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Partial Linear Regression Models for Clustered Data
Kani CHEN and Zhezhen JIN

This article considers the analysis of clustered data via partial linear regression models. Adopting the idea of modeling the within-cluster
correlation from the method of generalized estimating equations, a least squares type estimate of the slope parameter is obtained through
piecewise local polynomial approximation of the nonparametric component. This slope estimate has several advantages: (a) It attains
n1/2-consistency without undersmoothing; (b) it is efficient when correct within-cluster correlation is used, assuming multivariate normality
of the error; (c) the preceding properties hold regardless of whether or not the nonparametric component is of cluster level; and (d) this
estimation method naturally extends to deal with generalized partial linear models. Simulation studies and a real example are presented in
support of the theory.

KEY WORDS: Asymptotic bias; Clustered data; Generalized partial linear regression model; Mean squared error; Nonparametric curve
estimation; Piecewise local polynomial method.

1. INTRODUCTION

The partial linear model is a popular tool in statistical data
analysis. Its application to the analysis of nonclustered data has
been well explored. The aim of this article is to propose an
estimation method through least squares criterion and piece-
wise polynomial function approximation and to demonstrate
this method’s superiority.

The partial linear regression model is of a semiparametric na-
ture in that it relates the response variable with key covariates
linearly and with the rest of the covariates nonparametrically.
A comprehensive theory about this model for nonclustered data
has been well established (see, e.g., Chen 1988; Speckman
1988; Hastie and Tibshirani 1990; Severini and Staniswalis
1994; Carroll, Fan, Gijbels, and Wand 1997). The same is-
sues then naturally arise in the analysis of clustered data us-
ing marginal partial linear models. A major problem involved
is the modeling and incorporation of the within-cluster correla-
tion. This subject has recently attracted considerable attention
(see, e.g., Zhang, Lin, Raz, and Sower 1998; Lin and Carroll
2001a,b; He, Zhu, and Fung 2002). In particular, Lin and
Carroll (2001a,b) developed a general profile-kernel methodol-
ogy for the analysis of clustered data with various models along
the lines of generalized estimating equations. Lin and Carroll
(2001a) dealt with generalized partial linear models with the
nonparametric component not of cluster level. They showed
that the n1/2-consistency of the derived estimate of the slope
parameter requires either working independence and, more seri-
ously, equal marginal density of covariates or, when the correct
within-cluster correlation is used, artificial undersmoothing.
Following Lin and Carroll (2001a), by undersmoothing we
mean the bandwidth h = o(n−1/(2p+3)) for odd p, where p is
the order of local polynomial smoothers or the piecewise poly-
nomial approximation. Lin and Carroll also argued that, assum-
ing normality for errors, a semiparametrically efficient estimate
would still be difficult to obtain, because in theory it involves
the inverse of a Fredholm operator, even when correct within-
cluster correlation is used. “Our main conclusion is that, unlike
for the independent data, the conventional profile-kern method
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is not semiparametric efficient and must be modified in ad hoc
ways (undersmoothing) or to be made less efficient (working in-
dependence) to even be made

√
n consistent” (Lin and Carroll

2001a, p. 1046). In contrast, He et al. (2002) focused on an
extension of M-estimation with B-spline smoothing. Although
the slope estimators of He et al. (2002) are valid, they do not
incorporate within-cluster correlation and fail to achieve semi-
parametric efficiency in general.

In summary, the key issues of both theoretical and practi-
cal significance are (a) necessity/redundancy of artificial under-
smoothing, (b) appropriate/inappropriate use of within-cluster
correlation and particularly working independence, and (c) ef-
ficiency/inefficiency of the slope estimators in the aforemen-
tioned sense. Recently, Wang, Carroll, and Lin (2005) tackled
the issue of efficiency along the line of the Wang’s (2003) seem-
ingly unrelated regression technique by using nonlocal obser-
vations in a cluster via residuals to incorporate within-cluster
correlation. In this article we propose an alternative estimation
method that has the desired properties. This method is based
on a hybrid of the ideas of the piecewise polynomial approxi-
mation and generalized estimating equations, and offers several
appealing advantages. First, the n1/2-consistency of the slope
estimate is ensured without artificial undersmoothing, with-
out working independence, and without assuming equal mar-
ginal densities for the covariates. Second, assuming normality
of the errors, this estimate is automatically semiparametrically
efficient when correct within-correlation is used. Finally, the
method is equally effective regardless of whether or not the non-
parametric component is of cluster level, and it can be naturally
extended to cover generalized partial linear models.

The next section introduces the partial linear model and
presents the proposed slope estimate and its inferences. Sec-
tion 3 reports on numerical studies. Section 4 contains a local
polynomial estimate of θ(·). Section 5 generalizes the esti-
mation method to generalized partial linear models. Section 6
presents some concluding remarks.

2. ESTIMATION OF THE SLOPE PARAMETER

For the jth observation of the ith cluster, let Yij be the re-
sponse variable, let Xij be a d-vector covariate, and let Tij be a
scalar covariate, j = 1, . . . , Ji and i = 1, . . . ,n. The partial lin-
ear regression model under study assumes that

Yij = XT
ijβ + θ(Tij) + εij, (1)
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where β is the d-dimensional parameter of primary interest,
θ(·) is the unknown function, and εij is the error. Let Yi =
(Yi1,Yi2, . . . ,YiJi)

T, Xi = (Xi1,Xi2, . . . ,XiJi)
T, Ti = (Ti1,Ti2,

. . . ,TiJi)
T, and εi = (εi1, εi2, . . . , εiJi)

T. Throughout the article,
a univariate function acting on a vector is set to be the vec-
tor of the function of each component, for example, θ(Ti) =
(θ(Ti1), θ(Ti2), . . . , θ(TiJi))

T. With this notation, model (1) can
be rewritten as

Yi = Xiβ + θ(Ti) + εi, (1′)

where (Yi,Xi,Ti) are assumed to be independent, E[εi|Xi,

Ti] = 0, and var(εi|Xi,Ti) = �i. We also assume the bounded-
ness of Xi and Ti and that the eigenvalues of �i are uniformly
bounded above and bounded below away from 0. For simplic-
ity, we assume throughout the article that Ji ≡ J, (Yi,Xi,Ti)

are iid, the densities of (Xij,Tij) are smooth, and the marginal
density of Tij, denoted by fj(·), has support on [0,1].

