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Abstract

To select items from a uni-dimensional scale to create a reduced scale for disease screening,
Liu and Jin (2007) developed a non-parametric method based on binary risk classification. When
the measure for the risk of a disease is ordinal or quantitative, and possibly subject to random
censoring, this method is inefficient because it requires dichotomizing the risk measure, which
may cause information loss and sample size reduction. In this paper, we modify Harrell's C-index
(1984) such that the concordance probability, used as a measure of the discrimination accuracy of
a scale with integer valued scores, can be estimated consistently when data are subject to random
censoring. By evaluating changes in discrimination accuracy with the addition or deletion of
items, we can select risk-related items without specifying parametric models. The procedure first
removes the least useful items from the full scale, then, applies forward stepwise selection to the
remaining items to obtain a reduced scale whose discrimination accuracy matches or exceeds that
of the full scale. A simulation study shows the procedure to have good finite sample performance.
We illustrate the method using a data set of patients at risk of developing Alzheimer's disease, who
were administered a 40-item test of olfactory function before their semi-annual follow-up
assessment.
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Introduction

In biomedical studies, uni-dimensional scales composed of a set of test items
are often used to assess a latent trait or function that correlates to the item
responses (Lord and Novick, 1968). Usually, the scale weighs all the items
equally and a sum of item responses is used as a scale score to measure the
latent trait or function. For example, the standardized University of Pennsyl-
vania Smell Identification Test (UPSIT), used to measure olfactory function
(Doty et al., 1984), contains 40 odor items, and is a uni-dimensional scale
with binary item responses. The score of the self-administered test equals the
total number of odors correctly identified.

When a latent variable is predictive of the development of a dis-
ease, a scale measuring the latent variable may be used for screening. How-
ever, when some items on the scale are redundant or not relevant to predict-
ing disease development, reduction of the size of the scale (item reduction)
is warranted. To reduce the screening costs, clinicians wish to use a reduced
scale that screens patients more efficiently than the full scale. To illustrate
this point, we consider the following example. It has been reported that an
increased risk of developing Alzheimer’s disease (AD) is associated with ol-
factory deficit (Doty et al., 1987; Devanand et al., 2000). The 40-item test
(UPSIT) measuring olfactory function takes approximate 30 minutes to com-
plete. To improve the clinical utility of UPSIT, researchers attempted to select
items with high predictive ability from the full scale (Tabert et al., 2005). For
screening purposes, the number of correctly recognized odors is more mean-
ingful, as a scale score, than any weighted sum of the odor item responses.
This implies that a reduced scale for screening should also be uni-dimensional,
that is, that its items should be weighted equally. Consequently, the range of
scores of a reduced scale will be narrower than that of the full scale.

Selection of risk-related items from a uni-dimensional scale is chal-
lenging, because the scale items are all positively related to the same latent
variable. The available variable selection procedures based on regression mod-
els for a risk measure outcome treat each item as an independent variable.
Also, without constraints on the model parameters, the estimated coefficients
for selected items may have opposite signs, violating the necessary condition
for creating a reduced uni-dimensional scale. Liu and Jin (2007) offers a de-
tailed discussion on selection of binary (high vs. low) risk-related items from
a uni-dimensional scale to create a reduced scale.

To quantify a scale’s ability to discriminate between levels of risk,
there are several measures. For binary measure of risk, if one specifies a
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parametric model for the probability of being in the high risk class with the
item responses used as predictors, then the available classification accuracy
measures, such as classification error rate (Hastie et al., 2001) or Brier score
(Brier, 1950), can be defined as functions of the discrepancies between risk
observations and model based estimates. The classification accuracy measure,
CA, used by Liu and Jin (2007) is the probability that a subject randomly
selected from the high risk class has a higher (or lower) scale score than a
subject randomly selected from the low risk class. This measure is similar to
Hanley and McNeil’s (1982) interpretation of the area under the receiver op-
erating characteristic (ROC) curve for a continuous variable, where the ROC
curve is defined through sensitivity and specificity at each of the scale’s possi-
ble cutoff points (Zhou et al., 2002; Pepe, 2003). Since CA can be estimated
non-parametrically, Liu and Jin (2007) proposed an item selection method
which, without specification of a parametric regression model, evaluates the
change in CA when deleting or adding an item to a reduced scale, and thus
monitors the process of selecting items for a reduced uni-dimensional scale.

In a longitudinal study of patients at risk for a disease, the time
from baseline assessment to first diagnosis can be used as a measure of risk.
Often, the observed time is censored due to study termination or subject
dropout. In a prospective study of patients with mild cognitive impairment
(MCI) who are at risk of developing AD (Tabert et al., 2006), for example,
the observed time to AD conversion in many of the 128 patients who were
administered the olfactory test UPSIT at baseline was censored. Only 38
patients were found to have converted to AD at follow up. If conversion to AD
within two years from the baseline assessment is the criterion used to define
the high and low risk groups, then the patients who did not meet diagnosis
criteria, or who dropped out from the study before completing the follow-up
assessment at two years, cannot be classified into either class. Thus, data on
these patients cannot be used by the item reduction method for binary risk
classes. In summary, for quantitative risk measures, the binary classification-
based item reduction method has limitations due to dichotomization of the
risk measure: it overlooks quantitative information on the measure of risk,
and reduces the sample size by excluding censored data.

