’ subjective interpretations
and the tests under evaluation are usually new-developed methods, it often happens that the
scales of readers’ interpretations on test results do not agree very well: some readers might
tend to give higher scores to both diseased and non-diseased patients and some other readers
tend to give lower scores to both diseased and non-diseased subjects. Throughout the paper,
the ‘heterogeneity among readers’ refers to this possible poor agreement among readers. Al-
though the diagnostic test has an inherent ability of discriminating subjects with disease from
those without, and the AUC of test from each reader re�ects this inherent ability of the test,
the area under the average ROC curve might be biased due to the poor agreement of readers.
Thus, the hypothesis tests based on this average ROC curve may have inappropriate size and
power. Since the inherent accuracy of diagnostic test is of our interest, it is desired to evaluate
the diagnostic tests while adjusting for the possible heterogeneity among readers. In this pa-
per, we address this issue and propose a non-parametric method for comparing the diagnostic
accuracies. The proposed method is robust and can e�ectively handle the possible hetero-
geneity among readers. It can also deal with diagnostic accuracy studies in which repeated
measurements for the same characteristic are obtained under di�erent conditions for each
subject.
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The paper is organized as the following. In Section 2, we present the method of combin-
ing dependent tests along the line of Wei and Johnson [9]. In Section 3, we illustrate the
method by using data from the experiment conducted by Muller et al. [10] for optimizing
the operating parameters for photographic images used in scintigraphy. Simulation studies
are presented in Section 4. We conclude the paper with some discussions and remarks in
Section 5.

2. METHOD

Let Y and X denote the test results from the truly diseased and the truly non-diseased subjects,
respectively, such that higher value of test result indicates the higher possibility of the presence
of disease. If a threshold value c is used to determine the test result as positive or negative,
then the true positive rate (TPR) and the false positive rate (FPR) at the threshold c are
TPR(c)=P(Y ¿ c) and FPR(c)=P(X ¿ c), respectively. The ROC curve of the test is then
the plot of the true positive rates versus the false positive rates with all possible threshold
value c. The area under the ROC curve (AUC) is the probability that a randomly selected
subject with the disease has a higher value of test result than that of a randomly chosen
subject without the disease, i.e. AUC=P(Y¿X ) [11]. The AUC is a very useful summary
measure of diagnostic accuracy since it describes a test’s inherent ability of discrimination
between diseased and non-diseased subjects.
In multi-reader ROC studies, a subject is examined by several readers with multiple diagnos-

tic tests. Without loss of generality, we assume that a subject is examined by two diagnostic
tests and each test is interpreted by several readers. Let X k

it denote the test result of non-
diseased subject i obtained from reader k with test t, and Y k

jt denote the test result of diseased
subject j obtained from reader k with test t, where i=1; : : : ; m, j=1; : : : ; n, k=1; : : : ; K and
t=1; 2. Let X k

i =(X
k
i1; X

k
i2)

′, Y k
j =(Y

k
j 1; Y

k
j 2)

′.
Assume that the diagnostic test t has an intrinsic but unknown AUC, say �t , where t=1; 2.

Let � denote the di�erence between two AUCs, �= �1−�2. Further assume that the AUC of
test t from each reader re�ects the intrinsic AUC of test t. However, as discussed previously,
the readers’ scales of interpretations on test results might not agree very well. To adjust this
heterogeneity among the readers, we propose to compare the AUCs of two diagnostic tests
from each reader and then estimate � by combining all the individually estimated �s. For the
kth reader, we consider a U -statistic [12] with kernel � by extending the method of DeLong
et al. [13]

Uk =
1
mn

m∑
i=1

n∑
j=1

�(X k
i ; Y

k
j ) (k=1; : : : ; K)
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�(X k
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and  (X; Y )=1 if Y¿X ,  (X; Y )=1=2 if Y =X , and 0 otherwise. Consequently,
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It is easy to see that �(X k
i ; Y

k
j ) is a function of two real variables and E[�(X k

i ; Y
k
j )]=�:

Then by de�nition, Uk is a U -statistic and from the theory of U -statistic, if E[�2(X k
i ; Y

k
j )]¡∞

and m=n→�¿0 as m; n→∞, we have that √
m(Uk −�) is asymptotically normally distributed

with mean zero and variance �kk10 + ��kk01 as m=n→�¿0; m; n→∞, where �kk10 =E[�(X k
i ; Y

k
j )

�(X k
i ; Y

k
h )]−�2, j �= h, and �kk01 =E[�(X k

i ; Y
k
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k
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k
j )]−�2, i �= h.