We apply the least squares criterion to obtain the estimate
of β , using piecewise polynomial functions of degree p ( p ≥ 0)
to estimate θ(·). Let 1 > h > 0 be the bandwidth and let N =
max{n ≥ 1 : n ≤ 1/h} be the largest integer less than or equal to
1/h. Set Ik = [h(k − 1),hk), k = 1, . . . ,N − 1, and IN = [h(N −
1),1]. Then the interval [0,1] is partitioned into subintervals
of Ik, k = 1, . . . ,N. Let ψ(t) = (1, t, t2, . . . , tp)T and Ik(t) = 1
if t ∈ Ik and 0 otherwise. Let α = (αT

1 , . . . ,αT
N), where αk is

a (p + 1)-vector, and Di = (Di1,Di2, . . . ,DiN), where Dik is
the J × (p + 1) matrix with the jth row being ψ(Tij)

TIk(Tij),
j = 1, . . . , J. Consider functions

g(t) =
N∑

k=1

αT
k ψ(t)Ik(t) =

N∑

k=1

( p∑

l=0

αklt
l

)
Ik(t). (2)

For notational simplicity, the indices n or N may be suppressed
in some of the variables and functions defined here and in the
sequel. The weighted least squares estimates of β and θ(·) can
be obtained by minimizing

n∑

i=1

{
Yi − Xiβ − g(Ti)}TV−1

i {Yi − Xiβ − g(Ti)
}

=
n∑

i=1

(Yi − Xiβ − Diα)TV−1
i (Yi − Xiβ − Diα)

with respect to β and α, where Vi is the working covariance
matrix with subscript “n” suppressed. The minimization can be
solved algebraically in a straightforward fashion. Denote the
resulting minimizers by β̂ and α̂ = (α̂T

1 , . . . , α̂T
N). Set

Bn =
n∑

i=1

DT
i V−1

i Di,

Cn =
n∑

i=1

DT
i V−1

i Xi,

(3)

An =
n∑

i=1

(XT
i V−1

i Xi) − CT
n B−1

n Cn, and

Zi = V−1
i (Xi − DiB−1

n Cn).

We have

β̂ = A−1
n

n∑

i=1

ZT
i Yi and

(4)

α̂ = B−1
n

n∑

i=1

DT
i V−1

i (Yi − Xiβ̂).

Then β̂ is the weighted least squares estimate of β , and∑N
k=1 α̂T

k ψ(t)Ik(t) is that of θ(t), t ∈ [0,1].
Remark 1. We note that although the piecewise polyno-

mial approximation does not give a smooth estimate of θ(·),
it only plays the role of a pilot or intermediate estimate for
the purpose of obtaining the best estimate of β . For this pur-
pose, it greatly outperforms its counterpart, the local polyno-
mial estimate, in the profile-kernel method, as seen from the
n1/2-consistency/inconsistency and efficiency/inefficiency of
the resulting slope estimates. In Section 4 we also present a lo-
cal polynomial estimate of θ(·) along the lines of that of Chen
and Jin (2005), which improves the piecewise polynomial esti-
mate in terms of smoothness of the estimate.

The following regularity conditions are needed for the as-
ymptotic properties of the estimate β̂:

(C1) There exists a λ ∈ (0,1) such that as n → ∞, nλh →
∞ and n1/2h2(p+1) → 0.

(C2) The function θ(·) has continuous derivatives of order
p + 1. The eigenvalues of Vi and An/n are uniformly bounded
above and bounded below away from 0 for all large n in proba-
bility. Moreover,

sup
{‖V−1

i − Ṽ−1
i ‖ : i = 1, . . . ,n

} = OP
(
n−1/4), (5)

where Ṽ−1
i = { f n

k,l(Xi,Ti)}1≤k,l≤J and f n
k,l is a smooth and de-

terministic function. Here and throughout, ‖ ·‖ for a vector is its
Euclidean norm, and for any square matrix A of K × K dimen-
sion, ‖A‖ = max{‖Ax‖/‖x‖ :‖x‖ = 1, x ∈ R

K}. The functions
f n
k,l converge uniformly as n → ∞.

Remark 2. We note that, as with some other notation, sub-
script “n” is omitted from Vi and Ṽi. Condition (C2) is assumed
here to avoid overly erratic modeling/estimation of the covari-
ance matrices. It can be relaxed for establishing the following
proposition with increasing technicalities. The elements of Vi
are usually based on averages of iid random variables, and thus
(5) is usually satisfied by the empirical approximation. This is
the case for nonrandom working covariance matrices (including
working independence), exchangeable correlations, autoregres-
sive correlations, and spatial correlations.

Proposition 1. Under conditions (C1) and (C2), we have the
following results:

(a) The estimate β̂ is consistent and asymptotically normal,
that is,

n1/2(β̂ − β) → N(0,�∗), (6)

where �∗ can be consistently estimated by

nA−1
n

n∑

i=1

(ZT
i �iZi)A−1

n . (7)

In particular, the foregoing result holds if h ∼ n−1/(2p+3).
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(b) Suppose, moreover, that condition (C2) holds with Ṽ−1
i

replaced by �−1
i and the conditional distribution of εi, given

Xi and Ti, is normal for all i ≥ 1. Then (a) holds, and β̂ is
semiparametrically efficient.

Remark 3. Part (a) of the proposition establishes the key con-
sistency and asymptotic normality of the slope estimate and
thus justifies the use of this estimate. Because the asymptotic
variance also has a simple closed form, its inference is easy
to obtain as well. Part (a) also indicates that the proposed es-
timation method, unlike some existing methods, is valid under
a quite broad range of bandwidth selection. Moreover, it does
not rely on any kind of artificial undersmoothing. Such a virtue
renders simplicity in computation involving bandwidth selec-
tion. Many well-established criteria for bandwidth selection
available for nonparametric curve estimation can be directly
adopted. Moreover, implementation of the usual and general-
ized cross-validation criteria for the selection of h can be sim-
plified considerably by using the algebra of deletion in classic
linear regression (Atkinson 1985, pp. 19–21). Part (b) of the
proposition shows that if εi is conditionally Gaussian, then the
estimate of β is semiparametrically efficient when the work-
ing covariance matrix is close to the true covariance matrix �i.
The analytic expression of the asymptotic variance involves a
projection, and the projected function [e.g., g∗

k(·) defined in the
App.], in general can be expressed only through the inverse of
a Fredholm operator. But this does not prevent a closed-form
variance estimate, as given in (7).

Remark 4. The underlying reason for the success of the
piecewise polynomial method lies in the fact that Zi is orthog-
onal/uncorrelated to Diα for all α; see (A.15) in the Appendix.
The bias of β̂ originates from the terms Z′

iθ(Ti). Because
of this orthogonality, this term is approximately mean 0 and
thereby makes the bias negligible without artificially forc-
ing h to be too small (undersmoothing). In contrast, for the
profile-kernel estimate of the slope β , the bias also comes
from the terms [V−1

i {Xi − (∂/∂β)θ̂(Ti,β)}]T{θ̂(Ti) − θ(Ti)},
where θ̂(Ti) − θ(Ti) is approximately a function of Ti and is
of order hp+1. This bias term cannot be negligible, because
V−1

i {Xi − (∂/∂β)θ̂(Ti,β)} is not orthogonal to the space of
f(Ti) for all functions f (·), unless the marginal densities of
(Xi,Ti) are all equal and Vi is identity matrix (see the discus-
sion after thm. 1 in Lin and Carroll 2001a).

3. NUMERICAL STUDIES

In the numerical examples that follow, data are generated
from the model

Yij = xij1β1 + xij2β2

+ θ(Tij) + εij, j = 1, . . . , J; i = 1, . . . ,n,

where θ(t) = sin(2t) + cos(t), β1 = 1, β2 = 0, J = 3, and
n = 100. The xij1 and xij2 are time-varying covariates. The
covariate xij1 = Tij + δij, where δij follows N(0, (.5j)2) and
the covariate xij2 follows a Bernoulli distribution with success
probability .5. The error (εi1, . . . , εiJ)

T follows a multivari-
ate normal distribution with mean 0, exchangeable correla-
tion .6, and marginal variances .32, .52, and .42. The Tij’s,

j = 1, . . . , J, are independently generated from the uniform dis-
tribution on [0,1]. Estimation of the slope β was done by three
methods: the proposed method, Lin and Carroll’s profile-kernel
method (2001a,b), and Wang et al.’s method (2005).