For risk discrimination in the context of survival analysis, Harrell
et al. (1984) proposed the index C to estimate the probability of concordance
between the predicted risk of event occurrence and the observed time to either
the event or the end of the study. The concordance probability defined for
a pair of bivariate observations is often used to assess the discriminatory
power of a statistical model (Harrell et al., 1996). Related to Somers’ d rank
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correlation (Somers, 1962), the concordance probability is also an extension
of the area under the ROC curve for continuous variables used for binary
classifications. In this light, Pencina and D’Agostino (2004) discussed the
relationship between the C-index and the modified Kendall’s τ for bivariate
correlation (Kendall, 1970). Along with the interpretation of Harrell’s C-
index, Antolini et al. (2005) derived a time-dependent discrimination index
for survival data. Other work related to time-dependent ROC includes the
papers by Heagerty et al. (2000); Heagerty and Zheng (2005); Chambless and
Diao (2006); and Zheng et al. (2006).

After deriving an analytical expression for the concordance prob-
ability in the Cox proportional hazards model, Gönen and Heller (2005) pro-
posed an asymptotically unbiased estimator of the concordance probability as
a function of the regression parameters and the covariate distribution. How-
ever, the variable selection procedures based on Cox proportional hazards
models, including LASSO and adaptive LASSO, cannot select items for a
reduced uni-dimensional scale that has equally weighted risk-related items.

In this paper, we modify Harrell’s C-index to obtain a consistent
estimator of concordance probability, which can be used to assess the discrimi-
nation accuracy of a uni-dimensional scale. The proposed estimator takes into
account possible random censoring when the risk of disease is measured us-
ing the time between a patient’s baseline scale-based functional assessment,
and the first diagnosis of the disease during follow-up. To develop a reduced
uni-dimensional scale useful for risk determination, we evaluate the changes in
discrimination accuracy that result from the addition or removal of items from
the scale. After investigating the finite sample performance of the proposed
procedure in a simulation study, we illustrate the method using data from
the study by Tabert et al. (2006) in which 128 patients at risk of developing
AD were administered the UPSIT to assess olfactory functioning, and then
followed semi-annually for up to nine years to identify incident cases of AD.

Method

Suppose that a full scale has m items in the set Wm and the response on
each item is binary, i.e. Xh ∈ {0, 1} for item h, h = 1, · · · ,m, then the score
on the full scale, defined as S(Wm) =

∑m
h=1 Xh, takes integer values between

zero and m. For a set Wk with k items, k = 1, · · · m; let Xih be the ith
subject’s binary response on item h in Wk, h = 1, · · · k; and Si(Wk) be the
ith subject’s score for the scale with item set Wk, i = 1, · · · , n. Let Ti be
the length of time between baseline assessment and diagnosis of the disease
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for subject i during follow-up. Suppose that a subject who has a higher score
tends to develop the disease after a longer period of time or is at a lower risk.
We define the discrimination accuracy of the scale consisting of the items in
Wk as a conditional probability,

DA(Wk) = P (Si(Wk) < Sj(Wk)|Ti < Tj).

The quantity takes values between zero and one. Obviously, DA(Wk) can be
applied to a case where the T is a risk measure with a fixed number of ordinal
categories. When there are only two risk classes such that with a constant Q,
Ti < Q for all subjects in one class and Q < Tj for all subjects in another class,
DA(Wk) reduces to the classification accuracy CA(Wk) (Liu and Jin, 2007).
Similar to CA(Wk), DA(Wk) retains the invariance property that it remains
unchanged with a rank-preserving transformation of the score S(Wk) or the
measure of risk. Notice that the change in DA resulting from the addition or
deletion of an item may indicate the relative importance of the item to risk
discrimination. The estimation of DA(Wk), however, is not straightforward
when T is subject to censoring. In the next section, we present a consistent
estimator of DA(Wk), along with a simple approach for evaluating the change
in the discrimination accuracy that results from adding or removing an item
from the item set Wk.

A. Assessment of change in discrimination accuracy

In presence of censoring, i.e. where subject i does not have the disease at
the last follow-up time Qi, the observed time Yi = Ti di + Qi (1 − di) with
di = I(Ti < Qi), where I(·) is an indicator function taking values of 0 or 1. For
a given item set Wk, to estimate DA(Wk) with n independent observations
(Yi, di, Si(Wk)), i = 1, · · · , n; Harrell’s C-index has the form,

C(Wk) =

∑n
i=1

∑n
j=1 diI(Yi < Yj)I(Si(Wk) < Sj(Wk))∑n

i=1

∑n
j=1 diI(Yi < Yj)

.

