
Abstract Longitudinal health-related quality of life data arise naturally from
studies of progressive and neurodegenerative diseases. In such studies,
patients’ mental and physical conditions are measured over their follow-up
periods and the resulting data are often complicated by subject-specific
measurement times and possible terminal events associated with outcome
variables. Motivated by the ‘‘Predictor’s Cohort’’ study on patients with
advanced Alzheimer disease, we propose in this paper a semiparametric
modeling approach to longitudinal health-related quality of life data. It builds
upon and extends some recent developments for longitudinal data with
irregular observation times. The new approach handles possibly dependent
terminal events. It allows one to examine time-dependent covariate effects on
the evolution of outcome variable and to assess nonparametrically change of
outcome measurement that is due to factors not incorporated in the
covariates. The usual large-sample properties for parameter estimation are
established. In particular, it is shown that relevant parameter estimators are
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asymptotically normal and the asymptotic variances can be estimated
consistently by the simple plug-in method. A general procedure for testing
a specific parametric form in the nonparametric component is also developed.
Simulation studies show that the proposed approach performs well for
practical settings. The method is applied to the motivating example.

Keywords Censoring Æ Health-related quality of life Æ Inverse probability
weighting Æ Semiparametric regression Æ Terminal event

1 Introduction

In sociomedical studies of progressive and neurodegenerative diseases, such as
the Alzheimer’s disease and the Parkinson disease, health-related quality of
life (HRQoL) is a very important outcome. Measurement of health-related
quality of life, however, is complicated because it is not directly observable
and is often assessed by various self or proxy rated questionnaires on daily
activity, daily affect, functional ability, cognitive performance etc. Albert
et al. (1999) showed that the daily activity measure is significantly correlated
with a variety of other indicators of HRQoL, such as daily affect, functional
ability, cognitive performance and clinician global ratings of dementia
severity, which makes the daily activity as a good surrogate measurement of
HRQoL. Patients with progressive and neurodegenerative diseases typically
experience difficulties in carrying out daily activities. The level of difficulty
usually increases over time, resulting in more dependence on caregivers. An
important aspect is the evolution of the capability to conduct routine and
normal daily activities and how the deterioration is related to various factors.
To address these issues, daily activities are often measured longitudinally over
a period of time in HRQoL studies.

An interesting example is the ‘‘Predictor’s Cohort’’ study. Between 1988
and 1998, Columbia University, the Johns Hopkins University and the
Massachusetts General Hospital jointly conducted an observational longitu-
dinal study to examine quality of life in people with advanced Alzheimer’s
disease (AD). One of the key aims of the study was to determine the rela-
tionship between dementia severity and the HRQoL outcomes. The enrolled
cohort had to meet DSM-III criteria for dementia and NINDS-ADRDA
criteria for probable AD. Each enrolled patient was scheduled to be evaluated
every 6 months. However, the actual follow-up times varied among patients
and the follow-up of some patients was terminated before the end of study
because of death. Fifteen distinct outdoor and indoor activities which are
within the capacity of patients with dementia receiving supervision and aid
were measured. Albert et al. (1996) showed that correlations between the
items were high and the items formed a single component in an exploratory
factor analysis and suggested to measure the daily activity by the frequency of
the 15 activities. The dementia severity was assessed by the score of the

170 Lifetime Data Anal (2006) 12:169–190

123



modified Mini-Mental State Exam (mMMS) (Stern et al. 1987). Albert et al.
(1996, 2000) contain details about the study background as well as instruments
for daily activities.

Statistical analysis of longitudinal HRQoL studies, however, is quite chal-
lenging due to the limited study follow-up and presence of terminating event,
such as death. Linear and linear mixed effects models, such as pattern mixture
models, and generalized estimating equation (GEE) have been used in the
analysis of HRQoL (Fayers and Machin 2000; Fairclough 2002). These models
do not take into account the censoring and their validity often depends on
parametric model assumptions. Standard survival analysis techniques have also
been adopted for the analysis of HRQoL with definition of a ‘‘milestone’’ event.
However, such an approach ignores intermediate information and interpreta-
tion of analysis results depends critically on the definition of the ‘‘milestone’’
(Albert et al. 2000). In clinical trials of chronic diseases, such as AIDS and
cancer, quality-adjusted survival analysis (Q-TWiST) has been developed (Cole
et al. 1993; Zhao and Tsiatis 1997). Unfortunately, the Q-TWiST approach is
difficult to apply to the analysis of HRQoL due to the difficulty in defining the
disease stages in patients who are already in advanced stages. Also as pointed
out by the associate editor, the Q-TWiST approach focuses on developing
health states based on categorized HRQoL scores, see Cole et al. (2004).
Practically, it is also noted that progression of the diseases and risk of death are
related, so that limiting analyses to survivors is likely to underestimate or
overestimate the quality-of-life impact of disease. Recently, Dupuy and Mes-
bah (2002) focused on joint modeling of event time and nonignorable missing
longitudinal data with combination of a first-order Markov model for covariate
and time-dependent Cox model for event time. Although their approach can
handle longitudinally measured covariates, it cannot deal with longitudinally
observed outcome variables. Hence there is clearly a need for an analysis
method that can directly model original HRQoL longitudinal data with ease of
interpretation as well as taking the limited study follow-up with possibly
irregular individual observation times and terminating event into account.

The present paper is aimed at investigating a semiparametric modeling
approach for analysis of longitudinal HRQoL data. The semiparametric
modeling approach for longitudinal data has been studied extensively; see
Moyeed and Diggle (1994), Zeger and Diggle (1994), Hoover et al. (1998),
Lin and Ying (2001) among others. In this paper, we extend the approach of
Lin and Ying (2001) by incorporating the presence of terminating event. We
apply the technique of inverse probability weighting after adjusting possibly
time-dependent covariates; see Robins and Rotnitzky (1992) and Ghosh and
Lin (2002). Our method takes into account the fact that subjects who die
cannot have further HRQoL measurements. We also develop a simple test for
checking whether or not the nonparametric component actually follows a
specific parametric form.

In the next section, we introduce notation and model specification.
Estimation procedure is presented in Sect. 3 and its asymptotic properties and
plug-in variance estimation are addressed in Sect. 4. In Sect. 5, a general
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procedure for testing a specific parametric form of the nonparametric
component is presented. Simulation results and the analysis of the dataset
from the ‘‘Predictor’s Cohort’’ study are presented in Sect. 6. Some concluding
remarks are given in Sect. 7.