To be comparable with Lin and Carroll’s (2001a,b) method,
which is based on local linear smoothing, the piecewise lo-
cal polynomial approximation is taken with degree p = 1. The
Epanechnikov kernel K(t) = .75(1 − t2)I{|t| ≤ 1} is used in Lin
and Carroll’s method. Three different working correlation ma-
trices are used: the identity matrix, the true correlation matrix,
and the estimated correlation matrix. The estimated correlation
matrix was obtained with the moment estimation method af-
ter fitting the model with the identity correlation matrix. In all
tables, �0 is the true covariance matrix, �̂0 is the estimated
covariance matrix, I is the identity matrix, and h is the band-
width. The bandwidth h0 is selected by adopting the idea of
cross-validation by deleting one cluster at a time in each sim-
ulated dataset. In Table 1, bias is the empirical bias, SE is the
empirical standard error, SEE is the average of the estimated
standard error, MSE is the empirical mean squared error of the
estimates with the new method, RMSE1 is the ratio of the em-
pirical MSE of the estimates with Lin and Carroll’s method
to the MSE, and RMSE2 is the ratio of the empirical MSE
of the estimates obtained with the method of Wang et al. to
the MSE. Simulation results are all based on 1,000 replica-
tions.

The results show that the new method performs well in fi-
nite samples. The parameter estimates are virtually unbiased,
the estimated standard errors are close to the empirical stan-
dard errors, and the parameter estimates with the true or es-
timated correlation matrix have smaller bias, smaller standard
error, and smaller MSE compared with the estimates with the
identity correlation matrix, which is the quintessence of gener-
alized estimating equations that the correct specification of cor-
relation matrix leads to efficient estimates. The ratios RMSE1

in the table demonstrate that the estimates obtained with the
new method are much more efficient than the estimates ob-
tained with Lin and Carroll’s method when the true correlation
or estimated correlation matrix is used. Moreover, the estimates
obtained with the new method using the true correlation or es-
timated correlation matrix have smaller SE and MSE compared
with the estimates obtained with Lin and Carroll’s method us-
ing the identity correlation matrix. When the true correlation
matrix is used, except for the case with bandwidth h = .05,
the ratios RMSE2 are very close to 1, indicating that the two
methods have similar efficiency. When the estimated correla-
tion matrix is used, the ratios RMSE2 are around value 1.1,
indicating that our method performs slightly better than Wang
et al.’s method.

In summary, all of the foregoing simulation results support
the theory that the proposed new method with piecewise local
polynomial approximation yields the best slope estimate when
the within-cluster correlation is correctly specified, regardless
of whether or not the nonparametric component is of cluster
level.

In what follows, we apply the proposed estimation method to
a real example of a longitudinal hormone study previously ana-
lyzed by Zhang et al. (1998) and He et al. (2002). In this study,
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Table 1. Summary of Simulation Results for Slope Estimates With Independent Tij

New method Lin and Carroll’s method Wang et al.’s method

Bias SE SEE MSE Bias SE Bias SE
h Σ i β (×10 3) (×10 2) (×10 2) (×10 2) (×10 3) (×10 2) RMSE1 (×10 3) (×10 2) RMSE2

.05 �0 β1 .31 .88 .89 .01 −1.36 1.30 2.22 .25 .84 .91
β2 .34 3.60 3.56 .13 −.11 4.73 1.72 −.21 3.41 .90

�̂0 β1 .23 .91 .87 .01 −1.36 1.30 2.09 .29 .95 1.11
β2 .51 3.71 3.47 .14 −.28 4.76 1.65 1.39 3.93 1.12

I β1 .17 1.18 1.08 .01 .41 1.27 1.15 .02 1.12 .91
β2 2.22 4.65 4.29 .22 2.81 5.62 1.46 1.87 4.42 .90

.1 �0 β1 .22 .85 .85 .01 −1.31 1.29 2.33 .15 .82 .94
β2 −.20 3.41 3.37 .12 .32 4.69 1.89 −.18 3.36 .97

�̂0 β1 .17 .87 .84 .01 −1.36 1.29 2.26 .24 .91 1.10
β2 −.08 3.48 3.31 .12 .23 4.71 1.83 .83 3.71 1.14

I β1 .03 1.13 1.08 .01 .34 1.26 1.23 −.01 1.11 .96
β2 2.06 4.44 4.28 .20 2.39 5.56 1.57 2.09 4.35 .96

.2 �0 β1 .09 .82 .83 .01 −1.26 1.30 2.50 .16 .82 1.00
β2 −.46 3.36 3.29 .11 .31 4.66 1.93 −.11 3.32 .98

�̂0 β1 .07 .84 .82 .01 −1.33 1.30 2.44 .26 .89 1.14
β2 −.30 3.41 3.23 .12 .17 4.67 1.88 .72 3.60 1.12

I β1 −.08 1.11 1.09 .01 .31 1.25 1.26 −.03 1.11 .98
β2 1.83 4.37 4.28 .19 2.21 5.54 1.61 1.97 4.32 .98

h0 �0 β1 .22 .83 .84 .01 −1.35 1.29 2.45 .14 .82 .97
β2 .05 3.39 3.33 .11 .43 4.68 1.91 −.09 3.35 1.00

�̂0 β1 .18 .85 .83 .01 −1.37 1.30 2.36 .25 .90 1.12
β2 .23 3.46 3.27 .12 .36 4.69 1.84 .89 3.66 1.12

I β1 −.01 1.12 1.08 .01 .30 1.25 1.25 −.04 1.11 .97
β2 2.32 4.40 4.28 .19 2.27 5.56 1.59 2.06 4.35 .97

34 healthy women had urine samples collected in a menstrual
cycle and urinary progesterone assayed on alternative days. We
consider the model

Yij = β1Agei + β2BMIi + θ(tij) + εij,

where Y is the logarithm of progesterone hormone level, BMI
is the body mass index, and θ(·) is a completely unspecified
smooth function. In our analysis, Age is centered at a median
of 36 years and divided by 100, BMI is centered at a median
of 26 kg/m2 and divided by 100, and tij is centered at a me-
dian of 14 days and divided by 10, all as in the study of Zhang
et al. (1998). We consider two types of covariance matrices, the
identity matrix and the estimated covariance matrix obtained by
Zhang et al. (1998), with εij decomposed as

εij = bi + Ui(tij) + δij

with bi ∼ N(0, φ), δij ∼ N(0, σ 2), and Ui(t) following the non-
homogeneous Ornstein–Uhlenbeck process with var(Ui(t)) =
exp{ξ0 + ξ1t + ξ2t2} and corr(Ui(t),Ui(s)) = ρ|t−s|, where φ =
.2617, σ 2 = .1366, ρ = .0963, ξ0 = −2.1563, ξ1 = 3.6710, and
ξ2 = −2.1598. Table 2 summarizes the results of data analysis
with different choices of bandwidth h and p = 1.