When Qi is a constant or Yi = Ti for all i, then C(Wk) converges to DA(Wk).
However, if censoring variable Q is random and independent of variable T ,
then C(Wk) will converge to P (Si(Wk) < Sj(Wk)|Ti < Tj, Ti < Qi, Ti < Qj),
a quantity depending on censoring pattern.

To obtain a consistent estimator for DA(Wk), we may modify
C(Wk) by replacing di with bi = di/G

2(yi), where G(t) = P (t < Q) for t > 0.
In the case that G(t) is unknown, a consistent estimator Ĝ(t), constructed by
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the Kaplan-Meier product limit method, may be used. Therefore,

D̂A(Wk) =

∑n
i=1

∑n
j=1 biI(Yi < Yj)I(Si(Wk) < Sj(Wk))∑n

i=1

∑n
j=1 biI(Yi < Yj)

.

For y(n) = max1≤i≤n yi, we set b(n) = 0 if d(n) = 0 and Ĝ(y(n)) = 0. Obviously,
when Qi is constant or Yi = Ti for all i, then the estimator reduces to C(Wk).

Because D̂A(Wk) is proportional to the quantity

A(Wk) =
n∑

i=1

n∑

j=1

biI(Yi < Yj)I(Si(Wk) < Sj(Wk)),

the change in D̂A(Wk) will also be proportional to the change in A(Wk).
The change in A(Wk) due to excluding itemh from the item set

Wk can be written as

∆Ak(−Xh|Wk) = A(Wk)− A(Wk \ {itemh}),
and the change due to adding itemh into Wk−1 for a new set Wk,

∆Ak(+Xh|Wk−1) = A(Wk−1 ∪ {itemh})− A(Wk−1).

Let eij(k) = Si(Wk) − Sj(Wk) and zij(h) = Xih − Xjh. Then we will have
zij(h) ∈ {−1, 0, 1}. Because Si(Wk) = Si(Wk \ {itemh}) + Xih, 1 ≤ k ≤ m,
we may write

∆Ak(−Xh|Wk) =
n∑

i=1

n∑

j=1

U−h(i, j|Wk),

where U−h(i, j|Wk) = biI(Yi ≤ Yj)η
−
ij(h, k) with

η−ij(h, k) = I(zij(h) = −1, eij(k) = −1)− I(zij(h) = 1, eij(k) = 0).

Similarly, we may have

∆Ak(+Xh|Wk−1) =
n∑

i=1

n∑

j=1

U+h(i, j|Wk−1),

where U+h(i, j|Wk−1) = biI(Yi ≤ Yj)η
+
ij(h, k − 1) with

η+
ij(h, k−1) = I(zij(h) = −1, eij(k−1) = 0)−I(zij(h) = 1, eij(k−1) = −1).

In summary, we can write the changes ∆Ak(−Xh|Wk) and ∆Ak(+Xh|Wk−1)
in the form

∆A =
n∑

i=1

n∑

j=1

Uij,
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where Uij will be U−h(i, j|Wk) or U+h(i, j|Wk−1), accordingly. Under some
regularity conditions,

√
n (∆A/n2 − µ) → N(0, φ), as n →∞,

where µ = E(∆A/n2) and φ is the limiting variance. The justification is given
in the Appendix.

Let δk = DA(Wk) −DA(Wk−1) with Wk−1 ⊂ Wk. Since E(∆Ak)
and δk share the same sign and E(∆Ak) = 0 implies δk = 0, we may use ∆Ak

to construct a statistic for testing the null hypothesis H0 : δk = 0 that

TS =
∆A

ˆ
k

se(∆Ak)
.

As the Wald type test statistic TS has approximate N(0, 1) distribution un-
der the null hypothesis, we propose to use it to guide the risk related item
selection. The relevant hypotheses to test are H0 : δk ≤ 0 (no improvement
in DA) vs. H1 : δk > 0 (DA improved). Specifically, we will use a preset
threshold value γ0 and the test statistic

TS(−Xj|Wk) =
ˆ

∆Ak(−Xj|Wk)

se(∆Ak(−Xj|Wk))

to decide whether or not to remove itemj from Wk. We will exclude itemj

from Wk when TS(−Xj|Wk) < γ0. Similarly, we will use a preset threshold
value γ1 and the test statistic

TS(+Xh|Wk−1) =
ˆ

∆Ak(+Xh|Wk−1)

se(∆Ak(+Xh|Wk−1))

to decide whether or not to add itemh ∈ Wm \Wk−1 into Wk−1 for a new set
Wk. We will have item set Wk = {itemh}∪Wk−1 when TS(+Xh|Wk−1) ≥ γ1.

Noting that the test statistic for detecting changes in DA retains
the properties of the statistic for detecting the changes in CA, we may use
the strategies for reduction of binary risk related items to select the items
that are related to an ordinal or a continuous risk measure, possibly subject
to random censoring.

