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Chapter 1

Unidimensionality, Agreement and
Concordance Probability

The evaluation and comparison of various methods often arise in medical
research. For example, the evaluation of reproducibility of a new measurement
technique often needs a comparison with the established technique, and image
interpretation is often read by two or more observers. In this chapter, we provide a
review of the measures of agreement and association, describe the statistical models
underlying the Cronbach’s alpha coefficient (CAC) and the backward reliability
curve (BRC), the kappa coefficient, and present a general approach based on the
concept of concordance probability. In particular, we illustrate the relationship
between the concordance probability and various existing measures of agreement and
association, namely Kendall’s τ , Somer’s D, area under receiver operating
characteristic (ROC) curve and Harrell’s c-index. In addition, we review the
estimation of concordance probability and present its large sample properties. Recent
developments in the analysis of right censored data are also presented.

1.1. Introduction

The evaluation and comparison of various methods often arise in medical
research. For example, the evaluation of reproducibility of a measurement technique
often needs a comparison with the established technique, and the interpretation of a
computerized tomography (CT) or magnetic resonance imaging (MRI) scan is often
read by two or more observers. There is considerable literature on the measure of
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agreement (see [CHO 04], [BAR 07], [WAT 10], [SHO 04] and [LIN 10]). The
methods vary with different types of measurement, i.e. continuous or categorical
measurements. When the response variable is continuous, there are several intuitive
approaches, namely comparison of means, Cronbach’s coefficient alpha (CAC),
various correlation coefficients and the test of slope being 1 in a simple linear
regression, as well as alternative methods, the limits of agreement [BLA 86,
BLA 99], the concordance correlation coefficient [LIN 89], mean squared deviation
and total deviation index [LIN 00], and coverage probability approach [LIN 02].
When the response variable is categorical, kappa statistic, Somer’s D-statistic and
logistic regression are commonly used. When one measure is binary and the other
measure is continuous, the methods of the ROC curve and logistic regression
approach are often applied. These methods are related to typical concordance
correlation between repeated measurements through an underlying linear or
nonlinear parametric model. Recently developed concordance probability is a
non-parametric approach. The concordance probability is commonly used as a
measure of discriminatory power and predictive accuracy of statistical models. We
show that the concordance probability also provides a unified measure of agreement
for different types of measurement.

In this chapter, we present a review of the statistical models underlying the CAC
and the BRC in section 1.2, and the kappa coefficient in section 1.3. In section 1.4, we
introduce the concordance probability and describe its relationship with Kendall’s τ ,
Somer’s D and area of ROC curve of sensitivity and 1–specificity for different cutoffs.
In section 1.5, we review the estimation of concordance probability and present its
large sample properties. In section 1.6, we present recent developments on how to use
the concordance probability to assess the agreement among different measures. We
present the extension of the approach to the right censored data in section 1.7 and
conclude with some discussion in section 1.8.

1.2. From reliability to unidimensionality: CAC and curve

1.2.1. Classical unidimensional models for measurement

Latent variable models involve a set of observable variables
A = {X1,X2, . . . ,Xk} and a latent (unobservable) variable θ of dimension d ≤ k. In
such models, the dimensionality of A is captured by the dimension of θ, the value of
d. When d = 1, the dimensionality of set A is called unidimensional.

In a health-related quality of life (HrQoL) study, measurements are taken with an
instrument: the questionnaire, which consists of questions (or items). In such cases,
the Xij represents the random response of the jth question by the ith subject and the
Xj denotes the random variable generating responses to the jth question.

The parallel model is a classical latent variable model describing the
unidimensionality of a set A = {X1,X2, . . . ,Xk} of quantitative observable
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variables. Let Xij be the measurement of subject i, given by a variable Xj ,
i = 1, . . . , n, j = 1, . . . , k, then:

Xij = τij + εij , [1.1]

where τij is the unknown true measurement corresponding to the observed
measurement Xij and εij a measurement error. The model is called a parallel model
if the τij can be divided as:

τij = βj + θi,

where βj is an unknown fixed parameter (non-random) representing the effect of the
jth variable, and θi is an unknown random parameter effect of the ith subject.