The table shows that both β1 and β2 are not significantly dif-
ferent from 0 at significance level .05. These findings are con-
sistent with the results obtained by Zhang et al. (1998) and He
et al. (2002). It also indicates that the standard errors obtained
with the estimated covariance matrix are smaller than those ob-
tained with the identity matrix.

4. ESTIMATION OF θ ( · )

The piecewise polynomial approximation serves as an inter-
mediate estimate for obtaining an efficient estimate of β in an
easy and straightforward fashion. It may not be appealing to use
it directly as the estimate of the function θ(·), because it is only
piecewise smooth. But with the efficient estimate of β , an ideal
estimate of θ(·) can be obtained via conventional local poly-
nomial regression smoothers. Specifically, let t0 be a fixed time
point. Let K(·) be a smooth symmetric kernel function with sup-
port on [−1,1], and define Kh(t) = K(t/h)/h. Then θ(t0) can be
estimated by the first component of

[
n∑

i=1

TT
i (t0)wiTi(t0)

]−1 n∑

i=1

TT
i (t0)wi(Yi − Xiβ̂), (8)

Table 2. Estimates of the Regression Coefficients for the
Hormone Data

Identity matrix Estimated covariance
I matrix Σ̂ i

h Parameter Estimate SE Estimate SE

.1 β1 1.2009 2.1864 .9840 1.9122
β2 −2.4408 2.6287 −2.7183 2.3562

.2 β1 1.5179 2.0751 1.0252 1.9070
β2 −2.6882 2.5001 −2.7502 2.3532

.3 β1 1.6404 2.0179 1.0652 1.9040
β2 −2.9303 2.4404 −2.9062 2.3513

.4 β1 1.7165 2.0057 1.1243 1.9034
β2 −2.7863 2.4455 −2.8150 2.3514

.5 β1 1.7898 2.0006 1.1631 1.9032
β2 −2.8327 2.4303 −2.8577 2.3511
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where

Ti(t0) =



1 (Ti1 − t0) · · · (Ti1 − t0)p

...
...

...
...

1 (TiJ − t0) · · · (TiJ − t0)p



 ,

wi = {K−1/2
i ViK

−1/2
i }−1,

and

Ki = diag{Kh(Ti1 − t0), . . . ,Kh(TiJ − t0)}.
Here the matrix inverse is the Moore–Penrose generalized in-
verse (see also Chen and Jin 2005). For any symmetric J × J
matrix A, its generalized inverse, denoted still by A−1, is
defined as a symmetric matrix such that AA−1A = A and
A−1AA−1 = A−1. Specifically, let A = � diag(λ1, . . . , λJ)�

T

by the decomposition of symmetric matrices, where � is
an orthonormal matrix, that is, �T = �−1. Then A−1 =
� diag(1/λ1, . . . ,1/λJ)�

T, where 1/0 denotes 0. Obviously,
the generalized inverse of the 0 matrix is the 0 matrix.

Under the very general conditions of the “existence of partial
density” (as defined in Chen and Jin 2005), the asymptotic bias
and variances of θ̂ (t0) can be derived in an entirely analogous
way to that of Chen and Jin (2005). But the notation is com-
plex, and the proof becomes very lengthy. For simplicity and
clarity, we present the properties of θ̂ (t0) under a relatively re-
strictive condition that the joint density of (Ti1, . . . ,TiJ)

T exists
(see Chen and Jin 2005 for the general conditions).

Some more notation is needed. Let e1 = (1,0, . . . ,0)T

be the (p + 1)-vector with first element 1 and the remain-
ing elements 0. Set µi = ∫

tiK(t)dt, νi = ∫
tiK2(t)dt, cp =

(µp+1, . . . ,µ2p+1)
T, S = (µi+j)0≤i,j≤p, and S∗ = (νi+j)0≤i,j≤p.

It is easy to see that S and S∗ are (p + 1) × (p + 1) matrices.
Let Hn be the σ -algebra generated by (Xi,Ti), i = 1, . . . ,n.

Proposition 2. Under conditions (C1) and (C2), if the joint
density of (Ti1, . . . ,TiJ)

T exists with the marginal density of Tij
being fj(·) for j = 1, . . . , J, then the following hold:

(a) The conditional bias of θ̂ (t0) is

Bias{θ̂ (t0)|Hn} = eT
1 S−1cp

θ(p+1)(t0)

(p + 1)! hp+1 + oP(hp+1). (9)

For even p, the main term is 0.
(b) The conditional variance of θ̂ (t0) is

var{θ̂ (t0)|Hn} = eT
1 S−1S∗S−1e1

∑J
j=1 σ 2

j (t0)fj(t0)/v2
j (t0)

nh(
∑J

j=1 fj(t0)/vj(t0))2

+ oP

(
1

nh

)
, (10)

where vj(t0) and σ 2
j (t0), j = 1, . . . , J, are the limits of the diag-

onal elements of Ṽ1 and that of �1 as t → t0. Expression (10) is
minimized when vj(t0) = σ 2

j (t0) for j = 1, . . . , J with minimum

eT
1 S−1S∗S−1e1

nh(
∑J

j=1 fj(t0)/σ 2
j (t0))

+ oP

(
1

nh

)
. (11)

Remark 5. Part (a) of Proposition 2 suggests using a local
polynomial with degree p an odd number to decrease the size of
bias. Part (b) shows that the asymptotic variance is minimized
when the true variances are used as the working variances.

Remark 6. Proposition 2 shows that the asymptotic condi-
tional bias for θ̂ (t0) is, at least to the leading term, the same as
that of θ̂ (t0) defined by replacing β̂ with the true β . As a result,
in deriving the asymptotic bias and variance of θ̂ (t0), we can
replace Yi − Xiβ̂ by θ(Ti) + εi.

Remark 7. In conventional fashion, it is also possible to ob-
tain the asymptotic conditional bias and variance of the estima-
tors of θ(k)(t0), k = 1, . . . ,p (see the results in Chen and Jin
2005; thm. 3.1 in Fan and Gijbels 1996).

5. EXTENSION TO GENERALIZED PARTIAL
LINEAR MODELS

The estimation method derived in Section 2 has a straight-
forward extension to cover generalized partial linear mod-
els. Specifically, suppose that Yij, conditioning on (Xi,Ti),
has conditional mean µ{XT

ijβ + θ(Tij)} and conditional vari-
ance 
ij, where µ(·) is a known function and 
ij may depend
on Xi,Ti,β , and θ(·). Let µ̇(·) denote the derivative of µ(·).
Along the lines of the methodology of generalized estimating
equations, an estimating equation is derived as

n∑

i=1

XT
i 	iV

−1
i {Yi − µ(Xiβ + Diα)} = 0 (12)

and
n∑

i=1

DT
i 	iV

−1
i {Yi − µ(Xiβ + Diα)} = 0, (13)

where 	i = diag(µ̇(Xiβ+Diα)), Vi = diag(
i1, . . . ,
iJ)
1/2 ×

Ri diag(
i1, . . . ,
iJ)
1/2, and Ri is the modeled conditional

correlation matrix of (εi1, . . . , εiJ). Along the lines of the proof
of Proposition 1 and using mainly the Taylor expansion, we can
show that under conditions (C1) and (C2), β̂ is asymptotically
normal with asymptotic variance as the limit of the upper-left
d × d submatrix of n
−1

n �n

−1
n , where


n =
n∑

i=1

(
XT

i

DT
i

)
	iV

−1
i 	i (Xi Di )

and

�n =
n∑

i=1

(
XT

i

DT
i

)
	iV

−1
i �iV

−1
i 	i (Xi Di ) .