2 Notation and model specification

We shall use n to denote the number of study subjects. For the ith subject,
i = 1,…, n, we use Yi(t) to denote the outcome measurement and Xi(t) to
denote a p · 1 vector of covariates at time t. The subject is followed until the
time of either censoring or failure (death), whichever occurs first. Let Ci be the
censoring time, Si be the survival time, ~Si ¼ minðCi; SiÞ and Di = I(Si £ Ci).
During the follow-up period of the ith subject, the measurements of Yi(Æ) are
taken at certain time points. Let Ni

*(t) be the number of such measurements
up to time t if there is neither censoring nor failure. The covariate process
Xi(t), however, is assumed to be observed for t 2 ½0; ~Si�. Thus, the observa-
tions consist of f~Si; Di; N�i ðtÞ; YiðtÞdN�i ðtÞ; XiðtÞ; t 2 ½0; ~Si�g; i = 1,…, n.
Notice that Yi(t)dNi

*(t) implies that Yi(Æ) is observed only at jump points of the
process Ni

*(Æ). In this paper, it is assumed that Ni
*(Æ) depends on only part or

full of the covariate process Xi(Æ), which implies that the survival or censoring
times are noninformative to observation schedules conditional on the covar-
iate process; see (3.5).

First, we relate the outcome measurement Y(Æ) to covariate X(Æ) by

YiðtÞ ¼ aðtÞ þ bTXiðtÞ þ �iðtÞ; ð2:1Þ

where a(Æ) is a completely unspecified function of time, b is an unknown p · 1
parameter vector, and �i(Æ) is a mean 0 measurement error independent of Xi(Æ).
Note that b reflects the linear effect of covariate X(Æ) on Y(Æ), while a(Æ) reflects
the change of Y(Æ) due to factors other than X(Æ) as well as baseline trend.
Model (2.1) contains two nonparametric components. The stochastic part,
represented by the error process �(Æ), is nonparametric since except for zero
mean its distribution can be arbitrary. The trend function a(Æ) is also completely
unspecified. Moyeed and Diggle (1994) and Zeger and Diggle (1994) studied
the model (2.1) with �(Æ) being a zero-mean stationary Gaussian process. Lin
and Ying (2001) relaxed this assumption to any zero-mean process.

The counting process N*(Æ) can be handled naturally by using the propor-
tional means model as in Pepe and Cai (1993), Lawless and Nadeau (1995)
and Lin et al. (2000). Specifically, we model N*(Æ) by

EfdN�i ðtÞjZi1ðtÞg ¼ expfcTZi1ðtÞgdKðtÞ; ð2:2Þ

where L(Æ) is a completely unspecified function of time, c is unknown q · 1
parameter vector, Zi1(Æ) is a known covariate vector which is a part of Xi(Æ). Note
that equation (2.2) specifies the mean frequency of observation times for the i-th
subject. It provides a way of modeling irregular and possibly subject-specific
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observation time points. When the observation time is independent of the
process, for example, observations are taken at prespecified time points, c takes
value 0 in model (2.2), and the process N*(Æ) only depends on the unspecified
baseline cumulative intensity function L(Æ).

The analysis of longitudinal data with model specifications (2.1) and (2.2)
was first introduced by Lin and Ying (2001). Since the approach of Lin and
Ying (2001) does not take terminating event into account, it is not valid in the
presence of terminating events. Specifically, the validity of the approach of
Lin and Ying (2001) relies on the assumption that

E½YiðtÞjXiðtÞ;Ti � t� ¼ E½YiðtÞjXiðtÞ�;

which essentially assumes the noninformativeness of the censoring. With the
existence of terminal event which may be correlated with the responses, this
assumption may not hold. To overcome this difficulty, the survival time is
modeled based on data f~Si;Di;Xið�Þg. Here, we use the Cox proportional
hazards model for the survival time S (Cox 1972):

kiðtjZi2ðtÞÞ ¼ kdðtÞ expfnTZi2ðtÞg; ð2:3Þ

where n is unknown r · 1 parameter vector, kd(Æ) is completely unspecified
function of time, and Zi2(Æ) is a known covariate vector which is a part of Xi(Æ).

3 Parameter estimation

Let di(t) = I{Ci ‡ t} and AðtÞ ¼
R t

0 aðsÞdKðsÞ. When Ci is always observed prior
to Si, then

Miðt;A; b; cÞ ¼
Z t

0

diðsÞðYiðsÞ � bTXiðsÞÞdN�i ðsÞ � diðsÞ expfcTZi1ðsÞgdAðsÞ
� �

ð3:1Þ

is a mean-zero stochastic process because the second term is essentially the
conditional expectation of the first term. Following Lin and Ying (2001), b,
Að�Þ, and c can be estimated with following estimating equations:

Xn

i¼1

Miðt;A; b; cÞ ¼ 0; ð3:2Þ

Xn

i¼1

Z 1

0

WðtÞdiðtÞ XiðtÞ� �Xðt;cÞ
� �

YiðtÞ� �Yðt;cÞ�bTðXiðtÞ� �Xðt;cÞÞ
� �

dN�i ðtÞ¼0;

ð3:3Þ
Xn

i¼1

Z 1

0

Zi1ðtÞ � �Z1ðt; cÞ
� �

diðtÞdN�i ðtÞ ¼ 0; ð3:4Þ
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where W(Æ) is a possibly data-dependent weight function, and �Xðt; cÞ ¼
Pn

i¼1 diðtÞXiðtÞecTZi1ðtÞ
�Pn

i¼1 diðtÞecTZi1ðtÞ; �Yðt; cÞ¼
Pn

i¼1 diðtÞYiðtÞecTZi1ðtÞ
�Pn

i¼1

diðtÞecTZi1ðtÞ; �Z1ðt; cÞ ¼
Pn

i¼1 diðtÞZi1ðtÞecTZi1ðtÞ
�Pn

i¼1 diðtÞecTZi1ðtÞ

The weight function W(Æ) can be chosen analogous to that in weighted
logrank statistic in univariate survival analysis, such as W(Æ) ” 1 or functions
of the survival function. Note that the c is estimated by (3.4), b is estimated by
(3.3) and Að�Þ is estimated by (3.2).

Since censoring times Cis are not always known due to the terminating
event, such as death in the Alzheimer’s ‘‘Predictor’s Cohort’’ study, the di(t)s
are not always available and estimating Eqs. (3.2)–(3.4) cannot be imple-
mented. Specifically, the di(t) is unknown if min{Ci,t} > Si. It is assumed that

E½dN�i ðtÞjXiðtÞ;YiðtÞ; ~Si[t� ¼ E½dN�i ðtÞjZi1ðtÞ�; ð3:5Þ

which implies that the process Ni
*(Æ) depends on Xi, Yi, Ci and Si only essen-

tially through Zi1. In particular, the assumption (3.5) is satisfied if observation
schedule is prespecified and any deviation from the schedule happens in a
completely random fashion as in a typical clinical trial setting. Let
dD

i ðtÞ ¼ If~Si � tg. Note that di
D(t) is always observable. We replace di(t) in

(3.2)–(3.4) using di
D(t) with the inverse probability of survival technique

(Robins and Rotnitzky 1992; Ghosh and Lin 2002). This is based on the fact
that di(t) and d�i ðtÞ � dD

i ðtÞ=�FðtjZi2Þ have the same conditional expectation
when Ci and Si are conditionally independent conditioning on Zi2, where
�FðtjZi2Þ ¼ PðSi � tjZi2Þ. The �FðtjZi2Þ can be estimated by the fit of model
(2.3). Specifically, let n̂ be the maximum partial likelihood estimator of n and