It is generally assumed that θi has zero mean and unknown standard deviation
σθ. It should be noted that the zero-mean assumption is an arbitrary identifiability
constraint with consequence on the interpretation of the parameter: its value must be
interpreted comparatively to the mean population value. In HrQoL setting, θi is the
true latent HrQoL that the clinician or health scientist wants to measure and analyze.
It is a zero mean individual random part of all observed subject responses Xij , the
same whatever the variable Xj (in practice, a question j of an HrQoL questionnaire). It
is also generally assumed that εij are independent random errors with zero mean and
standard deviation σ corresponding to the additional measurement error. Moreover,
the true measure and the error are assumed to be uncorrelated, i.e. cov(θi, εij) = 0.
This model is known as the parallel model, because the regression lines relating any
observed item Xj , j = 1, . . . , k, and the true unique latent measure θi are parallel.

Model [1.1] can be obtained in an alternative way through modeling the
conditional moments of the observed responses. Specifically, the conditional mean of
Xij can be specified as:

E[Xij |θi;βj ] = βj + θi, [1.2]

where βj , j = 1, . . . , k, are fixed effects and θi, i = 1, . . . , n, are independent random
effects with zero mean and standard deviation σθ. The conditional variance of Xij is
specified as:

V ar[Xij |θi;βj ] = V ar(εij) = σ2. [1.3]

Assumptions [1.2] and [1.3] are classical in experimental design. The model
defines relationships between different kinds of variable: the observed score Xij , the
true score τij and the measurement error εij . It is significant to make some remarks
about the assumptions underlying this model. The random part of the true measure
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given by response by the ith individual does not vary with the question number j as
the θi does not depend on j, j = 1, . . . , k. The model is unidimensional in the sense
that the random part of all observed variables (questions Xj) is generated by the
common unobserved variable (θi). More precisely, let X∗

ij = Xij − βj be the
calibrated version of the response to the jth item by the ith subject, then models [1.2]
and [1.3] can be rewritten as:

E[X∗
ij |θi;βj ] = θi, for ∀j, [1.4]

along with the same assumptions on β and θ and the conditional variance model [1.3].

When both θi and εij are normally distributed, then we have the so-called
conditional independence property: whatever j and j�, two observed items Xj and
Xj� are independent conditional to the latent θi.

1.2.2. Reliability of an instrument: CAC

A measurement instrument yields values that we call the observed measure. The
reliability ρ of an instrument is defined as the ratio of two variances of the true over
the observed measure. Under the parallel model, we can show that the reliability of
any variable Xj (as an instrument to measure the true value) is given by:

ρ =
σ2
θ

σ2
θ + σ2

. [1.5]

This coefficient is also known as the intra-class coefficient. The reliability
coefficient, ρ, can easily be interpreted as a correlation coefficient between the true
measure and the observed measure. When the parallel model is assumed, the
reliability of the sum of k variables is:

ρ̃k =
kρ

kρ+ (1− ρ)
. [1.6]

This formula is known as the Spearman–Brown formula [BRO 10, SPE 10].

The Spearman–Brown formula shows a simple relationship between ρ̃k and k, the
number of variables. It is easy to see that ρ̃k is an increasing function of k.

The maximum likelihood estimator of ρ̃k, under the parallel model with
normal distribution assumptions, is known as CAC [CRO 51, BLA 97], which is
denoted as α:

α =
k

k − 1

⎛⎜⎜⎜⎝1−

k<
j=1

S2
j

S2
tot

⎞⎟⎟⎟⎠ , [1.7]
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where

S2
j =

1

n− 1

n;
i=1

(Xij −Xj)
2

and

S2
tot =

1

nk − 1

n;
i=1

k;
j=1

(Xij −X)2.

Under the parallel model, the variance–covariance matrix of the observed items
Xj and the latent trait θ is:

VX,θ =

⎛⎜⎜⎜⎜⎝
σ2
θ + σ2 σ2

θ · · · · · ·σ2
θ σ2

θ

σ2
θ σ2

θ + σ2 σ2
θ · · ·σ2

θ σ2
θ

: : : : :
σ2
θ · · · σ2

θ σ2
θ + σ2 σ2

θ

σ2
θ · · · · · · σ2

θ σ2
θ

⎞⎟⎟⎟⎟⎠ ,

and the corresponding correlation matrix of the observed items Xj and the latent trait
θ is:

RX,θ =

⎛⎜⎜⎜⎜⎝
1 ρ · · · · · · ρ √

ρ
ρ 1 ρ · · · ρ √

ρ
: : : : :
ρ · · · ρ 1

√
ρ√

ρ · · · · · · √
ρ 1

⎞⎟⎟⎟⎟⎠ .

