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Abstract

In this paper, we study M-estimators of regression parameters in semiparametric linear models for censored data. A class of
consistent and asymptotically normal M-estimators is constructed. A resampling method is developed for the estimation of the
asymptotic covariance matrix of the estimators.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A way to study the covariate effects on the response is to use the semiparametric linear regression model in which
the response is sum of a linear combination of covariates and error term whose distribution is completely unspecified.

For uncensored data, it is well known that the use of M-estimation methods for the model can overcome some of
the robustness limitations of the least squares approach (Huber, 1981; Hampel et al., 1986). For right censored data,
Ritov (1990), Zhou (1992) and Lai and Ying (1994) developed M-estimators for the model. The approach of
Zhou (1992) is based on a weighted data approach similar to that in Koul et al. (1981), which requires that the
censoring time is independent of covariates. The approaches of Ritov (1990) and Lai and Ying (1994) are extensions
of the estimator of Buckley and James (1979) to general M-estimators. Under certain conditions, both Ritov (1990)
and Lai and Ying (1994) rigorously proved that their estimating equation has a solution that is

√
n-consistent and

asymptotically normal. But these results do not guarantee consistency of all solutions. They were not able to show
that the estimating equation has a unique solution, nor were they able to devise an algorithm that could be used in
finding a consistent estimator. Also, the variance of resulting estimator is difficult to estimate well because it involves
the unknown density function of error term and its derivative.

In this note, we develop a new M-estimation procedure for the semiparametric linear model with right censored data.
The method is easy to implement and yields a class of estimators which are consistent and asymptotically normal. We
also develop a resampling method for the estimation of the limiting covariance matrix.

In the next section, the semiparametric linear regression model is introduced and the new M-estimation method is
presented. Simulation studies are presented in Section 3 and some remark is given in Section 4. Proofs are outlined in
Appendix A.
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2. Model and M-estimation

Let (Yi, Xi, �i ), i=1, . . . , n, be independent and identically distributed observed data, where Xi is a p×1 covariate,
Yi = min{Ti, Ci} with Ti being failure time and Ci being the censoring time, �i = 1{Ti �Ci} is the failure indicator.
Throughout the paper, it is assumed that Ti and Ci are independent conditional on Xi .

2.1. Accelerated failure time model

The semiparametric linear regression model is of form

Ti = XT
i �0 + �i , (1)

where �0 is the unknown true p × 1 parameter of interest and �i (i = 1, . . . , n) are unobservable independent random
errors with a common but completely unspecified distribution function F(·). (Thus, the mean of � is not necessarily
0). In survival analysis in which the response is the logarithm transformation of the survival time, the model (1) is the
accelerated failure time (AFT) model.

2.2. M-estimation

Ritov (1990), Lai andYing (1994) considered the following estimating equation �(�; s)=0 with s(·) being a known
function and

�(�; s) =
n∑

i=1

(Xi − X̄)

⎧⎨⎩�i s(Yi − XT
i �) + (1 − �i )

∫∞
Yi−XT

i � s(u) dF̂n,�(u)

1 − F̂n,�(Yi − XT
i �)

⎫⎬⎭ , (2)

where X̄ = (1/n)
∑n

i=1Xi , and F̂n,b(t) is the Kaplan–Meier estimator based on data {(Yi − XT
i b, �i ), i = 1, . . . , n}.

Specifically,

F̂n,b(t) = 1 −
∏

i:ei (b)<t

[
1 − �i∑n

j=11{ej (b)�ei(b)}

]
, (3)

where ei(b) = Yi − XT
i b, i = 1, . . . , n.

Notice that, if s(u) = u, then (2) becomes the Buckley–James estimating function based on least squares principle
(Buckley and James, 1979); if s(u) = |u|r−1 with r > 1, then (2) becomes estimating function of Lr regression; if
s(u) = sign(u), then (2) becomes estimating function of least absolute deviation; and (2) becomes the maximum
likelihood estimating function when s(u) = −ḟ (u)/f (u), where f (u) is the density function of � and ḟ (u) is its
derivative.