Similarly, when K readers examine the same sample of subjects with two diagnostic tests,
we have K test statistics denoted as U =(U 1; : : : ; UK)′. Under the conditions of E[�2(X k

i ; Y
l
j )]

¡∞ and m=n→�¿0 as m; n→∞ for all k=1; : : : ; K , l=1; : : : ; K , by applying multivariate
central-limit theory, one can show that

√
m(U − B) converges in distribution to a multi-

variate normal vector with mean zero vector and covariance matrix �= ((�kl)), as m=n→�,
m; n→∞, where B is a K-dimensional vector with each element being � and �kl= �kl10 + ��kl01
is the (k; l)th element of matrix �.
The overall comparison of the relative accuracies of two diagnostic tests can be obtained

by combining all the individual Uks along the line of Wei and Johnson [9]. Speci�cally,

D=
(

K∑
k = 1

wk

)−1 K∑
k=1

wkUk =
W ′U
W ′1

where 1 is a K-dimensional vector with each element being 1 and W is a K-dimensional
vector of weights. It is easy to see that D has an asymptotic normal distribution with mean �
and variance W ′�W=(W ′1)2. If � is positive-de�nite, the statistic (D−�)(W ′�W=(W ′1)2)−1=2

converges in distribution to a standard normal random variable, as m=n→� and m; n→∞.
Two common choices of the weights W =(w1; : : : ; wK)′ are given by wk =1=K , k=1; : : : ; K

to give each reader equal weight and by W =�−11 to maximize the local power of the
hypothesis test. For example, if the hypothesis we wish to test is H0 : �=0 versus Ha : �¿0,
test statistic [D(W ′�W=(W ′1)2)−1=2] follows a standard normal distribution asymptotically
under H0. With the �xed type I error �, we show that the local power of the test can be
maximized by choosing W = c�−11 for any constant c �= 0, see Appendix A.
In practice, the covariance matrix of U is unknown. A consistent estimate of the covariance

matrix �, can be obtained with the method of structural components proposed by Sen [14].
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In summary, �kl10 and �kl01 can be estimated as
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where the X-component V k
10(Xi) and Y-component V k

01(Yj ) are de�ned as

V k
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When the accuracy of a single diagnostic test in multi-reader ROC study is of interest,
proposed method can be adapted to obtain the summary accuracy measure of test by combining
the accuracy measures from di�erent readers. The estimate of AUC of diagnostic test in this
way remains unbiased while the AUC under the average ROC curve tends to be biased when
readers have e�ects on the test results.
Let Â

k
t denote the estimated AUC of the diagnostic test t from the kth reader and recall that

�t denote the unknown intrinsic AUC of the diagnostic test t. By exploiting the non-parametric

method of DeLong et al. [13], the Â
k
t can be obtained by

Â
k
t =

1
mn

m∑
i=1

n∑
j=1

 (X k
it ; Y

k
jt ) k=1; : : : ; K

where  (X; Y ) is as de�ned previously. For K readers, it is easy to see that the vector
Ât =(Â

1
t ; : : : ; Â

K
t )

′ is a vector of U -statistics which converges in distribution to a multivariate
normal random vector with mean vector At and covariance matrix �, where At =(�t; �t ; : : : ; �t)′,
� can be estimated by the method of structural components developed by Sen [14], as shown
previously.
A summary accuracy measure for single diagnostic test t with multiple readers is

obtained by constructing a linear combination Q of the statistics Â
k
t s (k=1; : : : ; K), where

Q=(
∑K

k=1wk)−1
∑K

k=1 wk Â
k
t =(W

′1)−1(W ′Ât ). Again two common choices of weights W are

given by wk = 1
K ; (k=1; : : : ; K) which gives equal weight to each reader and by �̂

−1
1 which

minimize the variance of Q. If � is positive-de�nite, then statistic (Q−�t)(W ′�̂W=(W ′1)2)−1=2

converges in distribution to a standard normal random variable, as m; n→∞.