The marginal covariance VX and correlation matrix RX of the k observed
variables Xj , under the parallel model, are:

VX =

⎛⎜⎜⎝
σ2
θ + σ2 σ2

θ · · · · · ·σ2
θ

σ2
θ σ2

θ + σ2 σ2
θ · · ·σ2

θ

: : : :
σ2
θ · · · σ2

θ σ2
θ + σ2

⎞⎟⎟⎠
and

RX =

⎛⎜⎜⎝
1 ρ · · · · · · ρ
ρ 1 ρ · · · ρ
: : : :
ρ · · · ρ 1

⎞⎟⎟⎠ .
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This structure is known as a compound symmetry-type structure. It is easy to show
that the reliability of the sum of k items given in [1.7] can be expressed as:

ρ̃k =
k

k − 1

�
1− trace(VX)

J �VXJ

�
, [1.8]

with J a vector with all components being 1, and

α =
k

k − 1

�
1− trace(SX)

J �SXJ

�
, [1.9]

where SX is the observed variance, empirical estimation of SX . There is, even in the
recent literature, an understanable confusion between Cronbach’s alpha as a
population parameter (theoretical reliability of the sum of items) or its sample
estimate.

In addition, it is easy to show a direct connection between the CAC and the
percentage of variance of the first component in principal component analysis (PCA),
which is often used to assess unidimensionality. The PCA is mainly based on the
analysis of the latent roots of VX or RX (or, in practice their sample estimate). The
matrix RX has only two different latent roots, the greater root is λ1 = (k − 1)ρ + 1,
and the other multiple roots are λ2 = λ3 = λ4 = · · · = 1− ρ = k−λ1

k−1 . So, using the
Spearman–Brown formula, we can express the reliability of the sum of the k
variables as ρ̃k = k

k−1 (1− 1
λ1
).

This clearly indicates a monotonic relationship between ρ̃k, which can be
consistently estimated by the CAC, and the first latent root λx, which in practice is
naturally estimated by the corresponding observed sample correlation matrix and
thus the percentage of variance of the first principal component in a PCA. So, CAC
can also be considered as a measure of unidimensionality.

Nevertheless such a measure is not very useful, because it is easy to show, using
the Spearman–Brown formula [BRO 10, SPE 10], that under the parallel model
assumption, the reliability of the total score is an increasing function of the number
of variables.

Therefore, if the parallel model is true, increasing the number of items will
increase the reliability of a questionnaire. Moreover, the coefficient lies between 0
and 1. Zero value indicates a totally unreliable scale, while unit value means that the
scale is perfectly reliable. Of course, in practice, these two scenarios never occur.

The CAC is an estimate of the reliability of the raw-score (sum of item responses)
of a person if the model generating those responses is a parallel model.
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The result can be used as a criterion for checking the unidimensionality of such
responses when those item responses are generated by a parallel model.

In the next section, we show how to build and to use a more operational and more
valid criterion to measure the unidimensionality of a set of items: the BRC (the α-
curve).

1.2.3. Unidimensionality of an instrument: BRC

Statistical validation of unidimensionality can be performed through a goodness-
of-fit test of the parallel model or Rasch model. There is a vast literature on the subject,
see [MES 12]. The goodness-of-fit tests generally do not have power because their null
hypotheses do not focus on unidimensionality: this includes indirectly other additional
assumptions (the normality for parallel models, local independence for Rasch models
etc.) As a result, the departure from the null hypotheses is not necessarily an indication
of the departure from a unidimensionality.

In the following, we describe a graphical tool, which is helpful for checking the
unidimensionality of a set of variables. It draws a curve in a stepwise manner, using
estimates of reliability of subscores (total of a subset included in the starting set).

In the first step, the CAC will be calculated with all the variables. Then, at every
successive step, the CAC will be calculated by deleting one variable each time, and
the variable whose deletion yields the maximum CAC value among those CAC values
will be removed. This procedure is repeated until only two variables remain. If the
parallel model is true, increasing the number of variables increases the reliability of
the total score, which can be consistently estimated by Cronbach’s alpha. The number
of variables and the CAC values can be plotted, which would yield a curve. This
procedure is called the backward reliability curve (BRC). If there is a decrease of such
a curve after adding a variable, it would strongly indicate that the added variable does
not constitute a unidimensional set with variables already in the curve.