Recently, Jin et al. (2006a) studied the least squares approach with s(u) = u for the model (2) along the line of
Buckley and James (1979). Below we extend their approach for general function s(u). Specifically, with an initial
estimator �̂(0), which is

√
n consistent, obtain a new estimator �̂(1) by the one-step Newton–Raphson approximation:

�̂(1) = �̂(0) −
⎡⎣ �U(�; �̂(0), s)

��

∣∣∣∣∣
�=�̂(0)

⎤⎦−1

U(�̂(0); �̂(0), s), (4)

where

U(�; b, s) =
n∑

i=1

(Xi − X̄)

{
s(ei(�)) + (1 − �i )

[∫∞
ei (b)

s(u) dF̂n,b(u)

1 − F̂n,b(ei(b))
− s(ei(b))

]}
. (5)
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Continuing this process yields a class of estimators �̂(m):

�̂(m) = �̂(m−1) −
⎡⎣ �U(�; �̂(m−1), s)

��

∣∣∣∣∣
�=�̂(m−1)

⎤⎦−1

U(�̂(m−1); �̂(m−1), s) (6)

for m�1.
Under regularity conditions, it can be shown that, if a consistent estimator of �0 is chosen as the initial value, then,

for any fixed m, �̂(m) should also be consistent. In addition, �̂(m) is asymptotically normal if the initial estimator is

asymptotically normal. Actually, it can be shown that �̂(m) is a linear combination of initial estimator and targeted
estimator of the estimating equation U(�; �, s) = 0, see Appendix A.

A consistent and asymptotically normal initial estimator of �0 can be obtained by the rank-based method of
Jin et al. (2003) or by the least squares based method of Jin et al. (2006a). In particular, the Gehan-type rank
estimator �̂G can be used as the initial estimator �̂(0), which can be calculated by minimizing the following con-
vex function:

n∑
i=1

n∑
j=1

�i[ei(�) − ej (�)]−,

where a− =1{a < 0}|a|. The minimization can be done with linear programming method (Jin et al., 2003). Throughout
the sequel, we assume that the initial estimator is �̂G.

The following assumptions will be made:

(C1) s(·) is twice continuously differentiable and
∫∞
−∞ s2(t) dF(t) < ∞.

(C2) ‖Xi‖�B for all i for some nonrandom constant B.
(C3) F(·) has a twice continuously differentiable densify function f (·) such that∫ ∞

−∞
t2 dF(t) < ∞,

∫ ∞

−∞

[
ḟ (t)

f (t)

]2

dF(t) < ∞,∫ ∞

−∞
sup

|h|�h0

{|ḟ (t + h)| + |f̈ (t + h)|} dt < ∞ for some h0 > 0.

(C4) Ds = limn→∞ n−1∑n
i=1(Xi − X)XT

i ṡ(Yi − XT
i �0) exists and is nonsingular, where ṡ(·) is the first derivative of

s(·).
(C5) limn→∞ n−1∑n

i=1(Xi − X)⊗j P(Ci − XT
i �0 � t |Xi) = �j (t) exists for j = 0, 1, 2, where a⊗0 is the identity

matrix, a⊗1 = a and a⊗2 = aaT. In addition, the matrix As is nonsingular, where

As =
∫ ∞

−∞

[{
�2(t) − �−1

0 (t)�⊗2
1 (t)

} ∫ ∞

t

{1 − F(v)}ṡ(v) dv

]
d�(t).

(C6) The matrix AG is nonsingular, where

AG = lim
n→∞

1

n2

n∑
i=1

n∑
j=1

∫ ∞

−∞
1{ej (�0)� t}(Xi − Xj)

⊗2{�̇(t)/�(t)} dNi(�0, t),

�(t) = f (t)/(1 − F(t)) and Ni(�0, t) = �i1{ej (�0)� t}.

The condition (C2) is a technical assumption which may be relaxed to maxi‖Xi‖= O(n�) for any � > 0. The condition
(C3) is assumed to obtain linear expansion of U(�; b, s). The conditions (C4) and (C5) hold if the vector of covariates
does not lie in a lower-dimensional hyperplane. The condition (C6) is assumed to obtain the asymptotic results of the
initial estimate �̂G.
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Theorem 1. Under the conditions (C1)–(C6), �̂(m) is consistent and
√

n(�̂(m) − �0) is asymptotically normally dis-
tributed as n → ∞ for each m�1.