Again, the most important features are that there is no need to
undersmooth to ensure the n1/2-consistency of β̂ and that β̂ is
automatically semiparametric efficient when the within-cluster
correlation is correctly specified. Moreover, it is easy to see that
there is a simple iterative algorithm for computing β̂ , which is
based on solving for α with a fixed β using (13) and solving for
β with a fixed α using (12).

6. DISCUSSION

The major advantage of using a piecewise local polynomial
approximation in the proposed estimation method is not only
that the n1/2-consistency and asymptotic normality of the slope
estimate is ensured for all regular working correlation matrices,
but also that the bandwidth selection is the least restrictive and
allows use of the conventional criterion. Under the assumption
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of normal errors, semiparametric efficiency is achieved when
the within-cluster correlation is correctly specified. Some exist-
ing estimation approaches ignore the within-cluster correlation
and possibly lead to loss of efficiency (e.g., He et al. 2002).
Some others estimate and use the within-cluster correlation but
do not in general ensure n1/2-consistency and efficiency (e.g.,
Lin and Carroll 2001a). We believe that the method developed
in this article outperforms existing estimation methods in very
important aspects.

APPENDIX: PROOFS OF THE PROPOSITIONS

Let (X,T, ε), (Xi,Ti, εi), i ≥ 1, be iid random triplets and let
ε̃, ε̃i, i ≥ 1, be iid random vectors of dimension J with conditional
means 0 and conditional variances Ṽ, Ṽi, i ≥ 1, given (X,T), (Xi,Ti),
i ≥ 1. For simplicity of notation, we assume that f n

k,l in the definition

of Ṽi is free of n. For convenience, ‖ · ‖ for any (Np + p) × K or
K × (Np + p) matrix, where K is fixed and does not vary with n, is
defined as the square root of the sum of squares of all entries of the
matrix. To avoid trivialities, the inverse of a noninvertible matrix is
defined as the 0 matrix.

Lemma A.1. Assume that condition (C2) holds for the matrix Ṽ.
Then there exist functions g̃1, . . . , g̃d defined on [0,1] such that for
any function g with E[gT(T)Ṽ−1g(T)] < ∞,

E
([X − G̃(T)]TṼ−1g(T)

) = 0, (A.1)

where G̃(T) = (g̃1(T), . . . , g̃d(T)) is a J × d matrix. The foregoing
equation can be expressed in the form of the Fredholm equations
for g̃k , k = 1, . . . ,d, as

J∑

j=1

E(v jj|Tj = t)fj(t)g̃k(t) +
J∑

j=1

J∑

l=1
l �=j

E
(
v jlg̃k(Tl)|Tj = t

)
fj(t)

=
J∑

j=1

J∑

l=1

E(v jlxlk|Tj = t)fj(t), (A.2)

where v jl is the limit of f n
j,l as n → ∞, xlk is the (l, k)th ele-

ment of X, and fj is the marginal density of Tj, the jth compo-
nent of T. In particular, if Ṽ is the identity matrix, then g̃k(t) =
(
∑J

j=1 E(xjk|Tj = t)fj(t))/(
∑J

j=1 fj(t)), and if J = 1, then g̃k(t) =
E(x1kv11|T1 = t)/E(v11|T1 = t).

Proof. For simplicity and without loss of generality, we present
proofs for p = 0 and d = 1. In this case, G̃(T) = g̃1(T). Set

Q = {
gT(T)Ṽ−1ε̃ : all functions g on [0,1]

such that E[gT(T)Ṽ−1g(T)] < ∞}
.

Note that Q is a linear subspace of the Hilbert space of random vari-
ables with mean 0 and finite variance, with the inner product being the
covariance.

Because Q is a linear subspace, let g̃T
1 (T)Ṽ−1ε̃ ∈ Q be the pro-

jection of XTṼ−1ε̃ onto Q. Then the orthogonality of the projection
implies that

E
[
(X − g̃1(T))TṼ−1g(T)

]

= E
[(

XTṼ−1ε̃ − g̃1(T)TṼ−1ε̃
)(

g(T)TṼ−1ε̃
)T]

= 0,

for any g satisfying E[gT(T)Ṽ−1g(T)] < ∞. Then (A.1) holds,
and (A.2) follows from (A.1) by direct calculation of expectation and
considering the Dirac delta functions for g. The proof is complete.

Lemma A.2. Assume that conditions (C1) and (C2) hold and that
Vi = Ṽi for i ≥ 1. Let D be defined based on T in the same way as
Di based on Ti, and set B̄n = nE(DTṼ−1D) and C̄n = nE(DTṼ−1X).
Let ai,1 ≤ i ≤ n, be any random vectors of J dimension. Then

∥∥∥∥∥

n∑

i=1

DT
i

∥∥∥∥∥ = OP
(
nh1/2) = ‖Cn‖, (A.3)

∥∥∥∥∥(CT
n B−1

n − C̄T
n B̄−1

n )

n∑

i=1

DT
i V−1

i ai

∥∥∥∥∥ = OP
(
n1/2h−1/2)

sup
1≤i≤n

‖ai‖,

(A.4)

and

1

n

n∑

i=1

‖G̃(Ti) − DiB
−1
n Cn‖2 = oP(1). (A.5)

Proof. For notational simplicity but without loss of generality,
we prove the lemma for the case with p = 0 and d = 1; the proofs
of general cases are only slightly different. Throughout the proof,
λmax and λmin are the maximum and minimum eigenvalues of a square
matrix, and c is a certain large but fixed constant that does not de-
pend on n or b. Observe that for any vector b = (b1, . . . ,bN)T of
N-dimension, DTDb = (b1l1, . . . ,bNlN)T, where lk = ∑J

j=1 I(Tj ∈
Ik). Then bTE(DTD)b = E(‖Db‖2) = ∑N

k=1 b2
k
∑J

j=1 P(Tj ∈ Ik).

Note that inf{∑J
j=1 fj(t) : t ∈ [0,1]} > 0. Therefore, (h/c)‖b‖2 ≤

E(‖Db‖2) ≤ ch‖b‖2 for some fixed c > 0 and all b ∈ R
N . Hence

h

c
≤ λmin(E[DTD]) ≤ λmax(E[DTD]) ≤ ch. (A.6)

Write
∥∥∥∥∥

n∑

i=1

DT
i Di − nE(DTD)

∥∥∥∥∥

2

= sup
b∈RN

{∥∥∥∥∥

[ n∑

i=1

DT
i Di − nE(DTD)

]
b

∥∥∥∥∥

2/
‖b‖2

}

= sup
b∈RN

{ N∑

k=1

b2
k

{ n∑

i=1

J∑

j=1

[I(Tij ∈ Ik) − P(Tij ∈ Ik)]
}2/

‖b‖2

}

≤ sup
k=1,...,N

∣∣∣∣∣

n∑

i=1

J∑

j=1

[I(Tij ∈ Ik) − P(Tij ∈ Ik)]
∣∣∣∣∣

2

.