Drawing the BRC of a set of unidimensional items is an essential tool in the
validation process of an HrQoL questionnaire. When we develop an HrQoL
questionnaire, the main goal is generally to measure some unidimensional latent
subjective traits (such as sociability and mobility). The use of the BRC in empirical
data is very helpful for detection of non-unidimensional subsets of items. When the
BRC is not an increasing curve, we can remove one or more items to obtain an
increasing curve [MES 13]. If the reduced set gives an increasing curve, it is in some
sense more valid in terms of unidimensionality than the previous set.
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1.3. Agreement between binary outcomes: the kappa coefficient

1.3.1. The kappa model

The CAC in the previous section is a natural estimate of a monotonic function of
the intra-class coefficient. In the case of multiple items, the parallel model leads to
equal variances among marginal distributions of the items and equal covariances
between any pairs of items. It can be shown that the formula of an intra-class
coefficient is a correlation coefficient under such a constraint [MAK 88]. We
illustrate this with the simple case of two binary items X and Y . Let us assume that
E(X) = E(Y ) = π. Under such an assumption, it is easy to derive the correlation
coefficient between X and Y : ρX,Y = E(XY )−π2

π(1−π) . The ρX,Y is often denoted as the
coefficient κ. It follows that:

p11 = Prob(X = 1, Y = 1) = E(XY ) = π2 + π(1− π)κ,

p10 = Prob(X = 1, Y = 0) = π(1− π)− π(1− π)κ,

p01 = Prob(X = 0, Y = 1) = π(1− π)(1− κ),

and

p00 = Prob(X = 0, Y = 0) = (1− π)2 + π(1− π)κ.

1.3.2. The kappa coefficient

The probability of concordance between the two items is:

pc = p11 + p00 = 2π2 + 1− 2π + 2π(1− π)κ.

The probability of concordance due to chance, i.e. when the two items are
independent (κ = 0), is:

ph = 1− 2π(1− π).

Consequently:

κ =
pc − ph
1− ph

.

1.3.3. Estimation of the kappa coefficient

When we observe a 2×2 contingency table {nij : i, j = 0, 1}, a natural estimation
of pc is:

p̂c =
n11 + n00

n
.
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A natural estimation of ph is:

p̂h =
n1.n.1 + n0.n.0

n
.

Cohen’s kappa coefficient [COH 60] is:

κ̂ =
p̂c − p̂h
1− p̂h

=
n11 + n00 − n1.n.1 − n0.n.0

n− n1.n.1 − n0.n.0
,

which is a natural estimator of the κ coefficient.

The κ can also be estimated by the maximum likelihood estimation method.
Specifically, the likelihood of the observations is:

L = (p11)
n
11 × (p10)

n
10 × (p01)

n
01 × (p00)

n
00.

So, we easily find:

L(κ) = (π2 + π(1− π)κ)n11 × (π(1− π)− π(1− π)κ)n10

×(π(1− π)(1− κ))n01 × ((1− π)2 + π(1− π)κ)n00.

The maximum likelihood estimator of κ can be obtained by maximizing L(κ)
over κ.

1.4. Concordance probability

For a pair of bivariate observations (X1, Y1) and (X2, Y2), the concordance
probability is defined as:

CX,Y = P{Y2 > Y1|X2 > X1}.

As it is defined as a conditional probability, the concordance probability can be
used to assess the relationship between two variables that have a natural ordering.
In particular, it is useful for the assessment of monotonic correlation between two
variables. The concordance probability is invariant to rank-preserving transformation
on either X or Y . It takes values between 0 and 1. If CX,Y = 0, then it means that X
and Y are inversely related. If CX,Y = 1, then it means that X and Y are related. If
X and Y are independent, then CX,Y = 0.5. In addition, if Y is continuous, then it is
easy to see that:

1− CX,Y = P{Y1 > Y2|X2 > X1} = C−X,Y ,

as P (Y1 = Y2) = 0.
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1.4.1. Relationship with Kendall’s τ measure

Kendall’s τ measure has been used for the assessment of the relationship between
two random variables. The concordance probability is closely related to Kendall’s τ
measure.