K̂dðtÞ ¼
Xn

i¼1

If~Si � tgDi
Pn

j¼1 dD
j ð~SiÞen̂TZj2ð~SiÞ

be the Breslow estimator of Ld (t)=�0t kd (t) dt in the model (2.3), then

�̂Fðt; n̂jZi2Þ ¼ expf�
R t

0 en̂TZi2ðuÞdK̂dðuÞg is an estimator of �FðtjZi2Þ and di
*(t) can

be approximated by d̂�i ðtÞ � dD
i ðtÞ= �̂Fðt; n̂jZi2Þ. Let

M�
i ðt;A; b; cÞ ¼

Z t

0

d�i ðsÞðYiðsÞ � bTXiðsÞÞdN�i ðsÞ � d�i ðsÞ expfcTZi1ðsÞgdAðsÞ
� �

:

ð3:6Þ

Then M�
i ðt;A; b; cÞ is still a mean-zero stochastic process. By replacing di(t)

with d̂�i ðtÞ in (3.2)–(3.4), we obtain the following estimating equations for b,
Að�Þ, and c:

Xn

i¼1

M̂�
i ðt;A; b; cÞ ¼ 0; ð3:7Þ
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Xn

i¼1

Z 1

0

WðtÞd̂�i ðtÞ XiðtÞ� �̂X
�ðt;cÞ

h i
YiðtÞ� �̂Y

�ðt;cÞ�bTðXiðtÞ� �̂X
�ðt;cÞÞ

h i
dN�i ðtÞ¼0;

ð3:8Þ
Xn

i¼1

Z 1

0

Zi1ðtÞ � �̂Z
�
1ðt; cÞ

� �
d̂�i ðtÞdN�i ðtÞ ¼ 0; ð3:9Þ

where �̂X
�ðt; cÞ ¼

Pn
i¼1 d̂�i ðtÞXiðtÞecTZi1ðtÞ

�Pn
i¼1 d̂�i ðtÞecTZi1ðtÞ;

�̂Y
�ðt; cÞ ¼

Pn
i¼1 d̂�i ðtÞYiðtÞecTZi1ðtÞ

�Pn
i¼1 d̂�i ðtÞecTZi1ðtÞ,

�̂Z
�
1ðt; cÞ ¼

Pn
i¼1 d̂�i ðtÞZi1ðtÞecTZi1ðtÞ

�Pn
i¼1 d̂�i ðtÞecTZi1ðtÞ and

M̂�
i ðt;A; b; cÞ ¼

Z t

0

d̂�i ðsÞðYiðsÞ � bTXiðsÞÞdN�i ðsÞ � d̂�i ðsÞ expfcTZi1ðsÞgdAðsÞ
h i

:

ð3:10Þ

Denote the solution of (3.9) by ĉ. Then L(t) can be estimated by

K̂ðt; n̂; ĉÞ ¼
Xn

i¼1

Z t

0

d̂�i ðtÞdN�i ðtÞPn
j¼1 d̂�j ðsÞeĉTZj1ðsÞ

: ð3:11Þ

It is noted that an approach similar to (3.9) and (3.11) was used by Ghosh and
Lin (2002) in the analysis of recurrent events data with a terminal event.

To summarize, the implementation of parameter estimation can be carried
out as follows:

Step 1: Fit model (2.3) with data f~Si;Di;Xið�Þg, and obtain estimates n̂ and K̂dð�Þ;
Step 2: Evaluate �̂Fðt; n̂Þ and d̂�i ðtÞ based on the results in step 1, then fit model
(2.2) with estimating Eq. (3.9) for c and with expression (3.11) for L(Æ);
Step 3: Plug ĉ, d̂�i ð�Þ and K̂ðt; ĉÞ in estimating Eqs. (3.7) and (3.8) and solve for
estimates b̂ and Âðt; b̂; n̂; ĉÞ. Specifically, the estimating Eq. (3.8) with ĉ yields

b̂ ¼
Xn

i¼1

Z 1

0

WðtÞfXiðtÞ � �̂X
�ðt; ĉÞg�2d̂�i ðtÞdN�i ðtÞ

" #�1

	
Xn

i¼1

Z 1

0

WðtÞfXiðtÞ � �̂X
�ðt; ĉÞgfYiðtÞ � �̂Y

�ðt; ĉÞgd̂�i ðtÞdN�i ðtÞ; ð3:12Þ

where a�2=aaT, and the estimating Eq. (3.7) with b̂ and ĉ leads to

Âðt; b̂; n̂; ĉÞ ¼
Xn

i¼1

Z t

0

fYiðsÞ � b̂XiðsÞgd̂�i ðsÞdN�i ðsÞPn
j¼1 d̂�j ðsÞeĉTZj1ðsÞ

: ð3:13Þ

In addition, the variance-covariance matrix for b̂ is estimated by a plug-in
procedure given in the next section, where large sample properties are
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derived. Note that the estimation of b is done without a direct estimation of
the unknown baseline function a(Æ), as pointed out by a referee.

4 Large sample properties and variance–covariance estimation

To present large sample properties, we introduce more notations. Let

MS
i ðt; nÞ ¼ If~S � tgDi �

Z t

0

dD
i ðuÞenTZi2ðuÞdKdðuÞ;

Miðt; c; nÞ ¼
Z t

0

d�i ðuÞ½dN�i ðuÞ � ecTZi1 dKðuÞ�:

Define R
ð2Þ
xz ðt; cÞ ¼ 1

n

Pn
i¼1 d�i ðtÞXiðtÞZT

i1ðtÞecTZi1ðtÞ, and for k = 0, 1, 2, define

R
ðkÞ
z1 ðt; cÞ ¼

1

n

Xn

i¼1

d�i ðtÞZ�k
i1 ðtÞecTZi1ðtÞ

R
ðkÞ
z2 ðt; nÞ ¼

1

n

Xn

i¼1

dD
i ðtÞZ�k

i2 ðtÞenTZi2ðtÞ

RðkÞx ðt; cÞ ¼
1

n

Xn

i¼1

d�i ðtÞX
�ðkÞ
i ðtÞecTZi1ðtÞ

and denote the expectation of R
ðkÞ
z1 ðt; cÞ, R

ðkÞ
z2 ðt; nÞ, R

ðkÞ
x ðt; cÞ and R

ð2Þ
xz ðt; cÞ as

r
ðkÞ
z1 ðt; cÞ, r

ðkÞ
z2 ðt; nÞ, r

ðkÞ
x ðt; cÞ and r

ð2Þ
xz ðt; cÞ respectively for k = 0, 1, 2. Moreover, let

�xðt; cÞ be the limit of �Xðt; cÞ, �yðt; cÞ be the limit of �Yðt; cÞ and �z1ðt; cÞ is the limit of
�Z1ðt; cÞ.