B. Item selection procedure

It is obvious that itemj in Wk for a scale with score S(Wk) is not useful in
risk discrimination, if excluding it from Wk leads to either no change or an
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increase in the estimated discrimination accuracy. Therefore, we first identify
redundant items in the full scale, if any, and then apply a hypothesis test
based stepwise selection procedure, to the remaining items.

Starting with the item set Wm of the full scale, we will identify
the redundant items, if any, and remove them. For 1 < k ≤ m, we will exclude
itemh from Wk if the corresponding change ∆Ak(−Xh|Wk) ≤ 0, where

∆Ak(−Xh|Wk) = min
itemj∈Wk

{A(Wk)− A(Wk \ {itemj})}.

The deletion process will stop when no more items can be removed. The re-
sulting item set is denoted as WJ , 1 < J < m. This process will produce a se-
quence of subsets {Wk; J ≤ k < m} with a sequence of estimated discrimina-
tion accuracies {D̂A(Wk); J ≤ k < m} satisfying D̂A(WJ) ≥ · · · ≥ D̂A(Wm).

Although the item set WJ has fewer items, it might still have
some unstable items that contribute little to discrimination accuracy. It is
important to identify relatively stable items in WJ to form a further reduced
scale without substantially sacrificing discrimination accuracy. This can be
accomplished by the following hypothesis test based selection procedure along
with preset positive threshold values γ0 and γ1 (γ0 ≤ γ1):

(i) Identify the item in WJ that has the largest estimated discrimination
accuracy. Let Ω1 denote the resulting singleton item set.

(ii) For 1 < k ≤ J , identify the item itemh that has the largest value of
the test statistic for H0 : δk ≤ 0 vs. H1 : δk > 0 from WJ \ Ωk−1. Let
Ωk = Ωk−1 ∪ {itemh} if

TS(+Xh|Ωk−1) = max
itemj∈WJ\Ωk−1

TS(+Xj|Ωk−1) ≥ γ1.

(iii) Identify the unstable items in Ωk whose removal leads to little loss or even
an improvement in the estimated discrimination accuracy. Specifically,
itemh is excluded from Ωk, 1 < k ≤ J ; if

TS(−Xh|Ωk) = min
itemj∈Ωk

TS(−Xj|Ωk) < γ0.

The exclusion process will stop if no more items can be removed.

(iv) Repeat steps (ii) and (iii) until no more items can be added or removed,
or stop the process if an item that has been removed tends to be added
again.
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The final item set, denoted as ΩH , will have a set of items appropriate for a
reduced scale.

To assess variations in item selection, we may use the bootstrap
method (Efron and Tibshirani, 1993). Bootstrap samples can be obtained by
sampling with replacement from the original study sample, where the sam-
pling unit is the study subject with a cluster of observed responses to the
items on the full scale and the measure of level of risk (such as a risk measure
with ordinal categories or observed time to the initial diagnosis of disease,
with a censoring indicator if applicable). The empirical distributions of the
number of selected items, the estimated discrimination accuracy for the full
scale and the reduced scale, as well as the improvement in the estimated dis-
crimination accuracy of the reduced scale over that of the full scale, can be
used for inference. Moreover, the selection frequency of each item in a number
of bootstrap samples (say 1000) provides an empirical estimate of how often
an item is selected. The resulting item spectrum may help identify the most
frequently selected items.

A simulation study

To examine the finite sample performance of the selection procedure using
different thresholds, we conducted a simulation study for a hypothetical uni-
dimensional scale with 13 items, among which items {1, · · · , 6} are useful for
risk discrimination. The sample size N = 120, and 240 along with censoring
proportions of 50% and 75% were used. In each of the four cases, we generated
1000 data sets. In each data set, we first generated N independent random
numbers from exponential distribution with mean of 5 for time variable T ,
and N independent random numbers from uniform distribution U(0, θ) for
censoring variable Q with θ specified according to the preset censoring pro-
portion. We then calculated the actual time variable Y = min(T, Q) and
indicator d = I(T < Q) for the observed event. For item response data, we
first generated N independent random numbers from a standard normal dis-
tribution for variable Z. Assuming that the latent variable is a function of T
and Z, we then generated 13 independent binary responses with probabilities
specified by the logistic models for each value of (T, Z),

logit P(Xj = 1| T, Z) = αj(T ) + βj(T )Z, j = 1, · · · , 13.

The preset values or functions for αj(T ) and βj(T ) are listed in Table 1.
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Table 1. Parameters of the logistic models used for data generation

Item j 1 2 3 4 5 6 7 8 9 10 11 12 13
αj a1(T ) a1(T ) a1(T ) a2(T ) a2(T ) a2(T ) -1 -0.5 -0.5 0 0.5 0.5 1
βj 1 b1(T ) b2(T ) 1 b1(T ) b2(T ) 1 1 2 1 1 2 1

a1(T ) = −1.5 + 0.4T, a2(T ) = −1 + 0.3T ;
b1(T ) = 1 + 0.5I(T < 5), b2(T ) = 1 + I(T < 5).