3. APPLICATION

We apply the proposed method to analyse the data of Muller et al. [10] who conducted
an experiment to investigate the optimization of the operating parameters for photographic
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Table I. Comparison of diagnostic accuracy of two modalities in radiology example.

Proposed method with Proposed method with Method of average
Parameter equal weights optimal weights ROC curves

�̂ 1 (se) 0.743(0.024) 0.745(0.024) 0.619(0.012)
�̂ 2 (se) 0:805(0:020) 0.813(0.020) 0.680(0.039)
�̂ (se) −0.062(0.019) −0.063(0.018) −0.061(0.023)
p-value 0.0009 0:0005 0:0040

images used in scintigraphy. In the experiment, 50 plates were used and a copper disc was
placed in random position on each plate representing a lesion. Then a lead strip was placed
on the plate along the diameter such that the plate was divided in half and only one half has
the lesion. Thus, 50 half plates with lesions and 50 half plates without lesions were obtained
to represent 50 diseased subjects and 50 non-diseased subjects, respectively. Muller et al.
constructed two images for each subject using di�erent operating parameters called modalities
and asked three readers to analyse the images. Each of three readers read all images from
the 100 subjects and determined whether the lesion exists or not with a �ve-point con�dence
scale with 1 indicating de�nitely not exist and 5 indicating de�nitely exist. For the details of
the experiment, see References [6, 10].
The primary interest of the experiment is to �nd a modality that allows users to discrimi-

nate the diseased subjects from the non-diseased ones with higher accuracy. We estimated the
AUC of each modality and performed a one sided test using proposed method and the method
of average ROC curve. Table I displays the estimates calculated from data, where �̂ 1 and �̂ 2
denote the estimated AUCs for modality 1 and 2, respectively, and �̂ denotes the estimated
di�erence between two AUCs. From Table I, we can see that both the proposed method and
the method of average ROC curve lead to the conclusion that modality 2 is more accurate
than modality 1 signi�cantly. Pepe [6] analysed this data set by using a logistic type regres-
sion model with modalities and readers as covariates and reached a similar conclusion with
p-value= 0.06 for the coe�cient of modality.

4. SIMULATION STUDY

Simulation studies were conducted to assess the performance of the proposed method. Results
were compared with those based on the average ROC curve of Lee and Rosner [10]. We
generated 1000 data sets with the scenario that there are three readers who examine each
subject with two di�erent diagnostic tests.
When assessing the performance of the proposed method for comparing the accuracies of

two diagnostic tests, we studied three parts: (1) when the scales of readers’ interpretations
do not agree very well, type I error and power of the proposed approach as well as the
coverage of the 95 per cent CI for the true di�erence in AUCs were assessed and compared
with those obtained from the method of average ROC curve; (2) when the scales of readers’
interpretations agree very well with each other and sample sizes are small, the e�ciency of
the two methods were assessed; (3) when the scales of readers’ interpretations agree with
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each other, the performance of the proposed method with equal weights and with optimal
weights were studied.
(1) For each non-diseased subject i(i=1; : : : ; 100), a random vector

X (6)
i =(X 1(t1)

i ; X 2(t1)
i ; X 3(t1)

i ; X 1(t2)
i ; X 2(t2)

i ; X 3(t2)
i )′

was generated from a 6-variate normal distribution with a mean vector �(6)0 = (�1(t1)0 ; �2(t1)0 ,
�3(t1)0 ; �1(t2)0 ; �2(t2)0 ; �3(t2)0 )′ and a 6×6 covariance matrix �a having a compound symmetric struc-
ture. For each diseased subject j(j=1; : : : ; 100), a random vector Y (6)j =(Y 1(t1)j ; Y 2(t1)j ; Y 3(t1)j ;
Y 1(t2)j ; Y 2(t2)j ; Y 3(t2)j )′ was generated from a 6-variate normal distribution with a mean vector
�(6)1 = (�1(t1)1 ; �2(t1)1 , �3(t1)1 ; �1(t2)1 ; �2(t2)1 ; �3(t2)1 )′ and the same covariance matrix �a. Note that
the �rst three elements in the vectors X (6)