In addition to assumptions of (3.5) and the conditional independence between
Ci and Si conditioning on Zi2, we impose the following regularity conditions:

C1: f~Si; Di; N�i ðtÞ; YiðtÞdN�i ðtÞ; XiðtÞ; t 2 ½0; ~Si�g, (i = 1, ..., n) are indepen-
dent and identically distributed;
C2: There exists a constant s > 0 such that Pð~Si � sÞ[ 0;
C3: N�i ðs ^ ~SiÞ (i = 1,..., n) are bounded by a constant;
C4: Xi(Æ), (i = 1, ..., n) have bounded total variations, i.e., there exists a fixed
constant K > 0 such that kXið0Þk þ

R s
0 kdXiðtÞk � K for all i = 1, ..., n.

C5: Xc ¼
R1

0

r
ð2Þ
z1
ðu;cÞ

r
ð0Þ
z1
ðu;cÞ
� r

ð1Þ
z1
ðu;cÞ

r
ð0Þ
z1
ðu;cÞ

� 	�2
" #

r
ð0Þ
z1 ðu; cÞdKðuÞ is positive definite;

Xn ¼
R1

0

r
ð2Þ
z2
ðu;nÞ

r
ð0Þ
z2
ðu;nÞ
� r

ð1Þ
z2
ðu;nÞ

r
ð0Þ
z2
ðu;nÞ

� 	�2
" #

r
ð0Þ
z2 ðu; nÞdKdðuÞ is positive definite;

D ¼ E
R1

0 WðtÞ½X1ðtÞ � �xðt; cÞ��2d�1ðtÞdN�1ðtÞ
h i

is positive definite.

C6: W(Æ) can be written as a difference of two monotone functions, each of which
converges to a deterministic function as n fi ¥, and w(Æ) is the limit of W(Æ).
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The assumptions (C1)–(C5) are similar to those of Andersen and Gill (1982,
Theorem 4.1), Lin et al. (2000), Lin and Ying (2001) and Ghosh and Lin (2002).
The assumption (C6) is similar to that in appendix A.1 of Lin and Ying (2001).

The following theorem gives the usual asymptotic properties of ĉ and b̂.

Theorem 1 Suppose that regularity conditions C1–C6 are satisfied.

(i) The estimator ĉ is strongly consistent and asymptotically zero-mean
normal. Actually, n1=2ðĉ� cÞ ¼ n�1=2

Pn
i¼1 wi þ oPð1Þ; where

wi ¼X�1
c

Z 1

0

Zi1ðtÞ �
r
ð1Þ
z1 ðt; cÞ

r
ð0Þ
z1 ðt; cÞ

 !

dMiðt; c; nÞ
"

þ
Z 1

0

A Zi2ðtÞ �
r
ð1Þ
z2 ðt; nÞ

r
ð0Þ
z2 ðt; nÞ

 !

þ qðt; nÞ
r
ð0Þ
z2 ðt; nÞ

( )

dMS
i ðt; nÞ

#

;

A ¼E

Z 1

0

Z11ðtÞ �
r
ð1Þ
z1 ðt; cÞ

r
ð0Þ
z1 ðt; cÞ

 !

gTðt;Z12; nÞX�1
n dM1ðt; c; nÞ

" #

gðt;Z12; nÞ ¼
Z t

0

Z12ðuÞ �
r
ð1Þ
z2 ðu; nÞ

r
ð0Þ
z2 ðu; nÞ

" #

enTZ12 dKdðuÞ

qðt; nÞ ¼E

Z 1

t

Z11ðuÞ �
r
ð1Þ
z1 ðu; cÞ

r
ð0Þ
z1 ðu; cÞ

 !

d�1ðuÞenTZ12ðtÞdM�
1ðu; c; nÞ

" #

:

(ii) The estimator b̂ is strongly consistent and asymptotically zero-mean
normal. In fact, n1=2ðb̂� bÞ ¼ n�1=2D�1

Pn
i¼1 /i þ oPð1Þ; where /i = –H

wi+gi+fi with wi being defined in (i), and
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Proof of Theorem 1 is given in appendix. Theorem 1 shows that the asymptotic
variance of n1=2ðb̂� bÞ is D–1VD–1, where V is the variance of /1. By evaluating
empirical counterparts of Wc, Wn, A, B, g, q, D, qw and H, we can obtain an
estimate /̂i of/i, and D–1VD–1 can be consistently estimated by D̂�1V̂D̂�1, where

D̂ ¼ 1

n

Xn

i¼1

Z 1

0

WðtÞ½XiðtÞ � �̂X
�ðt; ĉÞ��2d̂�i ðtÞdN�i ðtÞ;

and V̂ ¼ 1
n

Pn
i¼1 /̂�2

i .
As pointed out by Lin and Ying (2001), the Yi(t) may not be observed

continuously. In that case, �YðtÞ can be approximated by �Y�ðtÞ in which Yi(t)
is replaced by an imputed value Yi

*(t) using some smoothing methods.
Similarly, we can approximate �XðtÞ by �X�ðtÞ with imputed covariate
processes.

5 Testing parametric assumption on a(Æ)

In practice, it is important to investigate the form of nonparametric compo-
nent a(Æ) since parametric forms are more easily interpretable. Moreover, if
there is a strong evidence that a(t) is linear function of t, then one can use a
marginal linear model or linear mixed effects model.

We develop a test that can be used to check hypothesis H0: a(t) = a0(t;h),
where a0(Æ;h) is a prespecified function depending on unknown parameter
vector h. Here, we construct a test by comparing two different estimators of
Að�Þ: Âð�; b̂; n̂; ĉÞ and ~Að�; ĥ; n̂; ĉÞ, where Âð�; b̂; n̂; ĉÞ is the estimator of the A in
Sect. 3,

~Aðt; h; n̂; ĉÞ ¼
Z t

0

a0ðu; hÞdK̂ðu; n̂; ĉÞ; ð5:1Þ

and ĥ is a consistent estimator of h under the null hypothesis H0. Such an
estimator ĥ can be obtained based on the usual least squares principle which
leads to estimating equation Unðh; b̂Þ ¼ 0, where

Unðh; b̂Þ ¼
Xn

i¼1

Z 1

0

d�i ðtÞ YiðtÞ � b̂TXiðtÞ � a0ðt; hÞ
h i @a0ðt; hÞ

@h
dN�i ðtÞ: ð5:2Þ

Hereafter, we use ĥ to denote the root of (5.2).
More notations are needed. When n fi ¥, let D1 be the limit of

�ð1=nÞ½ð@Unðh; bÞÞ=ð@hÞ�, D2 be the limit of ð�1=nÞ½ð@Unðh; bÞÞ=ð@bÞ�, and
Dx(t) be the limit of � 1

n

Pn
i¼1

R t

0

d�i ðsÞXiðsÞdN�
i
ðsÞ

R
ð0Þ
z1
ðs;ĉÞ

.