In each of the four cases, we applied the proposed procedure to the
1000 generated data sets with four sets of threshold values (γ0, γ1) = (0.524,
0.5244), (0.841, 0.8416), (1.036, 1.0364), (1.281, 1.2816) according to 70th,
80th, 85th and 90th percentiles of standard normal distribution, respectively.

Table 2 shows that in each case, the mean discrimination accuracy
of the full scale with W13 is lower than that of the “true” scale with W =
{1, · · · , 6} and those of the item sets selected by the four criteria. As expected,
increased threshold values result in fewer selected items, lower discrimination
accuracies and less improvement in all the four cases. The mean scale size,
mean discrimination accuracy and mean improvement, however, vary least
with threshold values in the case with the larger sample size (N = 240) and
uncensored proportion (50%). For a given set of threshold values, averaged
scale size and percent of positive improvement increase with sample size and
with proportions of uncensored subjects.

Table 3 lists the frequencies of items selected based on different
selection criteria. It is interesting to note that in all the cases, the most
frequently selected items are the six “true” items. The numbers of correctly
selected items increase when the threshold is lowered or when the uncensored
proportion or the sample size increases. In contrast, the numbers of incorrectly
selected items decrease with increasing threshold, uncensored proportion, and
sample size.

It is noticeable in Tables 2 and 3 that the impact of threshold
values on the selection of risk related items is smaller in the case of larger
sample size (n = 240) with lower censored proportion (50%) than in the case
of smaller sample size (n = 120) with higher censored proportion (75%).
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Table 2. Performance of selected scales

Sample size Scale size H DA(WH) ∆DA (%) ∆DA > 0
(% Censored) Criteria Mean (SD) Mean (SD) Mean (SD) %

N=120 Full scale 13 0.5990 (0.0638)
(75%) Scale(W ) 6 0.6617 (0.0588) 10.88 (6.77) 98.4

I 4.85 (1.01) 0.6731 (0.0564) 12.87 (7.44) 99.6
II 4.41 (0.94) 0.6693 (0.0564) 12.23 (7.46) 99.3
III 4.20 (0.90) 0.6669 (0.0569) 11.83 (7.52) 99.0
IV 3.87 (0.86) 0.6619 (0.0576) 10.96 (7.53) 98.3

N=120 Full scale 13 0.5908 (0.0372)
(50%) Scale(W ) 6 0.6539 (0.0351) 10.87 (4.33) 99.7

I 5.56 (0.86) 0.6574 (0.0353) 11.42 (4.17) 100
II 5.10 (0.85) 0.6542 (0.0359) 10.87 (4.31) 100
III 4.85 (0.82) 0.6517 (0.0364) 10.45 (4.35) 100
IV 4.57 (0.80) 0.6481 (0.0370) 9.84 (4.43) 99.8

N=240 Full scale 13 0.5950 (0.0459)
(75%) Scale(W ) 6 0.6595 (0.0430) 11.04 (4.91) 99.5

I 5.43 (0.94) 0.6640 (0.0419) 11.81 (4.42) 100
II 5.11 (0.89) 0.6625 (0.0415) 11.55 (4.50) 100
III 4.93 (0.88) 0.6611 (0.0417) 11.31 (4.54) 100
IV 4.67 (0.86) 0.6586 (0.0425) 10.89 (4.59) 99.9

N=240 Full scale 13 0.5879 (0.0266)
(50%) Scale(W ) 6 0.6523 (0.0251) 11.03 (3.13) 100

I 5.83 (0.59) 0.6530 (0.0249) 11.17 (3.02) 100
II 5.63 (0.62) 0.6522 (0.0251) 11.02 (3.07) 100
III 5.49 (0.64) 0.6513 (0.0253) 10.87 (3.10) 100
IV 5.29 (0.67) 0.6496 (0.0258) 10.58 (3.15) 100

∆DA = (DA(WH)−DA(W13))
DA(W13)

× 100% : per cent improvement.

W = {1, 2, 3, 4, 5, 6}.
Criteria (γ0, γ1): I=(0.524, 0.5244), II=(0.841, 0.8416), III=(1.036, 1.0364),
IV=(1.281, 1.2816).

In summary, the proposed procedure showed satisfactory finite
sample performance in the simulation study. Empirically, the threshold values
can be in the range of 0.8 to 1.3. However, increasing the sample size and the
uncensored proportion can reduce the impact of threshold values and allow
more stable results to be obtained.
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Table 3. Frequencies of selection of specific items in 1000 simulated data sets