For a pair of bivariate observations (X1, Y1) and (X2, Y2), Kendall’s τ is defined
as:

τX,Y = E[sign(X2 −X1)sign(Y2 − Y1)].

It is easy to see that τX,Y = τY,X , which shows that Kendall’s τ is a symmetric
measure. In addition:

τX,Y = P (X2 > X1, Y2 > Y1) + P (X2 < X1, Y2 < Y1)

−P (X2 > X1, Y2 < Y1)− P (X2 < X1, Y2 > Y1),

which means that Kendall’s τ is the difference between two probabilities: the
probability of concordance and the probability of discordance. Equivalently, it
follows that:

τX,Y = 4P (X2 > X1, Y2 > Y1)− 2P (X2 > X1)− 2P (Y2 > Y1) + 1.

If (X1, Y1) and (X2, Y2) are independent and identically distributed, then:

τX,Y = 2P (Y2 > Y1|X2 > X1)− 1 = 2CX,Y − 1,

which shows that there is 1–1 correspondence between Kendall’s τ and the
concordance probability, namely a linear relationship.

1.4.2. Relationship with Somer’s D measure

Somer’s D is defined as:

DX,Y = E[sign(X2 −X1)sign(Y2 − Y1)|X2 ,= X1].

It is the difference between two conditional probabilities: the conditional
probability of concordance and the conditional probability of discordance given that
two X values are not equal. In light of the relationship between the concordance
probability and Kendall’s τ , it follows that DX,Y =

2CX,Y −1
P (X2 �=X1)

.
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Somer’s D is often used as a measure of association for ordinal variables. For
ordinal X , it is clear that DX,Y ,= DY,X , which shows that Somer’s D is an
asymmetric measure.

If X is a continuous variable, then P (X2 ,= X1) = 1 and Somer’s D is the same
as Kendall’s τ , which implies that DX,Y = 2CX,Y − 1.

If X is not a continuous variable, then P (X2 ,= X1) < 1 and Somer’s D is larger
than Kendall’s τ , and DX,Y > 2CX,Y − 1.

1.4.3. Relationship with ROC curve

The area under the curve (AUC) is defined as the area under the ROC curve of
1-specificity against sensitivity. If X is binary with possible values 0 and 1, and Y is
continuous or ordinal, let TPP (c) = P (Y ≥ c|X = 1) be the true positive
proportion or sensitivity, and FPP (c) = P (Y ≥ c|X = 0) the false positive
proportion or 1-specificity, then the AUC will be the area under the set of points
{(FPP (c), TPP (c)) : c ∈ (−∞,∞)}.

If Y is continuous, then the AUC is the CX,Y .

PROOF.– By definition CX,Y = P{Y2 > Y1|X2 > X1}, therefore:

CX,Y =

! ∞

−∞
P{Y2 > c|X2 > X1}dP{Y1 ≤ c|X2 > X1}

=

! ∞

−∞
P{Y2 ≥ c|X2 = 1}dP{Y1 < c|X1 = 0}

=

! ∞

−∞
TPP (c)d(1− FPP (c))

=

! 1

0

TPP (FPP−1(u))du.

Here, X2 = 1 and X1 = 0 because both X1 and X2 are binary with values 0 and
1 and X2 > X1.

If Y is not continuous, then the AUC is CX,Y + P (Y2 = Y1|X2 = 1, X1 = 0)/2.
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1.5. Estimation and inference

Suppose (X1, Y1), · · · , (Xn, Yn) are a sample of n-independent and identically
distributed bivariate random vectors. The concordance probability can be estimated
by:

ĈX,Y =

<n
i=1

<n
j=1 I{Xi > Xj}I{Yi > Yj}<n
i=1

<n
j=1 I{Xi > Xj} ,

where I(·) is an indicator function taking values of 0 or 1.

The estimator is of the form of a U -statistic. Using the large sample theory of a
U -statistic, it can be shown that ĈX,Y → CX,Y as n → ∞ and

√
n(ĈX,Y −CX,Y ) →

N(0, σ2
1) as n → ∞. The variance σ2

1 can be estimated with a plug-in method with
corresponding empirical estimators.