i or Y (6)j are the observations obtained from three
readers with test 1, while the last three elements in the vectors are the observations ob-
tained from the same three readers with test 2. The covariance matrix was speci�ed as
follows: diag(�a)= (100; 100; 100; 4; 4; 4); the correlation between the test results of a sub-
ject from same reader but di�erent tests was set to be 0.5; for results of a subject from
same test but di�erent readers, correlation was set to be 0.4; and correlation for results
of a subject from di�erent readers and di�erent tests was set to be 0.2. When assess-
ing type I error, we let �(6)1 − �(6)0 = (11:9; 11:9; 11:9; 2:38; 2:38; 2:38) so the true AUCs of
two diagnostic tests are equal to 0.8. A two sided test was performed and the signi�cance
level was set to be 0.05. When assessing the powers of the tests and the coverages of 95
per cent CIs, we set �(6)1 − �(6)0 = (11:9; 11:9; 11:9; 1:483; 1:483; 1:483) which makes the true
AUCs of two diagnostic tests being 0.8 and 0.7, respectively. The type I error, power and
coverage of 95 per cent CIs of the estimates were also assessed when the test results are
in ordinal scale. To generate the ordinal data, we �rst simulated data from normal distribu-
tions, then assigned value v as test result if the generated data was between pre-speci�ed
cutpoints cv−1 and cv, where v=1; : : : ; 10. The cutpoints cv were chosen to yield equal prob-
ability for each category for a non-diseased subject and for diagnostic tests 1 and 2, the vec-
tors of cutpoints were C1 = (−∞; 33:55; 37:15; 41:55; 44:80; 50:00; 55:20; 58:45; 62:85; 66:45;∞)
and C2 = (−∞; 1:71; 2:43; 3:31; 3:96; 5:00; 6:04; 6:69; 7:57; 8:29;∞), respectively. Note that the
choice of cutpoints does not a�ect the resulting AUC if the original normal distributions are
�xed.
Hypothesis tests were performed based on the proposed method with equal weight for each

reader. Table II summarizes the type I error and the bias of the estimated di�erence between
the AUCs of two diagnostic tests. Table III summarizes the power, the bias of the estimated
di�erences between two AUCs and the coverages of the 95 per cent CI for the true di�erence.
The results show that when readers’ scales agree very well, both approaches have appropriate
type I errors, powers and coverages for true di�erence. However, when readers’ scales do not
agree very well, the approach based on the average ROC curve has larger type I error, smaller
power and insu�cient coverage, and when disagreements increase, the type I error increases
and the power and coverage decrease. While the test based on the proposed approach always
has appropriate size, power and coverage.
(2) We studied the performance of the proposed method and the method of average ROC

curve when readers’ scales agree with each other with small and moderate sample sizes. A
one sided test was conducted and the signi�cance level was still set as 0.05. Tables IV and V

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:1239–1250
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Table II. Comparing two diagnostic tests: type I error.

Combining dependent tests Average ROC curves
Data structure Size Bias Size Bias
�0 (%) (×102) (%) (×102)
Continuous test results
(50; 50; 50; 5; 5; 5) 6.1 0.13 3.9 −0.11
(45; 50; 55; 5; 5; 5) 4.5 −0.13 10.9 −0.18
(43; 50; 57; 5; 5; 5) 5.2 0.10 27.9 −3.46

Ordinal test results
(50; 50; 50; 5; 5; 5)∗ 4.1 0.03 2.7 0.05
(45; 50; 55; 5; 5; 5)∗ 4.1 0.29 9.0 −1.85
(43; 50; 57; 5; 5; 5)∗ 5.6 0.54 25.7 −3.51

∗Distribution mean of continuous latent variable for ordinal test result.

Table III. Comparing two diagnostic tests: power (true di�erence=0.1).