Theorem 2 Under regularity conditions C1–C6, n1=2ðÂðt; b̂; n̂; ĉÞ�
~Aðt; ĥ; n̂; ĉÞÞ converges weakly to a zero-mean Gaussian process. In fact,
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n1=2ðÂðt; b̂; n̂; ĉÞ � ~Aðt; ĥ; n̂; ĉÞÞ ¼ n�1=2
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A sketch of the proof for Theorem 2 is given in Appendix. The distributions of
functionals of n1=2ðÂðt; b̂; n̂; ĉÞ � ~Aðt; ĥ; n̂; ĉÞÞ are difficult to evaluate analyti-
cally. However, representation expression (5.3) allows us to approximate them
by a resampling technique (Lin et al. 1994; Lin and Ying 2001). Specifically,
let G1,…, Gn be a random sample of N(0,1) distribution and Ĉið�Þ be the
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corresponding empirical quantity of Gi(Æ), then the conditional distribution of
n�1=2

Pn
i¼1 ĈiðtÞGi conditioning on observed data is asymptotically the same as

the unconditional distribution of n1=2ðÂðt; b̂; n̂; ĉÞ � ~Aðt; ĥ; n̂; ĉÞÞ. Thus, the dis-
tribution of n1=2ðÂðt; b̂; n̂; ĉÞ � ~Aðt; ĥ; n̂; ĉÞÞ can be approximated by a large
number of realizations of n�1=2

Pn
i¼1 ĈiðtÞGi by repeatedly generating G1, ..., Gn.

Following test statistics can be used for checking H0:

S1 ¼ sup
t�0

n1=2jÂðt; b̂; n̂; ĉÞ � ~Aðt; ĥ; n̂; ĉÞj;

S2 ¼
Z 1

0

n1=2jÂðt; b̂; n̂; ĉÞ � ~Aðt; ĥ; n̂; ĉÞjdt:

Let

S�1 ¼ sup
t�0

jn�1=2
Xn

i¼1

ĈiðtÞGij;

S�2 ¼
Z 1

0

jn�1=2
Xn

i¼1

ĈiðtÞGijdt:

Then, the critical values of the statistics S1 and S2 under H0 can be obtained by
the empirical distribution of S1

* and S2
*.

6 Numerical studies

6.1 Simulation studies

Simulation studies were conducted to assess the performance of the proposed
method in practical settings. We considered the covariates (X1i, X2i), where
X1i was generated from Bernoulli(0.5), X2i from N(1, 0.52) and Zi was gen-
erated from I(X2i £ 1)N(3,1) + I(X2i ‡ 1)N(0.5, 0.52). The response process
Yi(t) was generated from the model

YiðtÞ ¼ a0ðtÞ þXi1b1 þXi2b2 þ eiðtÞ;

where ei(t) = q[Zi–E(Zi|Xi)]+ei
*(t). The ei

*(t) was generated from Normal dis-
tribution with mean /i and variance 1, where /i ~ N(0,0.22), and thus the
responses of the same subject are positively correlated. The baseline function
a0(t) was specified as constant, linear and nonlinear functions.

The counting process N*
i(Æ) for the observation times was generated from a

Poisson process with intensity rate ecX1i . Time to the terminal event Si was
generated from the Cox proportional hazards model where the hazard func-
tion kðtjZiÞ ¼ k0ðtÞenZi . We also considered the independent censoring Ci and
for simplicity, Ci was assumed to be of administrative type, i.e. Ci = 4.
Therefore, ~Si ¼ minðSi;CiÞ. The setting of k0(t) = exp(–3.5) and (c,n) = (1,0.5)
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yielded 30% of the average observed death proportion and about 6.2 average
observation number per subject.

Recall that the estimation of the marginal association between the
responses Yi(t) and Xi(t) is of major interest. In the simulations, we also
considered the original method of Lin and Ying (2001) that ignores the
terminal event. Under each setting, 500 runs of simulations were conducted
for sample size of 300. Table 1 summarizes the main results of the parameter
estimates under various settings. It clearly shows that the proposed estimators
are virtually unbiased and the coverage of corresponding confidence intervals
are close to the nominal level. The performance of the proposed estimator
becomes better for larger sample sizes. As anticipated, the Lin and Ying’s
method yields consistent estimators when the response process is independent
of the terminal event, i.e. q = 0. However, when such independent assumption
is violated, the Lin and Ying’s approach leads to biases and yields improper
coverage probabilities.

We further conducted more simulations to assess the power of our pro-
posed test statistics S1 and S2. The forms for a0(t;h) were chosen to be h0

(constant) and h0 + h1t (linear). Table 2 reports the type I error and power at
nominal level 0.05 when sample size is 300. Each resampling was based on
1000 runs. Table 2 shows that the proposed testing procedure for the non-
parametric component has type I errors close to the nominal level 0.05 under
H0. Moreover, the test statistics has a reasonable power to detect deviations
from the null hypothesis.

Table 1 Summary of estimates of regression coefficients in simulations

a0(t) q Para Proposed method Lin and Ying’s method

Bias SSE SE CP Bias SSE SE CP

1 0 b1 –0.00 0.06 0.06 0.96 –0.00 0.06 0.06 0.95
b2 –0.00 0.06 0.06 0.94 0.00 0.05 0.06 0.94

4 b1 0.00 0.44 0.48 0.92 –0.00 0.39 0.41 0.94
b2 –0.01 0.46 0.46 0.94 –0.38 0.43 0.44 0.84

2 0 b1 –0.00 0.06 0.06 0.96 0.00 0.06 0.06 0.95
b2 –0.00 0.05 0.05 0.96 0.00 0.05 0.05 0.94

4 b1 –0.00 0.44 0.48 0.92 –0.00 0.39 0.41 0.94
b2 –0.01 0.46 0.46 0.94 –0.38 0.43 0.44 0.84

3 0 b1 –0.00 0.06 0.06 0.96 –0.00 0.06 0.06 0.95
b2 –0.00 0.06 0.05 0.94 0.00 0.05 0.06 0.93

4 b1 –0.00 0.44 0.48 0.93 –0.00 0.39 0.42 0.93
b2 –0.01 0.46 0.46 0.94 –0.38 0.43 0.44 0.84

4 0 b1 –0.00 0.06 0.06 0.96 0.00 0.06 0.06 0.95
b2 –0.00 0.06 0.06 0.94 0.00 0.06 0.06 0.94