1.6. Measure of agreement

The concordance probability can be used as a measure of agreement. Suppose X
is a latent variable, and Y and Z are two measures of the latent variable, we may want
to assess if Y or Z is in agreement of measuring X . Liu et al. [LIU 12] suggested that
this can be done by a comparison of concordance probabilities CX,Y and CX,Z with
their difference, namely:

dY Z|X = P (Y2 > Y1|X2 > X1)− P (Z2 > Z1|X2 > X1).

If the difference is close to 0, it means that Y and Z are in agreement. If the
difference is different from 0, it means that Y and Z are not in agreement measuring
the latent variable X: a positive value means that Y is better than Z in agreement with
X , and a negative value means that Z is better than Y in agreement with X .

For independent and identically distributed (Xi, Yi, Zi), i = 1, · · · , n, the
difference can be estimated by:

d̂Y Z|X =

<n
i=1

<n
j=1[I{Yi > Yj , Xi > Xj} − I{Zi > Zj , Xi > Xj}]<n

i=1

<n
j=1 I{Xi > Xj} ,

which is a ratio of two U -statistics. By using the large sample theory of a U -statistic,
it follows that d̂Y Z|X → dY Z|X and

√
n(d̂Y Z|X − dY Z|X) → N(0, σ2

2).

The asymptotic results can be used to construct a statistical test for the hypotheses
H0 : CX,Y = CX,Z versus H1 : CX,Y ,= CX,Z , which is equivalent to the hypotheses
H0 : dY Z|X = 0 versus H1 : dY Z|X ,= 0.
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Liu et al. [LIU 12] noted that the denominator
<n

i=1

<n
j=1 I{Xi > Xj} in d̂Y Z|X

does not play a significant role in the test and evaluation of the agreement, and the
difference:

Δ̂Y Z|X =

n;
i=1

n;
j=1

[I{Yi > Yj , Xi > Xj} − I{Zi > Zj , Xi > Xj}]

can be used. Obviously, Δ̂Y Z|X is a U -statistic with kernel Uij where:

Uij = 0.5[I{Yi > Yj , Xi > Xj}+ I{Yi < Yj , Xi < Xj}
−I{Zi > Zj , Xi > Xj} − I{Zi < Zj , Xi < Xj}]

= 0.5{sign+[(Xi −Xj)(Yi − Yj)]− sign+[(Xi −Xj)(Zi − Zj)]}.

Consequently,

V ar(Δ̂Y Z|X) =
n(n− 1)

2
V ar(U12) +

n

4
Cov(U12, U13),

which can be estimated by replacing V ar(U12) and Cov(U12, U13) by their
corresponding moment estimators.

The inference can be carried out by examining the 1 − α confidence interval of

ΔY Z|X or constructing a Wald-type test statistic Δ̂Y Z|X��V ar(Δ̂Y Z|X)
for testing null

hypothesis H0 : dY Z|X = 0.

1.7. Extension to survival data

In survival analysis, the outcome variable is the time to event occurrence, where
the event could be the initial diagnosis of a disease or death. It is likely that the time
variable is right-censored due to dropout or study termination. Let T be the length of
time to event occurrence, Q be the censoring time and X be a predictor variable. Then,
the observed data consist of (Y, δ,X), where Y = min(T,Q) and δ = I{T ≤ Q}. It
is of significance to estimate the concordance probability CT,X = P (X2 > X1|T2 >
T1) with the n-independent observations (Xi, Yi, δi), i = 1, · · · , n.

1.7.1. Harrell’s c-index

Harrell et al. [HAR 82, HAR 96] developed Harrell’s c-index to estimate the
concordance probability for survival data. Harrell’s c-index is defined as:

cY,X =

<n
i=1

<n
j=1[δiI{Yi < Yj}I{Xi < Xj}+ δjI{Yj < Yi}I{Xj < Xi}]<n

i=1

<n
j=1[δiI{Yi < Yj}+ δjI{Yj < Yi}] .



16 Statistical Models and Methods for Reliability and Survival Analysis

Nam and D’Agostino [NAM 02] developed a method to estimate the standard error
of the estimator. Pencina and D’Agostino [PEN 04] derived alternative formulas for
standard error estimation using the relationship between the c-index and the modified
Kendall’s τ for bivariate correlation and investigated how to construct its confidence
intervals.

If there is no censoring, i.e. δi = 1 for i = 1, · · · , n, then by the large sample
theory of a U -statistic, cY,X = cT,X → CT,X = CY,X , where CT,X is the
concordance probability P (X2 > X1|T2 > T1).