Criteria (γ0, γ1) 1 2 3 4 5 6 7 8 9 10 11 12 13
N = 120, 75% censored
I: (0.524, 0.5244) 894 841 745 726 644 536 88 70 29 64 91 21 97
II: (0.841, 0.8416) 865 795 686 675 576 470 72 50 19 50 63 14 71
III: (1.036, 1.0364) 856 768 661 651 555 430 58 41 15 40 53 12 63
IV: (1.281, 1.2816) 830 718 610 615 506 385 43 31 9 31 37 6 45
N = 120, 50% censored
I: (0.524, 0.5244) 983 959 915 922 808 703 55 33 7 46 51 17 56
II: (0.841, 0.8416) 972 918 871 877 713 601 35 14 6 22 25 11 34
III: (1.036, 1.0364) 958 892 841 843 661 555 22 12 4 11 21 9 22
IV: (1.281, 1.2816) 946 864 800 793 602 493 17 9 1 7 16 5 17
N = 240, 75% censored
I: (0.524, 0.5244) 969 946 884 883 768 687 65 50 11 40 49 10 64
II: (0.841, 0.8416) 956 927 845 858 719 608 45 38 6 31 31 4 45
III: (1.036, 1.0364) 953 909 820 824 682 573 41 28 5 25 25 3 38
IV: (1.28, 1.2816) 943 891 778 796 620 523 26 18 5 18 19 2 27
N = 240, 50% censored
I: (0.524, 0.5244) 998 992 987 979 929 835 26 22 3 11 17 3 23
II: (0.841, 0.8416) 997 987 979 966 881 762 13 13 2 7 11 2 11
III: (1.036, 1.0364) 997 983 963 950 852 706 7 8 2 5 9 2 8
IV: (1.281, 1.2816) 994 972 940 927 799 629 4 4 1 4 4 1 6

Application

To illustrate the proposed method, we used the olfaction-test data collected
from the patients at risk of developing AD in a prospective study (Tabert et
al., 2006). There were 128 patients aged 55 and older with mild cognitive
impairment (MCI) who were administered UPSIT at baseline assessment and
then followed semi-annually for up to nine years. During the follow-ups, 38 of
them met criteria for AD diagnosis with the time to AD conversion varying
between 6 months and 5.5 years. The censored proportion of the sample
was about 70%. The risk factors of AD such as baseline age, UPSIT score
and Mini-Mental State Examination test scores (Folstein et al., 1975) were
associated with the time to AD conversion, but unrelated to the time to
censoring, in a survival analysis for the time to event.

In this sample, Cronbach’s Coefficient Alpha estimate (Cronbach,
1951) for the UPSIT items is 0.8706, indicating a good consistency among
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Figure 1. Item response rate and discrimination accuracy

items in relation to the latent variable for olfactory function. Figure 1 reveals
a wide range of percentages of odors correctly identified (28.91% − 89.84%),
as well as a wide range of item discrimination accuracies (0. 1532− 0. 4063).

To identify items in the UPSIT for a reduced scale that is related
to the risk of AD in the MCI patients, we first applied commonly used back-
ward, forward or stepwise selection procedures based on Cox proportional
hazards models. Using the criterion of a significance level of 0.1 with back-
ward selection, 12 items were selected with parameter estimates 6 positive
and 6 negative; with forward or stepwise selection, 8 items were selected, the
estimated parameters were 3 positive and 5 negative. When adaptive LASSO
for Cox proportional hazards models (Zhang and Lu, 2007) was applied, 27
items were selected with 12 parameters estimated to be positive, and 15 nega-
tive. Obviously, the Cox regression model based variable selection procedures
did not produce results meaningful for risk related item reduction.

We then applied the proposed procedure to produce a reduced
uni-dimensional scale that may efficiently discriminate the risk of AD. The
21 items initially identified as the least useful items were excluded from the
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full 40-item scale. Using the threshold value (γ0, γ1) = (1.281, 1.2816), the
item set finally selected is W6 = {X8, X14, X22, X33, X35, X37} with a
discrimination accuracy estimate of 0.7111, close to the 0.7166 of the full scale.
The choice of this threshold was suggested by the results of the simulation
study: among the four sets of criteria, (γ0, γ1) = (1.281, 1.2816) selected
scales having mean discrimination accuracy closest to that of the “true” sub-
scale when using a sample of size N = 120 and a censored proportion of 75%,
which is similar to the censored proportion of 70.31% of the study sample of
128 MCI patients.

To evaluate the variation in item selections, we applied the pro-
posed selection procedure to 1000 bootstrap samples obtained from the origi-
nal data set (n = 128). The mean discrimination accuracy of the full scale is
0.7150 (se = 0.0448), similar to the estimate of 0.7166 from the original sam-
ple. With criteria (γ0, γ1) = (1.281, 1.2816), the average number of selected
items for the reduced scale is 6.37 (se = 1.16) with a mean discrimination
accuracy of 0.7728 (se = 0.0412).

Table 4 shows the item selection spectrum with bootstrap sam-
ples. Note that five of the six items selected from the original sample are
among those most frequently selected using the bootstrap samples. Items
X8, X33, X37 appear to be the most important, followed by X14, while
X17, X20, X35, X38 might deserve some attention as well.