4 b1 –0.00 0.44 0.48 0.92 –0.00 0.39 0.42 0.93
b2 –0.01 0.46 0.46 0.94 –0.38 0.43 0.44 0.84

Note: 1: a0(t)=h0 (h0=1); 2: a0(t)=h0+h1t (h0=1, h1=0.4); 3: a0ðtÞ ¼ h0 þ h1 sinðh2tÞ (h0 = 1, h1 = 1.2,
h2 = 1) and 4: a0(t) = h0 + h1 log(h2 t) (h0 = 1, h1 = 0.5, h2 = 1); SE is the sampling standard error;
SEE is the average of the standard error estimators; CP is the empirical coverage probability of
the 95% confidence intervals.
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6.2 Real example

We now apply the proposed model to analyze the dataset from the ‘‘Predictor’s
Cohort’’ study. The primary interest is to determine factors associated with
daily activity measurement of AD patients. The daily activity was assessed by
the frequency of 15 activities judged to be within the capacity of patients with
dementia receiving supervision and aid. This included 5 outdoor activities and
10 indoor activities. The 5 outside activities consisted of going outside, going to
movies and other forms of entertainment, going to church or synagogue or
religious events, going shopping, and going for a ride in a car. The 10 indoor
activities included contact with pet, getting together with family, talking to
family or friends over the phone, reading or being read to, listening to radio or
watching TV, exercising, playing games or puzzles, doing handicrafts, tending
to plants or a garden, completing an additional unspecified task judged difficult
by caregiver. The outcome measurement was the sum of activity scores.

The time-independent covariates were gender, education level and baseline
age, while time-dependent covariates were mMMS test score and residence
status. The education level was the number of years of education. The mMMS
test score was evaluated at patient’s each visit. The range of mMMS test score
was 0 to 57. The residence status included home, retirement home, nursing
home, hospital, rehabilitation center and others. An AD patient’s residence
status might vary according to different stage of disease at different time.

The original dataset consists of a total of 252 patients. However, the
investigation of HRQoL began late in the study, when only 123 subjects were
still alive. Consequently, our analysis is based on the data from the 123
patients. Among the 123 patients, 74 were female and 49 were male. The
patient’s age ranged from 49 to 83 with a median of 73, education level varied
from 1 to 20 with a median of 12. Although patients were supposed to be
evaluated every 6 months, the actual observation time deviated substantially
from the schedule. There were 70 patients died before the end of study and
average number of observations per subject was 5. The Fig. 1 shows the
survival curve of the 123 patients.

The survival time was modeled by Cox proportional hazards model (2.3)
with all time-independent covariates, the estimates were –0.36 for gender, 0.04
for age and 0.02 for education level, respectively. The observation times were
modeled by model (2.2) with covariates gender, age and years of education.

Table 2 Simulation results for hypothesis testing

q Test H0 Ha
1 Ha

2 Ha
3

0 S1 0.044 1 1 1
S2 0.044 1 1 1

4 S1 0.046 0.968 0.974 0.954
S2 0.050 0.978 0.972 0.970

Note: H0: a0(t)=h0 (h0=1); Ha
1: a0(t)=h0+h1t (h0=1, h1=0.4); H2

a : a0ðtÞ ¼ h0 þ h1 sinðh2tÞ (h0 = 1,
h1 = 1.2, h2 = 1) and Ha

3: a0(t)=h0 + h1 log(h2 t) (h0 = 1, h1 = 0.5, h2 = 1)
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The coefficient estimates obtained from the estimating Eq. (3.9) were –0.023
for gender, 0.011 for age and 0.002 for education level, respectively. With
these estimates and the weight function Wð�Þ � 1, we fit following model:

YðtÞ ¼ aðtÞ þ b1 �mMMSðtÞ þ b2 �Gender þ b3 �Age

þ b4 � Educationþ
X9

i¼5

bi � niðtÞ þ �ðtÞ:

where Gender takes value 1 for female, 0 for male; n5(t) takes value 1 if
patient’s residence is home at time t, 0 otherwise; n6(t) takes value 1 if
patient’s residence is retirement home at time t, 0 otherwise; n7(t) takes value
1 if patient’s residence is nursing home at time t, 0 otherwise; n8(t) takes value
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Fig. 1 The Kaplan–Meier survival curve for the 123 AD patients

Table 3 Regression analysis of ‘‘Predictor’s Cohort Study’’

Parameter Proposed method Lin and Ying’s method

Estimate SE 95% CI Estimate SE 95% CI

mMMS 0.127 0.022 (0.085, 0.170) 0.132 0.021 (0.091, 0.172)
Gender –0.672 0.661 (–1.968, 0.625) –0.645 0.632 (–1.883, 0.593)
Age –0.124 0.038 (–0.198, –0.050) –0.130 0.035 (–0.199, –0.061)
Education –0.059 0.083 (–0.221, 0.103) –0.071 0.076 (–0.221, 0.079)
b5 –1.579 1.619 (–4.792, 1.595) –2.005 1.476 (–4.897, 0.887)
b6 –1.695 2.189 (–5.985, 2.595) –2.154 2.062 (–6.197, 1.888)
b7 –5.322 1.665 (–8.586, –2.058) –5.679 1.512 (–8.641, –2.716)
b8 –4.439 4.405 (–13.074, 4.195) –5.534 4.116 (–13.601, 2.533)
b9 –7.269 1.771 (–10.741, –3.798) –7.578 1.631 (–10.775, –4.381)
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1 if patient’s residence is hospital at time t, 0 otherwise; n9(t) takes value 1 if
patient’s residence is rehabilitation at time t, 0 otherwise. The first 3 columns
of Table 3 present the analysis results.

The results clearly show that mMMS score was an significant predictor of
daily activity. The higher mMMS score is, the more daily activity is. Age also
significantly affected the daily activity. The patients in nursing home and
rehabilitation center had less daily activity compared to those in other residence.
Gender and education level were not significantly related to the daily activity.

If a(t;h) is constant, then K̂ðt; n̂; ĉÞ and Âðt; b̂; n̂; ĉÞ is approximately linearly
related. The plot of cumulative number of observation K̂ðt; n̂; ĉÞ against
Âðt; b̂; n̂; ĉÞ indicates a trend that the function a(t;h) is a constant. Next, we
test the hypothesis H0:a(t)=h with the statistics S1 ¼ supt�0 n1=2jÂðt; b̂; n̂; ĉÞ
�~Aðt; ĥ; n̂; ĉÞj and S2 ¼ n1=2

R1
0 j Âðt; b̂; n̂; ĉÞ � eAðt; ĥ; n̂; ĉÞ j dt. Under H0, the

estimate of h is 17.5, the test statistic S1 = 1.114 with p-value being 0.873, and
test statistic S2 = 11.240 with p-value being 0.965 based on the values of S1

* and
S2

* in 1000 resampling runs. So both tests show that the null hypothesis that
baseline is a constant cannot be rejected.