Applying Bernstein’s inequality (e.g., de la Peña and Giné 1999,
p. 166), we have, for all n ≥ 1,

P

(
sup

k=1,...,N

∣∣∣∣∣

n∑

i=1

J∑

j=1

[I(Tij ∈ Ik) − P(Tij ∈ Ik)]
∣∣∣∣∣ > c(nh log(n))1/2

)

≤
N∑

k=1

P

(∣∣∣∣∣

n∑

i=1

J∑

j=1

[I(Tij ∈ Ik) − P(Tij ∈ Ik)]
∣∣∣∣∣ > c(nh log(n))1/2

)

≤ cn−2,

where c is some large but fixed positive constant. The Borel–Cantelli
lemma ensures that

∥∥∥∥∥

n∑

i=1

DT
i Di − nE(DTD)

∥∥∥∥∥ = O
({nh log(n)}1/2)

, (A.7)
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with probability 1 for all large n. Combining (A.6) with (A.7), we have,
with probability 1 for all large n,

nh

c
≤ λmin

( n∑

i=1

DT
i Di

)
≤ λmax

( n∑

i=1

DT
i Di

)
≤ nhc

and

(nh)−1

c
≤ λmin

({ n∑

i=1

DT
i Di

}−1)

≤ λmax

({ n∑

i=1

DT
i Di

}−1)

≤ (nh)−1c

for some large but fixed c > 0. Therefore,

‖B−1
n ‖ + ‖B̄−1

n ‖ = OP((nh)−1) and

(A.8)
‖Bn‖ + ‖B̄n‖ = OP(nh),

because Ṽi and Ṽ−1
i are assumed to be uniformly bounded. Write

E

(∥∥∥∥∥

n∑

i=1

DT
i

∥∥∥∥∥

2)
=

J∑

j=1

E

( N∑

k=1

[ n∑

i=1

I(Tij ∈ Ik)

]2)

= O(1)

J∑

j=1

N∑

k=1

(
(nh)2 +

n∑

i=1

var{I(Tij ∈ Ik)}
)

= O(1)

J∑

j=1

N∑

k=1

(
(nh)2 + nh

)

= O(n2h),

because N = O(1/h). Therefore, ‖∑n
i=1 DT

i ‖ = OP(nh1/2) and
‖∑n

i=1 DT
i ai‖ = OP(nh1/2) sup1≤i≤n ‖ai‖ for any random vectors

ai ∈ R
J . Hence ‖Cn‖ = OP(nh1/2) and (A.3) holds because Xi and

Ṽ−1
i are assumed to be uniformly bounded. With similar calculations,

we can show that E(‖Cn − C̄n‖2) = O(n) and ‖C̄n‖ = OP(nh1/2).
Moreover,

E
(‖(Bn − B̄n)b‖2) ≤ nhc‖b‖2 (A.9)

for some fixed c > 0 and for all b ∈ R
N . Apply (A.8) and (A.9) and

write

‖B−1
n Cn − B̄−1

n C̄n‖
= ∥∥B−1

n [Cn − C̄n − (Bn − B̄n)B̄−1
n C̄n]∥∥

≤ ‖B−1
n ‖(‖Cn − C̄n‖ + ‖(Bn − B̄n)B̄−1

n C̄n‖)

= OP((nh)−1)
[
O

(
n1/2) + OP

(
n1/2h1/2)‖B̄−1

n C̄n‖]

= OP((nh)−1)
[
O

(
n1/2) + OP

(
n1/2h1/2)

(nh)−1nh1/2]

= OP
(
n−1/2h−1)

.

Therefore,
∥∥∥∥∥(CT

n B−1
n − C̄T

n B̄−1
n )

n∑

i=1

DT
i Viai

∥∥∥∥∥

= OP
(
n−1/2h−1nh1/2)

sup
1≤i≤n

‖ai‖

= OP
(
(nh−1)1/2)

sup
1≤i≤n

‖ai‖,

and (A.4) holds. Moreover,

1

n

n∑

i=1

‖DT
i (B−1

n Cn − B̄−1
n C̄n)‖2

= O

(
1

n

)
‖B−1

n Cn − B̄−1
n C̄n‖2

∥∥∥∥∥

n∑

i=1

DiD
T
i

∥∥∥∥∥

= OP
(
n−1(n−1h−2)nh

) = OP((nh)−1)

= oP(1). (A.10)

Set Qh = {g(T)TṼ−1ε̃ : g(t) = ∑N
k=1 ckIk(t), where ck, k = 1, . . . ,N,

are real constants}. Then [DB̄−1
n C̄n]TṼ−1ε̃ ∈ Qh, and it is the pro-

jection of XTṼ−1ε̃ onto Qh. Recall the definition of Q in the proof
of Lemma A.1. Because limh→0 Qh = Q, the projection of XTṼ−1ε̃

onto Qh also converges to that onto Q, that is,

E
{∥∥[DB̄−1

n C̄n − G̃(T)]TṼ−1ε̃
∥∥2} → 0.

It follows that E‖DB̄−1
n C̄n − G̃(T)‖2 → 0. Therefore,

1

n

n∑

i=1

∥∥DiB̄
−1
n C̄n − G̃(Ti)

∥∥2 = oP(1). (A.11)

Then (A.5) follows from (A.10) and (A.11). The proof is complete.

Lemma A.3. Assume that conditions (C1) and (C2) hold and that
Vi = Ṽi. Then An/n → �∗

2 in probability and n1/2A−1
n

∑n
i=1 ZT

i εi →
N(0,�∗), where �∗ = (�∗

2)−1�∗
1(�∗

2)−1 and �∗
1 and �∗

2 are as de-

fined in (A.13) and (A.12). Moreover, nA−1
n

∑n
i=1(ZT

i �iZi)A−1
n con-

verges to �∗ in probability.

Proof. Recall the definition of G̃ in Lemma A.1. Write

1

n
An = 1

n

n∑

i=1

ZT
i Xi

= 1

n

n∑

i=1

(Xi − G̃(Ti))
TV−1

i Xi

+ 1

n

n∑

i=1

(
G̃(Ti) − DiB

−1
n Cn

)TV−1
i Xi.

The second term is of order OP(1/n)
∑n

i=1 ‖G̃(Ti) − DiB−1
n Cn)‖,

which converges to 0 in probability by (A.5) of Lemma A.2. The first
term is an average of iid random variables. It then follows from the law
of large numbers that (1/n)An converges in probability to

�∗
2 ≡ E

[
(X − G̃(T))TṼ−1(X − G̃(T))

]

= E
[
(X − G̃(T))TṼ−1X

]
. (A.12)

Write

n−1/2
n∑

i=1

ZT
i εi = n−1/2

n∑

i=1

(Xi − G̃(Ti))
TV−1

i εi

+ n−1/2
n∑

i=1

(
G̃(Ti) − DiB

−1
n Cn

)TV−1
i εi.