Combining dependent tests Average ROC curves
Data structure Power Bias Coverage Power Bias Coverage
�0 (%) (×102) (%) (%) (×102) (%)

Continuous test results
(50; 50; 50; 5; 5; 5) 96.0 −0.03 95.6 96.3 0.06 97.8
(45; 50; 55; 5; 5; 5) 95.6 −0.09 94.1 86.3 −1.84 90.8
(43; 50; 57; 5; 5; 5) 96.9 0.07 94.8 69.2 −3.45 75.5

Ordinal test results
(50; 50; 50; 5; 5; 5)∗ 96.1 −1.11 91.6 95.9 −0.12 97.4
(45; 50; 55; 5; 5; 5)∗ 97.0 −0.84 93.8 85.7 −1.24 94.2
(43; 50; 57; 5; 5; 5)∗ 97.6 −0.62 93.8 66.1 −3.83 33.9

∗Distribution mean of continuous latent variable for ordinal test result.

Table IV. Readers have no e�ect (sample size per group=25).

Combining dependent tests Average ROC curves
Bias SE Coverage Power Bias SE Coverage Power

True di�. (×102) (×102) (%) (%) (×102) (×102) (%) (%)

0.00 0.045 4.85 93.7 5.6(size) 0.049 4.82 97.9 3.5(size)
0.05 −0.139 5.06 93.9 25.2 −0.163 5.01 97.6 16.8
0.10 −0.215 5.49 93.6 58.8 −0.228 5.48 96.6 50.6
0.15 −0.011 5.43 96.4 85.1 −0.048 5.40 98.2 79.5
0.20 0.148 6.00 93.3 96.5 0.107 5.96 97.5 94.6

summarize the type I error, power, bias and coverage from two methods when sample sizes
are 25, 50 subjects per group, respectively. The results show that the di�erence between these
two methods are very small when the scales of readers agree: both approaches are unbiased;
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Table V. Readers have no e�ect (sample size per group=50).

Combining dependent tests Average ROC curves
Bias SE Coverage Power Bias SE Coverage Power

True Di�. (×102) (×102) (%) (%) (×102) (×102) (%) (%)

0.00 −0.055 3.39 94.3 4.9(size) −0.054 3.38 96.4 4.2(size)
0.05 −0.180 3.74 94.2 40.6 −0.168 3.72 96.3 36.5
0.10 0.173 3.90 94.4 85.6 0.167 3.88 97.1 83.3
0.15 0.204 3.92 94.6 99.0 0.204 3.90 97.6 98.5
0.20 0.206 4.06 94.7 100.0 0.189 4.04 99.1 99.9

Table VI. Performance of proposed method with equal weights and optimal weights (sample
size per group=25).

Equal weights Optimal weights
Bias SE Coverage Power Bias SE Coverage Power

True Di�. (×102) (×102) (%) (%) (×102) (×102) (%) (%)

0.00 0.175 5.91 94.3 5.7(size) 0.141 5.69 95.2 4.8(size)
0.05 −0.150 5.66 95.6 15.9 −0.190 5.46 95.3 16.3
0.10 −0.149 5.35 94.9 44.7 −0.109 5.13 94.1 49.5
0.15 0.177 5.15 94.4 83.8 0.085 4.87 95.4 85.1
0.20 −0.270 4.90 93.6 98.1 −0.287 4.57 93.7 99.5

hypothesis tests from two methods have similar type I error and power; the standard errors
of two estimators are very close. This implies that two methods perform similarly when the
scales of readers’ interpretations agree with each other.
(3) The performance of the proposed method with equal weights and with optimal weights

were also assessed with sample size being 25 subjects per group. A two sided test was
conducted with 0.05 signi�cance level. Table VI summarizes the type I error, power, bias
and coverage from the proposed method with equal weights and with optimal weights. It
shows that the two di�erent choices of weights lead to similar bias, coverage and size. It also
shows that the method with optimal weights performs better in terms of power. However, the
improvement is very moderate.
For a single diagnostic test, the estimate of AUC and the coverage of the 95 per cent CI

for the true AUC were assessed. For each non-diseased subject i (i=1; : : : ; 100), a random
vector X (3)

i =(X 1
i ; X

2
i ; X

3
i )

′ was generated from a 3-variate normal distribution with a mean
vector �(3)0 = (�10; �

2
0; �

3
0)

′ and a covariance matrix �a having a compound symmetric structure
with diag(�a)= (100; 100; 100) and a common correlation 0:4. Here X k

i can be considered
as an observation from the kth reader (k=1; 2; 3). When readers’ scales agree with each
other, �k

0s were set to be equal, otherwise, they were set to be di�erent to indicate that test
responses depend on both true diseased status and readers. Similarly, for each diseased subject
j (j=1; : : : ; 100), a random vector Y (3)j =(Y 1j ; Y

2
j ; Y

3
j )

′ was generated from a 3-variate normal
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Table VII. Single diagnostic test; true AUC=0.8.