For comparison, we also fitted data with the approach of Lin and Ying
(2001) without modeling the terminal events. With the model (2.2), the esti-
mating equation (3.4) yielded coefficient estimates –0.049 for gender, 0.010 for
age and 0.000 for education level, respectively. The last 3 columns of Table 3
present the analysis results.

The results show that the two approaches yield qualitatively similar con-
clusion. The point estimates of parameters from both methods are similar,
however, the estimates of their standard errors with the approach of Lin and
Ying are smaller than those with the proposed approach.

7 Discussion

This paper considers the analysis of HRQoL data with semiparametric
regression model. The model allows one to examine time-dependent covariate
effect as well as the change of outcome variable due to factors that are not
included in the model. The examination of covariate effect is done without
direct estimation of the unknown baseline function a(Æ). The model is easy to
interpret and exhibits robust properties. Two statistics for testing specific
parametric form of the nonparametric component are considered. However,
other test statistics can also be constructed, such as von-Mises types of
statistics.

The method is applied to the ‘‘Predictor’s Cohort’’ study. The analysis using
the new approach shows that the cognitive status and age are important
predictors for the HRQoL for patients with AD. Older AD patients with poor
cognitive status would have worse HRQoL. The gender and education level
are not significantly related to HRQoL. Interestingly, the residence of patients
is related to HRQoL of AD patients.

An important feature is the joint modeling of survival time and longitudinal
measurements. We have used the Cox proportional hazards model for the
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survival time. Other competing models, such as the accelerated failure time
model and the transformation models, may be used as well. In this connection,
it is also important to be able to perform model checking by using, for
example, residual analysis.
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Appendix

Proof of Theorem 1 (i) Recall that the estimating Eq. (3.9) is used to esti-
mate c, for convenience, denote

Un0ðc; n̂Þ ¼
Xn

i¼1

Z 1

0

Zi1ðtÞ � �̂Z
�
1ðt; cÞ

� �
d̂�i ðtÞdN�i ðtÞ:

The consistency of ĉ follows from the almost identical arguments in Appendix
A.1 of Lin et al. (2000). Thus, we omit the details.

Now we sketch the proof of n1=2ðĉ� cÞ ¼ n�1=2
Pn

i¼1 wi þ oPð1Þ. The Taylor
series expansion of Un0ðĉ; n̂Þ at ðc; n̂Þ and the law of large numbers lead to

n1=2ðĉ� cÞ ¼ X�1
c n�1=2Un0ðc; n̂Þ þ oPð1Þ: ðA:1Þ

Note that
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Following Lin et al. (1994),
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Plugging (A.3) and (A.2) into (A.1) and interchanging integrals, we get
n1=2ðĉ� cÞ ¼ n�1=2

Pn
i¼1 wi þ oPð1Þ.

(ii) Since ĉ, n̂ are consistent, the consistency of b̂ follows from the expres-
sion (3.12) by applying law of large numbers.

Let

Un1ðb; c; n̂Þ ¼
Xn

i¼1

Z 1

0

WðtÞd̂�i ðtÞ XiðtÞ � �̂X
�ðt; cÞ

h in

	 YiðtÞ � �̂Y
�ðt; cÞ � bTðXiðtÞ � �̂X

�ðt; cÞÞ
h io

dN�i ðtÞ;

Un1ðb; c; nÞ ¼
Xn

i¼1

Z 1

0

WðtÞd�i ðtÞ XiðtÞ � �X
�ðt; cÞ

� �


	 YiðtÞ � �Y
�ðt; cÞ � bTðXiðtÞ � �X

�ðt; cÞÞ
� ��

dN�i ðtÞ:

Clearly, � 1
n
@Un1ðb;c;n̂Þ

@b converges to D as n!1. As in Lin and Ying (2001),

� 1
n
@Un1ðb;c;n̂Þ

@c converges in probability to H. Thus, the Taylor series expansion

of Un1ðb̂; ĉ; n̂Þ, and the law of large numbers lead to

n1=2ðb̂� bÞ ¼ n�1=2D�1 Un1ðb; c; n̂Þ �Hðĉ� cÞ
h i

þ oPð1Þ: ðA:4Þ

Now

n�1=2 Un1ðb;c;n̂Þ�Un1ðb;c;nÞ
h i

¼n�1=2
Xn

i¼1

Z 1

0

WðtÞ d̂�i ðtÞ�d�i ðtÞ
� �

XiðtÞ� �X
�ðt;cÞ

� �

	 YiðtÞ� �Y
�ðt;cÞ�bTðXiðtÞ� �X

�ðt;cÞÞ
� �

dN�i ðtÞ
þoPð1Þ:

ðA:5Þ

Plugging (A.3) into (A.5) and interchanging integrals with simplification,
we get

n�1=2Un1ðb; c; n̂Þ ¼ n�1=2
Xn

i¼1

ðgi þ fiÞ þ oPð1Þ: ðA:6Þ

Plugging (A.6) and the asymptotic expression of n1=2ðĉ� cÞ in (i) into (A.4),
the asymptotic expression of b̂ follows.

Proof of theorem 2 Note that n1=2½Âðt; b̂; n̂; ĉÞ � ~Aðt; ĥ; n̂; ĉÞ� can be decom-
posed as follows:
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n1=2½Âðt; b̂; n̂; ĉÞ � ~Aðt; ĥ; n̂; ĉÞ� ¼ n1=2ðI1 þ I2 þ I3 þ I4 þ I5 þ I6 þ I7Þ; ðA:7Þ

where

I1 ¼Âðt; b̂; n̂; ĉÞ � Âðt; b; n̂; ĉÞ;
I2 ¼Âðt; b; n̂; ĉÞ � Âðt; b; n̂; cÞ;
I3 ¼Âðt; b; n̂; cÞ � Âðt; b; n; cÞ;

I4 ¼Âðt; b; n; cÞ �
Z t

0

a0ðs; hÞdK̂ðs; n; cÞ;

I5 ¼
Z t

0

a0ðs; hÞdK̂ðs; n; cÞ �
Z t

0

a0ðs; hÞdK̂ðs; n̂; cÞ;

I6 ¼
Z t

0

a0ðs; hÞdK̂ðs; n̂; cÞ � ~Aðt; h; n̂; ĉÞ;

I7 ¼ ~Aðt; h; n̂; ĉÞ � ~Aðt; ĥ; n̂; ĉÞ�:

With the expression (3.13) of Âðt; b; n; cÞ, after some algebra, we get

I1 ¼
Xn

i¼1

Z t

0

XT
i ðsÞðb� b̂Þd̂�i ðsÞdN�i ðsÞPn

j¼1 d̂�j ðsÞeĉTZj1ðsÞ
¼ DxðtÞðb̂� bÞ þ oPðkb̂� bkÞ;