To examine the predictive performance of the item selection me-
thod for this sample, as a reviewer suggested, we use the leave-one-out cross-
validation method. Using n− 1 observations for item selection under a given
criterion, we calculate a predicted score for each of the left out observations
based on the selected item set. These predicted scores are then used to gen-
erate a DA estimate, D̂Acv, to compare with the DA estimate of the item set
selected under the same criteria using all n observations. With item selection
criteria (γ0, γ1) = (1.281, 1.2816), the selected item sets based on n−1 obser-
vations had a mean size of 6.9 with the most frequently selected items being
the members of W6. The estimate D̂Acv for the predicted scores was 0.5053,
much lower than D̂A(W6) = 0.7111 based on all n observations. When reduc-
ing the threshold values to be (γ0, γ1) = (1.036, 1.0364), the selected item sets
with n− 1 observations were larger in size with a mean of 9.1 and D̂Acv was
improved to 0.5976, but still lower from D̂A(W9) = 0.7535 estimated using
the whole sample. Using criteria (γ0, γ1) = (0.524, 0.5244), the selected item
sets with n − 1 observations had a mean size of 12.0, and D̂Acv was further
improved to 0.6582, while still not close to D̂A(W12) = 0.7675 based on the
whole sample. This analysis suggests that the cross-validation estimate D̂Acv
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can be improved by lowering the item selection criteria, as observed in DA
estimates based on all observations.

Table 4. Frequencies of selection of specific UPSIT items in 1000 bootstrap
samples

Item Frequency Item Frequency
1 pizza 13 21 lilac 240
2 bubble gum 98 22 turpentine 255
3 menthol 6 23 peach 80
4 cherry 11 24 root beer 276
5 motor oil 29 25 dill pickle 13
6 mint 182 26 pineapple 18
7 banana 2 27 lime 3
8 clove 550 28 orange 10
9 leather 35 29 wintergreen 161
10 coconut 229 30 watermelon 45
11 onion 5 31 paint thinner 38
12 fruit punch 241 32 grass 215
13 licorice 3 33 smoke 634
14 cheddar cheese 482 34 pine 16
15 cinnamon 221 35 grape 393
16 gasoline 2 36 lemon 106
17 strawberry 347 37 soap 660
18 cedar 0 38 natural gas 332
19 chocolate 31 39 rose 17
20 gingerbread 316 40 peanut 59

Evidently, the 40−item scale can be greatly reduced. However,
to obtain a confirmative result of item selection with good predictive perfor-
mance, we need to increase the sample size and the uncensored proportion.

Discussion

We have extended the nonparametric method for selecting binary risk related
items from a uni-dimensional scale for screening, to accommodate cases where
risk is quantified in ordinal categories or measured as time to event possibly
subject to random censoring. The method is invariant to rank-preserving
transformations of the scale score and the risk measure. The extended method
is also applicable where items on a scale have K(> 2) response levels, because
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K − 1 binary indicators can be produced; for example, I(X = j) for j =
2, · · · , K can be used. If the K response levels are ordinal, then indicators
I(X ≥ j) for j = 2, · · · , K may be used.

By evaluating, at every step, changes in discrimination accuracy,
the proposed item selection procedure enables us to begin by removing the
least useful items from the full scale, and then apply stepwise selection to the
remaining items. To decide whether or not to include an item in the reduced
scale, the proposed stepwise selection requires pre-set values for thresholds γ0

and γ1 which will determine the size of the reduced scale. An upper bound
on the threshold is necessary for the estimated discrimination accuracy of the
reduced scale to exceed that of the full scale. Based on the simulation study,
we recommend using threshold values between 0.8 and 1.3. The results of
the simulation study indicate that we can reduce the impact of the threshold
values by increasing sample size and the uncensored proportion. Meanwhile,
examination of item selection frequencies in a number of bootstrap samples
may help assess the variation in item selection. The most frequently selected
items can be used for the reduced scale. This resembles the ‘bootstrap model
averaging’ approach to survival analysis discussed by Augustin et al. (2005).

In application, it is important to examine the predictive perfor-
mance of the reduced scale selected using specific criteria. This can be done
by using the leave-one-out cross-validation method, as shown in the example.

A reviewer has pointed out that a test-based backward selection,
which eliminates items present in the larger item set at the previous steps, is
simpler than the proposed one and can be used as an alternative. Because
the descending procedure evaluates each item conditioned on the other items
in the set, when the criterion is met, some less important items may not be
eliminated. Consequently, the descending procedure could select more items
though it is possible that not all the selected items will contribute signifi-
cantly to DA. In contrast, the stepwise selection method builds up the item
set dynamically, allowing for both the addition of important items and the
elimination of some previously selected items whose importance was lessened
by the introduction of a new item into the set. To demonstrate this, we ap-
plied the descending procedure to the data sets previously used for stepwise
selection procedure. As expected, for each given criterion, with the descend-
ing procedure, the average size of the selected subscales was larger, while the
mean DA was similar and the number of DA improved cases was slightly
smaller. For example, with a sample size of n = 120 and censored proportion
of 75%, when using criterion I, the mean size of selected subscales with the de-
scending selection procedure was 0.55 larger than that of the scales generated
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ˆ

by proposed procedure. The discrepancy decreased to 0.23 when criterion IV
was used. The result suggests that as an alternative, the descending proce-
dure may choose slightly more items without improving DA under the same
criterion, compared to the proposed procedure.