Combining dependent AUCs Average ROC curves
Data structure Bias Se Coverage Bias Se Coverage
�0 (×102) (×102) (%) (×102) (×102) (%)

(50; 50; 50) 0.026 2.27 95.1 0.014 2.39 94.6
(45; 50; 55) 0.014 2.27 95.5 −1.811 2.19 89.2
(43; 50; 57) 0.047 2.35 93.9 −3.400 2.18 67.6
(40; 50; 60) 0.020 2.33 94.3 −5.993 2.03 14.5

distribution with a mean vector �(3)1 =�(3)0 + � and same covariance matrix �a, where the
constant � was chosen to have a true AUC of 0.8.
The AUC was estimated from the proposed method with equal weight to each reader.

Table VII summarizes the bias of the estimated AUCs, the empirical standard errors of the
estimates, and the coverages of 95 per cent CIs for the true AUC. The results were compared
to those obtained from the average ROC curve. The results show that: (1) when the scales
of readers’ interpretation agree, both estimators are unbiased and have appropriate coverage
for the true AUC; (2) when the scales of readers’ interpretations do not agree very well, the
estimator from the proposed method remains unbiased and has appropriate coverage, however,
the estimator based on the average ROC curve has a increasing bias and decreasing coverage
when disagreements are increased (Table VII).

5. DISCUSSION

The proposed method accommodates the question of comparing diagnostic accuracies while
adjusting the possible heterogeneity among readers. Numerical studies show that when there is
heterogeneity among readers, the proposed test yields appropriate size and power while the test
based on the existing non-parametric method have inappropriate size and insu�cient power.
When readers’ interpretation scales are homogeneous, the proposed method has the similar
e�ciency as the existing method. Although we are using this method in multi-reader studies,
it is applicable generally for the diagnostic accuracy study in which repeated measurements
for the same characteristic are obtained under di�erent conditions for each subject.
When some values of sensitivity or speci�city are not acceptable in practice, partial AUC

is more appropriate to use for evaluating the performance of diagnostic tests. The proposed
approach can be easily extended to compare partial AUCs by extending the method of Zhang
et al. [15]. Suppose that we are interested in comparing the partial AUCs over a range
of speci�city which is no less than r, the expectation of statistic UK in Section 2 will be
the di�erence between two partial AUCs over the pre-speci�ed range of speci�city if we
let  (X k

it ; Y
k
jt )=1 if Y k

jt ¿X k
it and X k

it¿ckt ;  (X k
it ; Y

k
jt )=1=2 if Y k

jt =X k
it and X k

it¿ckt ; and 0
otherwise, where the ckt is determined by P(X k

t 6 ckt )= r.
In addition, if it is desired to compare the ROC curves instead of AUCs with covariate

adjustment, then the ROC regression approach is useful and we believe that more research is
needed to improve the ROC regression approach.
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APPENDIX A: OPTIMAL WEIGHT

The optimal weight in the comparison of two diagnostic tests can be obtained to maximize
the local power. Under the null hypothesis H0 : �=0, test statistic D(W ′�W=(W ′1)2)−1=2 is
an asymptotic standard normal random variable. With the �xed type I error, say �, the power
of the test under the alternative Ha : �¿0 can be expressed as

Power = P

(
D
(
W ′�W
(W ′1)2

)−1=2
¿Z�|�¿0

)
= P

(
(D −�+�)

(
W ′�W
(W ′1)2

)−1=2
¿Z�

)

= P

(
Z +�

(
(W ′1)2

W ′�W

)1=2
¿Z�

)

where Z follows a standard normal distribution and Z� satisfy P(Z¿Z�)= �. From
Cauchy–Schwarz inequality, if � is positive de�nite, then

(W ′1)2

W ′�W
6 1′�−11

with equality if and only if W = c�−11 for any constant c. Therefore, the weights W = c�−11
will give the maximum value of �((W ′1)2=W ′�W )1=2 and maximize the local power of the
test.
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