If there is censoring, and censoring random variable Q is independent of T , cY,X
will converge to a quantity that will depend on censoring distribution [LIU 09] and
the consistency to a concordance probability will become questionable. Specifically,
for continuous X , the estimator cY,X will converge to P (X2 > X1|T2 > T1, T1 <
Q1, T1 < Q2) [LIU 09].

To estimate the concordance probability CT,X = P (X2 > X1|T2 > T1) properly
with the n-independent observations (Xi, Yi, δi), i = 1, · · · , n, Liu and Jin [LIN 09]
proposed a modified estimator using the idea of inverse probability weighting:

ĉ∗Y,X =

<n
i=1

<n
j=1 I(Xi < Xj)I(Yi < Yj)δi/G

2(Yi)<n
i=1

<n
j=1 I(Yi < Yj)δi/G2(Yi)

,

where G(t) = P (t < Q) for t > 0. If G(t) is unknown, a consistent estimator Ĝ(t),
constructed by the Kaplan–Meier product limit method, may be used. For
Y(n) = max1≤i≤n Yi, it is required to set b(n) = 0 if δ(n) = 0 and Ĝ(Y(n)) = 0. The
estimator is consistent to the concordance probability CT,X if censoring variable Q is
completely random and independent of T .

1.7.2. Measure of discriminatory power

Suppose that variables X and Z are quantitative predictors of the time to event
variable T . To examine whether X and Z have the same discrimination accuracy for
T , we may examine the difference between their concordance probabilities as
dXZ|T = CT,X − CT,Z , or, equivalently, the difference between the bivariate
probabilities as:

ΔXZ = P (X2 > X1, T2 > T1)− P (Z2 > Z1, T2 > T1).
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If there is no censoring, note that the difference between the bivariate probabilities
ΔXZ can be estimated by a U -statistic:

Δ̂XZ =
1

n(n− 1)

n;
i=1

n;
j=1

{sign+[(Xi −Xj)(Ti − Tj)]

−sign+[(Zi − Zj)(Ti − Tj)]}

=
1

n(n− 1)

n;
i=1

n;
j=1

Uij .

By the central limit theorem of U -statistics, under some regularity conditions,
Δ̂XZ converges to ΔXZ in distribution that

√
n(Δ̂XZ − ΔXZ) → N(0, V ) as

n → ∞. The variance V can be estimated empirically.

With random censoring, Liu et al. [LIU 12] have developed a modified estimator
using the idea of inverse probability weighting:

Δ̂∗
XZ =

1

n(n− 1)

n;
i=1

n;
j=1

δiI(Yi < Yj)

Ĝ2(Yi)
[I(Xi < Xj)− I(Zi < Zj)],

where Ĝ(·) is the Kaplan–Meier product limit estimator of censoring distribution G(·).
Under regularity conditions, Liu et al. [LIU 12] showed that Δ̂∗

XZ is consistent and√
n(Δ̂∗

XZ −ΔXZ) → N(0, V ∗) as n → ∞. The variance V ∗ can also be estimated
empirically. As a result, the inference can be carried out by examining the 1 − α

confidence interval of Δ̂∗
XZ or constructing a Wald-type test statistic Δ̂∗

XZ√�V ∗
for testing

null hypothesis H0 : ΔXZ = 0.

1.8. Discussion

In this chapter, we have reviewed various concordance coefficient measures. In
particular, we presented non-parametric concordance coefficient and concordance
probability, and described its relationship with commonly used measures of
association, Kendall’s τ , Somer’s D, AUC and Harrell’s c-index. In addition, we
have illustrated how to use the concordance probability to assess agreement and to
evaluate the discriminatory power of two different predictors.

For more than two covariates, Gönen and Hellner [GON 05] proposed
model-based estimation of concordance probability using the Cox proportional
hazards model for right-censored data. However, it is challenging to estimate the
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asymptotic variance of the resulting estimator of concordance probability as it
involves a non-smooth and non-continuous function of unknown parameters. It is of
significance to develop an alternative method to estimate the asymptotic variance
efficiently.

It is also noted that the concordance probability is invariant to the monotone
transformation as its estimator only depends on ordering. However, the difference
between two concordance probabilities might not be sensitive for detecting small
differences in two competitive measures; caution should be taken in applications.
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