The conditional variance of the second term is of order (1/n) ×∑n
i=1 ‖G̃(Ti) − DiB−1

n Cn‖2, which converges to 0 in probability
by (A.5) of Lemma A.2. Therefore, the second term is oP(1). The
summands of the first term are iid random vectors with mean 0 and
variance

�∗
1 = E

[
(X − G̃(T))TṼ−1�Ṽ−1(X − G̃(T))

]
, (A.13)
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where � = var(ε|X,T). Hence it follows from the classical central
limit theorem that it converges in distribution to N(0,�∗

1). As a result,

n1/2A−1
n

n∑

i=1

ZT
i εi → N(0,�∗),

where �∗ = (�∗
2)−1�∗

1(�∗
2)−1 can be consistently approximated by

nA−1
n

∑n
i=1(ZT

i �iZi)A−1
n . The proof is complete.

Lemma A.4. Assume that conditions (C1) and (C2) hold and that
Vi = Ṽi. Then

n∑

i=1

ZT
i θ(Ti) = oP

(
n1/2)

. (A.14)

Proof. Recall the definition of Zi in (3) and the fact that
n∑

i=1

ZT
i Xi = An and

n∑

i=1

ZT
i Di = 0. (A.15)

It follows that E(ZT
1 D1) = · · · = E(ZT

n Dn) = 0. Define Gi = {Diα :
for all α} as the collection of all J-vectors of the form g(Ti), where
g is piecewise polynomial of order p as given in (2). Let � de-
note the projection of a random vector onto a linear space of ran-
dom vectors of the same dimension. Write �(θ(Ti)|Gi) = Diα for
some (Np + p)-vector α and let 	i = θ(Ti) − Diα. Likewise, let
�(G̃(Ti)|Gi) = Diα̃ for some (Np + p) × d matrix α̃, and let 	̃i =
G̃(Ti) − Diα̃. Note that 	i and 	̃i are the d-vector and J × d matrix.
The Taylor expansion implies that ‖	i‖ = O(hp+1) = ‖	̃i‖. By the
definitions of B̄n and C̄n, we know that E([V−1

i (Xi − DiB̄−1
n C̄n)]T ×

Di) = 0. Lemma A.1 implies that E([V−1
i (Xi − G̃(Ti))]TDi) = 0.

Hence E([G̃(Ti) − DiB̄−1
n C̄n]TV−1

i Di) = 0. Therefore,

E
(
	̃T

i V−1
i 	̃i

)

= E
([G̃(Ti) − DiB̄

−1
n C̄n]TV−1

i [G̃(Ti) − DiB̄
−1
n C̄n])

+ E
([Di(α̃ − B̄−1

n C̄n)]TV−1
i [Di(α̃ − B̄−1

n C̄n)])

≥ E
([G̃(Ti) − DiB̄

−1
n C̄n]TV−1

i [G̃(Ti) − DiB̄
−1
n C̄n]).

As a result, E(‖G̃(Ti) − DiB̄−1
n C̄n‖2) = O(1)E(	̃T

i V−1
i 	̃i)

= O(h2p+2) and ‖G̃(Ti) − DiB̄−1
n C̄n‖ = OP(hp+1). Observe (A.15)

and write
n∑

i=1

ZT
i θ(Ti)

=
n∑

i=1

ZT
i {θ(Ti) − Diα}

=
n∑

i=1

ZT
i 	i

=
n∑

i=1

(Xi − DiB̄
−1
n C̄n)TV−1

i 	i

+
n∑

i=1

(DiB̄
−1
n C̄n − DiB

−1
n Cn)TV−1

i 	i

=
n∑

i=1

[Xi − G̃(Ti)]TV−1
i 	i +

n∑

i=1

[G̃(Ti) − DiB̄
−1
n C̄n]TV−1

i 	i

+ (C̄T
n B̄−1

n − CT
n B−1

n )

n∑

i=1

DT
i V−1

i 	i

= (I) + (II) + (III), say.

The summands of the first term (I) are n independent random vectors
of d dimension, and the mean is 0 by Lemma A.1. The variance of (I)
is on the order of nh2(p+1) as 	i = O(hp+1). Therefore, (I) is of order
oP(n1/2). The second term (II) is of order OP(nh2p+2) = oP(n1/2)

by the preceding argument. It follows from (A.4) of Lemma A.2
that the third term (III) is of order OP(n1/2h−1/2) sup1≤i≤n ‖	i‖ =
OP(n1/2h−1/2hp+1) = oP(n1/2). The proof is complete.

Proof of Proposition 1

Proof of (a). Write

β̂ = A−1
n

n∑

i=1

ZT
i Yi

= A−1
n

n∑

i=1

ZT
i [Xiβ + θ(Ti) + εi]

= β + A−1
n

n∑

i=1

ZT
i θ(Ti) + A−1

n

n∑

i=1

ZT
i εi. (A.16)

If Vi = Ṽi, then (6) follows from Lemmas A.3 and A.4. In gen-
eral, Vi �= Ṽi. Replacing Vi by Ṽi, we can analogously define
Ãn, B̃n, and C̃n. It is straightforward to verify that

∑n
i=1 Z̃T

i Xi = Ãn

and
∑n

i=1 Z̃T
i Di = 0. Note that condition (C2) is sup1≤i≤n ‖Ṽ−1

i −
V−1

i ‖ = OP(n−1/4). Observe (A.3)–(A.5) and (A.8) of Lemma A.2.

We can use the Delta method to show that ‖B̃−1
n − B−1

n ‖ =
OP(n−1/4)‖B̃−1

n ‖ = OP(n−5/4h−1), ‖C̃n − Cn‖ = OP(n3/4h1/2) =
OP(n−1/4)‖C̃n‖, and ‖B̃−1

n C̃n − B−1
n Cn‖ = OP(n−1/4h−1/2). Ob-

serve that ‖θ(Ti) − Diα‖ = O(hp+1) = o(n−1/4) by condition (C1),
and that ‖∑n

i=1 DT
i Ṽ−1

i 	i‖ = OP(nh1/2hp+1) = oP(n3/4h1/2).
Write

n∑

i=1

ZT
i θ(Ti)

=
n∑

i=1

ZT
i {θ(Ti) − Diα}

=
n∑

i=1

(Xi − DiB
−1
n Cn)T{V−1

i − Ṽ−1
i }	i

+ (B̃−1
n C̃n − B−1

n Cn)T
n∑

i=1

DT
i Ṽ−1

i 	i +
n∑

i=1

Z̃T
i 	i

= OP
(
nn−1/4hp+1) + oP

(
n−1/4h−1/2n3/4h1/2) +

n∑

i=1

Z̃T
i 	i

=
n∑

i=1

Z̃T
i 	i + oP

(
n1/2)

=
n∑

i=1

Z̃T
i θ(Ti) + oP

(
n1/2)

= oP
(
n1/2)

,

where the last equality holds by Lemma A.4. Analogously, it can be
shown that ‖An/n − Ãn/n‖ = OP(n−1/4) = oP(1) and

∑n
i=1(Z̃i −

Zi)
Tεi = oP(n1/2). Hence (6) holds in general, and the proof of

part (a) is complete.
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Proof of (b). Under the normality assumption, the log-likelihood
function based on the ith cluster is

loglik(β, θ) ∝ −1

2
{Yi − Xiβ − θ(Ti)}T�−1

i {Yi − Xiβ − θ(Ti)}.
Differentiating with respect to β and (the smoothing function) θ(·), we
obtain

l̇β = XT
i �−1

i εi and l̇θ = {g(Ti)}T�−1
i εi,

where g is an arbitrary smooth function. Let xik be the kth column
of Xi. Denote the projection of xT

ik�
−1
i εi onto the linear space spanned

by all l̇θ ’s as {g∗
k (Ti)}T�−1

i εi. Then the G̃(T) in the proof of (a) be-
comes G∗(T) = (g∗

1(T), . . . ,g∗
d(T)). Note that the efficient score for β

is (Xi − G∗(Ti))
T�−1

i εi, and the efficient Fisher information for β is

I(β) ≡ E
{
(Xi − G∗(Ti))

T�−1
i (Xi − G∗(Ti))

}

= E
{
(Xi − G∗(Ti))

T�−1
i Xi

}
.