I2 ¼
Xn

i¼1

Z t

0

ðYiðsÞ � bTXiðsÞÞ
Pn

j¼1 d̂�j ðsÞðecTZj1ðsÞ � eĉTZj1ðsÞÞd̂�i ðsÞdN�i ðsÞ
Pn

j¼1 d̂�j ðsÞecTZj1ðsÞ
Pn

k¼1 d̂�kðsÞeĉTZk1ðsÞ
:

Moreover, by the expression (3.11) of K̂ and Taylor series expansions,

I3 ¼
Xn

i¼1

Z t

0

YiðsÞ � bTXiðsÞ
� � d̂�i ðtÞPn

j¼1 d̂�j ðsÞeĉTZj1ðsÞ
� d�i ðtÞPn

j¼1 d�j ðsÞeĉTZj1ðsÞ

" #

dN�i ðtÞ;

I4 ¼
Xn

i¼1

Z t

0

d�i ðsÞ�iðsÞdN�i ðsÞPn
j¼1 d�j ðsÞecTZj1ðsÞ

¼
Xn

i¼1

Z t

0

d�i ðsÞ dMiðsÞ � a0ðsÞdMiðsÞ½ �
Pn

j¼1 d�j ðsÞecTZj1ðsÞ
;

I5 ¼
Xn

i¼1

Z t

0

a0ðs; hÞ
d�i ðtÞPn

j¼1 d�j ðsÞeĉTZj1ðsÞ
� d̂�i ðtÞPn

j¼1 d̂�j ðsÞeĉTZj1ðsÞ

" #

dN�i ðtÞ;

I6 ¼
Xn

i¼1

Z t

0

a0ðs; hÞd̂�i ðsÞ
1

Pn
j¼1 d̂�j ðsÞecTZj1ðsÞ

� 1
Pn

j¼1 d̂�j ðsÞeĉTZj1ðsÞ

" #

dN�i ðtÞ;

I7 ¼
Xn

i¼1

Z t

0

½a0ðs; hÞ � a0ðs; ĥÞ�d̂�i ðsÞdN�i ðsÞPn
j¼1 d̂�j ðsÞeĉTZj1ðsÞ

:

The consistency of ĉ and n̂ and Taylor series expansion, we can get
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I7 ¼ �
Xn

i¼1

Z t

0

½@a0ðs;hÞ
@h d̂�i ðsÞdN�i ðsÞ

Pn
j¼1 d̂�j ðsÞeĉTZj1ðsÞ

" #

ðĥ� hÞ þ oPðkĥ� hkÞ;

I2 þ I6 ¼ �
Z t

0

d̂�i ðsÞ�iðsÞ
Pn

j¼1 d̂�j ðsÞecTZj1ðsÞZj1ðsÞdN�i ðsÞ
Pn

j¼1 d̂�j ðsÞecTZj1ðsÞ
� �2

2

6
4

3

7
5ðĉ� cÞ þ oPðkĉ� ckÞ

¼HðtÞðĉ� cÞ þ oPðkĉ� ckÞ:

In addition,

I3 þ I5 ¼
Xn

i¼1

Z t

0

�iðtÞ
d�i ðtÞPn

j¼1 d�j ðsÞeĉTZj1ðsÞ
� d̂�i ðtÞPn

j¼1 d̂�j ðsÞeĉTZj1ðsÞ

" #

dN�i ðtÞ

¼
Xn

i¼1

Z t

0

½d̂�i ðsÞ � d�i ðsÞ� dMiðsÞ � a0ðsÞdMiðsÞ½ �
nr
ð0Þ
z2 ðsÞ

þ oPð1Þ:

Recall that D1 is the limit of ð�1=nÞ½ð@Unðh; bÞÞ=ð@hÞ�, D2 is the limit of

ð�1=nÞ½ð@Unðh; bÞÞ=ð@bÞ�, Dx(t) is the limit of � 1
n

Pn
i¼1

R t

0

XiðsÞd�i ðsÞdN�
i
ðsÞ

Rz1ðs;ĉÞ . With

Taylor series expansion, notice that

0¼n�1=2Unðĥ;b̂; n̂Þ¼n�1=2 Unðh;b; n̂Þ�D1n1=2ðĥ�hÞ�D2n1=2ðb̂�bÞ
� �

þoPð1Þ:

which leads to,

n1=2ðĥ� hÞ ¼D�1
1 n�1=2Unðh; b; n̂Þ �D2n1=2ðb̂� bÞ
� �

þ oPð1Þ

¼ n�1=2D�1
1 Unðh; b; nÞ þUnðh; b; n̂Þ �Unðh; b; nÞ
� �

�D�1
1 D2n1=2ðb̂� bÞ þ oPð1Þ:

Use the asymptotic representation (A.3) of d̂�i ðtÞ � d�i ðtÞ and the fact that

Unðh; b; nÞ ¼
Xn

i¼1

Z 1

0

@a0ðt; hÞ
@h

dMiðtÞ � a0ðtÞdMiðtÞ½ �

Unðh;b;n̂Þ�Unðh;b;nÞ¼
Xn

i¼1

Z 1

0

KðZi2� �Zi2ðtÞÞþ
qeðtÞ
r
ð0Þ
z2 ðtÞ

" #

dMS
i ðtÞþoPðnkn̂�nkÞ;

we can get n1=2ðÂðt;b̂;n̂;ĉÞ� ~Aðt;ĥ;n̂;ĉÞÞ¼n�1=2
Pn

i¼1CiðtÞþopð1Þ, where
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CiðtÞ¼
Z t

0

�iðsÞ½dM�
i ðs;A;b;c;nÞ�a0ðsÞdM�

i ðs;c;nÞ�
r0

z1ðs;cÞ
�HðtÞwi

þ
Z 1

0

CðtÞ Zi2�
r
ð1Þ
z2 ðs;nÞ

r
ð0Þ
z2 ðs;nÞ

" #

dMS
i ðsÞþ

qvðt;sÞ
r
ð0Þ
z2 ðs;nÞ

dMS
i ðsÞ

þ DT
x ðtÞþ

Z t

0

@a0ðs;hÞ
@h

� 	T

dKðsÞD�1
1 D2

" #

/i

�
Z t

0

@a0ðs;hÞ
@h

� 	T

dKðsÞ
" #

D�1
1

Z 1

0

@a0ðs;hÞ
@h

� 	T

	 dM�
i ðs;A;b;c;nÞ�a0ðsÞdM�

i ðs;c;nÞ
� �

�
Z t

0

@a0ðs;hÞ
@h

� 	T

dKðsÞ
" #

D�1
1

Z 1

0

K Zi2�
r
ð1Þ
z2 ðs;nÞ

r
ð0Þ
z2 ðs;nÞ

" #

þ qeðsÞ
r
ð0Þ
z2 ðs;nÞ

( )

dMS
i ðsÞ:

This completes the proof. h
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