The proposed method has limitations. To select a reduced scale
with good predictive performance, it is crucial to apply the selection procedure
to a large sample with low proportion of censored observations. As indicated
in the illustration example, predictive performance may not be acceptable
when the sample size, especially the number of uncensored observations, is
not large. When using the proposed method on a relatively small sample
with few risk categories, it is possible that the reduced scale will have a DA
estimate close to one, suggesting an over-fit. To avoid the problem one has
to increase the sample size, especially of the uncensored sample, refine the
risk categories, and use various criteria in the statistical test based selection
process. In the presence of random censoring, the method requires censoring
time to be independent of risk predictors. Since this assumption may not
always hold, a generalized method allowing for dependence on predictors is
desirable. In longitudinal studies, the subjects may be assessed over time by
the same uni-dimensional scale. Efforts to develop an extension of the method
for use with repeated measures would be worthwhile.

Appendix

We show asymptotic normality of ∆Ak(−Xh|Wk). The asymptotic normality
of ∆Ak(+Xh|Wk−1) can be shown similarly.

Let ΛG(u) denote the common cumulative hazard function of cen-
soring time Q and

ηij(h, k) = I(zij(h) = −1, eij(k) = −1)− I(zij(h) = 1, eij(k) = 0).

With the use of (G−G)/G martingale integral representation, we have

∆Ak(−Xh|Wk) =
n∑

i=1

n∑

i=1

di

G2(Yi)
I{Yi ≤ Yj}ηij(h, k)

+2
n∑

i=1

n∑

i=1

di

G2(Yi)
I{Yi ≤ Yj}ηij(h, k)

G(Yi)− Ĝ(Yi)

G(Yi)

+op(1)

=
n∑

i=1

n∑

i=1

di

G2(Yi)
I{Yi ≤ Yj}ηij(h, k)
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+2n
n∑

i=1

∫ ∞

0

ξ(t)

π(t)
dMi(t) + op(1)

where

ξ(t) = lim
n→∞

1

n2

n∑

i=1

n∑

i=1

di

G2(Yi)
I{Yi ≤ Yj}I{Yi > t}ηij(h, k)

π(t) = lim
n→∞

1

n

n∑

i=1

I{Yi > t}

Mi(t) = I{Yi ≤ t}(1− di)−
∫ t

0
I{Yi > u}dΛG(u).

Therefore,

√
n (

∆Ak(−Xh|Wk)

n2
− µ) = n−3/2

n∑

i=1

n∑

i=1

(
di

G2(Yi)
I{Yi ≤ Yj}ηij(h, k)− µ

)

+2n−1/2
n∑

i=1

∫ ∞

0

ξ(t)

π(t)
dMi(t) + op(1).

By the standard U -statistic asymptotic theory, it follows that the quantity√
n(∆Ak(−Xh|Wk)/n

2 − µ) is asymptotically normal with mean 0.
Below we show how to obtain the asymptotic variance of the quan-

tity
√

n(∆Ak(−Xh|Wk)/n
2 − µ). It is easy to see that the first term

n−3/2
n∑

i=1

n∑

i=1

(
di

G2(Yi)
I{Yi ≤ Yj}ηij(h, k)− µ

)
(1)

is a U -statistic, and its variance can be estimated easily. From the martingale
representation of the second term

2n−1/2
n∑

i=1

∫ ∞

0

ξ(t)

π(t)
dMi(t), (2)

it follows that its asymptotic variance is

4
∫ ∞

0

ξ2(t)

π(t)
dΛG(t).

Notice that

E

{
di

G2(Yi)
I{Yi ≤ Yj}ηij(h, k)(1− dj)

ξ(Yj)

π(Yj)

}
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= E

{
di

G2(Yi)
I{Yi ≤ Cj}ηij(h, k)I{Cj ≤ Yj} ξ(Cj)

π(Cj)

}

= E

{∫ ∞

0

di

G2(Yi)
I{Yi ≤ t}ηij(h, k)I{t ≤ Yj} ξ(t)

π(t)
dG(t)

}

= E

{∫ ∞

0

di

G2(Yi)
I{Yi ≤ t}ηij(h, k)I{t ≤ Yj} ξ(t)

π(t)
G(t)dΛG(t)

}
.

Thus, the limiting covariance between the terms (1) and (2) is

−4
∫ ∞

0

ξ2(t)

π(t)
dΛG(t).

As a result, the limiting covariance for
√

n(∆Ak(−Xh|Wk)/n
2 − µ) is the

variance of the first term (1) minus 4
∫∞
0

ξ2(t)

ˆ

π(t)
dΛG(t). It is easy to see that a

consistent estimator for this quantity can be obtained by replacing the un-
known G(·), ξ(·) and π(·) with corresponding empirical estimators G(·), ξ̂(·)
and π̂(·).
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