In contrast, if Vi is replaced by �i, then it is seen that �∗
1 and �∗

2 in the
proof of (a) satisfies �∗

1 = �∗
2 = I(β). Therefore, β̂ is semiparametric

efficient with asymptotic variance {I(β)}−1. The proof is complete.

Proof of Proposition 2

By (A.16),

(8) = I + II,

where

I =
[ n∑

i=1

TT
i (t0)wiTi(t0)

]−1

×
[ n∑

i=1

TT
i (t0)wiθ(Ti) −

n∑

i=1

TT
i (t0)wiXiA

−1
n

n∑

j=1

ZT
j θ(Tj)

]

and

II =
[ n∑

i=1

TT
i (t0)wiTi(t0)

]−1

×
n∑

i=1

[
TT

i (t0)wi −
n∑

j=1

TT
j (t0)wjXjA

−1
n ZT

i

]
εi.

It is easy to see that the asymptotic bias of θ̂ (t0) can be calculated from
the term I and its variance can be calculated from the term II.

Proof of (a). By (A.14) and the Taylor expansion, it follows that

Bias{θ̂ (t0)|Hn}
= eT

1 I − θ(t0)

= eT
1

[ n∑

i=1

TT
i (t0)wiTi(t0)

]−1[ n∑

i=1

TT
i (t0)wiθ(Ti)

]

+ oP
(
n−1/2) − θ(t0)

= eT
1

[ n∑

i=1

TT
i (t0)wiTi(t0)

]−1

×
[ n∑

i=1

TT
i (t0)wi(Ti − t0)p+1

(
θ(p+1)(t0)

(p + 1)! + o(1)

)]

+ oP
(
n−1/2)

. (A.17)

The (k + 1, l + 1)th (k, l = 0, . . . ,p) element of
∑n

i=1 TT
i (t0)wi ×

Ti(t0) is

n∑

i=1

J∑

k1=1

J∑

k2=1

(
Tik1 − t0

)kwi,k1,k2

(
Tik2 − t0

)l
, (A.18)

where wi,k1,k2 is the (k1, k2)th element of (K−1/2
i ViK

−1/2
i )−1. The

condition that the joint density of (Ti1, . . . ,TiJ) exists implies that

P
(
at least two of {Kh(Tij − t0) : j = 1, . . . , J} are positive

) = O(h2).

(A.19)

This implies that as h → 0,

wi,k1,k2 =






Kh
(
Tik1 − t0

) (1 + o(1))

ṽi,k1,k1

if k1 = k2

K1/2
h

(
Tik1 − t0

)
K1/2

h

(
Tik2 − t0

)
o(1) otherwise,

(A.20)

where ṽi,k1,k1 is the (k1, k1)th element of V−1
i .

It follows from the law of large numbers, condition (C2), and (A.20)
that

1

n

n∑

i=1

J∑

k1=1

J∑

k2=1

(
Tik1 − t0

)kwi,k1,k2

(
Tik2 − t0

)l

= hk+l

{
µk+l

J∑

j=1

fj(t0)

vj(t0)
+ o(1)

}
,

where vj(t0) is the limit of ( j, j)th element of Ṽ1. Therefore,

1

n

n∑

i=1

TT
i (t0)wiTi(t0) =

{ J∑

j=1

fj(t0)

vj(t0)

}
HSH(1 + o(1)), (A.21)

where H = diag(1,h, . . . ,hp). Similarly, we can show that

1

n

n∑

i=1

TT
i (t0)wi(Ti − t0)p+1

= hp+1Hcp

( J∑

j=1

fj(t0)

vj(t0)

)
(1 + o(1)). (A.22)

Thus (9) follows from condition (C1), (A.17), (A.21), and (A.22). It is
well known that eT

1 S−1cp = 0 if p is even.

Proof of (b). From the expression of II and var(εi|Hn) = �i, it is
easy to see that

var{θ̂ (t0)|Hn} = eT
1 var{II|Hn}e1

= eT
1

[ n∑

i=1

TT
i (t0)wiTi(t0)

]−1

Ln

×
[ n∑

i=1

TT
i (t0)wiTi(t0)

]−1

e1, (A.23)

where

Ln =
n∑

i=1

[(
TT

i (t0)wi −
n∑

j=1

TT
j (t0)wjXjA

−1
n ZT

i

)

× �i

(
TT

i (t0)wi −
n∑

j=1

TT
j (t0)wjXjA

−1
n ZT

i

)T]

= II1 − II2 − II3 + II4,
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with

II1 =
n∑

i=1

[TT
i (t0)wi�iwiTi(t0)],

II2 =
[ n∑

i=1

TT
i (t0)wiXi

]
A−1

n

[ n∑

i=1

ZT
i �iwiTi(t0)

]
,

II3 = IIT
2 ,

and

II4 =
[ n∑

i=1

TT
i (t0)wiXi

]
A−1

n

[ n∑

i=1

ZT
i �iZi

]
A−1

n

[ n∑

i=1

XT
i wiTi(t0)

]
.

By the law of large numbers and condition (C2), it follows that

1

n
II2 = O(1) and

1

n
II4 = O(1).

Similar to (A.21),

1

n
II1 = h−1

{ J∑

j=1

σ 2
j (t0)

fj(t0)

v2
j (t0)

}
HS∗H(1 + o(1));

thus

Ln = nh−1

{ J∑

j=1

σ 2
j

fj(t0)

v2
j (t0)

}
HS∗H(1 + o(1)). (A.24)

By (A.21), (A.23), and (A.24), the result (10) follows.
Application of the Cauchy–Schwarz inequality leads to

[ J∑

j=1

σ 2
j (t0)

fj(t0)

v2
j (t0)

][ J∑

j=1

fj(t0)

σ 2
j (t0)

]
≥

[ J∑

j=1

fj(t0)

vj(t0)

]2

.

The equality holds if and only if vj(t0) = σ 2
j (t0) for j = 1, . . . , J.

Therefore,
∑J

j=1 σ 2
j (t0)fj(t0)/v2

j (t0)

[∑J
j=1 fj(t0)/vj(t0)]2

is minimized if and only if vj(t0) = σ 2
j (t0) for j = 1, . . . , J with the

minimum

1
∑J

j=1 fj(t0)/σ 2
j (t0)

.

This completes the proof of (b).

[Received September 2003. Revised April 2005.]
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