The proof of Theorem 1 is given in Appendix A.
The limiting covariance matrices of both �̂G and �̂(m), however, involve the unknown hazard function �(·) of error

term �. To estimate the limiting covariance matrices, we develop a resampling procedure to approximate the distribution
of �̂(m).

2.3. Variance estimation

Let �̂
∗
G be a minimizer of

n∑
i=1

n∑
j=1

ZiZj�i[ei(�) − ej (�)]−,

where Zi (i = 1, . . . , n) satisfy following condition (C7):

(C7) Zi (i = 1, . . . , n) are independent and identically distributed positive random variables with a known distribution
satisfying E(Zi) = var(Zi) = 1.

Furthermore, define

U∗(�; b, s) =
n∑

i=1

Zi(Xi − X̄)[s(ei(�)) + (1 − �i )	is(b) − 	̄s(b)], (7)

where

	is(b) =
∫∞
ei (b)

s(u) dF̂ ∗
n,b(u)

1 − F̂ ∗
n,b(ei(b))

− s(ei(b))

with

F̂ ∗
n,b(t) = 1 −

∏
i:ei (b)<t

[
1 − Zi�i∑n

j=1Zj 1{ej (b)�ei(b)}

]
, (8)

and 	̄s(b) = n−1∑n
i=1[s(ei(b) + (1 − �i )	is(b)]. Then define the iterative sequence: �̂

∗
(0) = �̂

∗
G and

�̂
∗
(m) = �̂

∗
(m−1) −

⎡⎣ �U∗(�; �̂
∗
(m−1), s)

��

∣∣∣∣∣
�=�̂

∗
(m−1)

⎤⎦−1

U∗(�̂
∗
(m−1); �̂

∗
(m−1), s) (9)

for m�1.
Let Fn denote the 
-field generated by the original data (Yi, �i , Xi) (i = 1, . . . , n).

Theorem 2. Under the conditions (C1)–(C7), �̂
∗
(m) is consistent and

P(
√

n(�̂
∗
(m) − �̂(m)) ∈ G|Fn) − P(

√
n(�̂(m) − �0) ∈ G) → 0

in probability as n → ∞ for any finite p- dimensional rectangular G.

The proof of Theorem 2 is given inAppendixA. Theorem 2 shows that the conditional distribution of
√

n(�̂
∗
(m)−�̂(m))

given the data (Yi, �i , Xi) (i = 1, . . . , n) is asymptotically equivalent to the asymptotic distribution of
√

n(�̂(m) − �0).

Consequently, the distribution of �̂(m) can be approximated by a large number of realizations of �̂
∗
(m) after repeatedly
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Table 1
Summary statistics for the simulation studies

Error Censoring (%) Lr estimators

r = 1.5 r = 2.5

Bias SE SEE CP Bias SE SEE CP

Normal �1 0 0.009 0.207 0.203 0.938 0.011 0.206 0.203 0.938
25 0.011 0.222 0.222 0.944 0.012 0.221 0.223 0.955
50 0.011 0.260 0.256 0.939 0.009 0.256 0.269 0.964

�2 0 −0.001 0.218 0.199 0.920 −0.001 0.221 0.199 0.922
25 0.001 0.230 0.219 0.939 0.001 0.234 0.221 0.932
50 0.006 0.265 0.253 0.932 0.005 0.264 0.265 0.937

Extremevalue �1 0 −0.003 0.268 0.272 0.946 0.000 0.248 0.246 0.950
25 −0.013 0.289 0.295 0.950 −0.005 0.289 0.293 0.951
50 −0.003 0.348 0.366 0.954 0.009 0.379 0.406 0.962

�2 0 0.003 0.277 0.265 0.929 0.007 0.259 0.244 0.941
25 0.005 0.296 0.298 0.935 0.009 0.288 0.291 0.963
50 0.019 0.357 0.371 0.941 0.022 0.369 0.396 0.964

Bias, bias of the parameter estimator; SE, standard error of the parameter estimator; SEE, mean of the standard error estimator; CP, coverage
probability of the 95% Wald-type confidence interval.

generating the random variables (Z1, . . . , Zn). The empirical distribution of �̂
∗
(m) can then be used to approximate the

distribution of �̂(m). The empirical percentiles of �̂
∗
(m) or Wald method can be used to obtain confidence intervals for

individual components of �0. A typical way of generating Zi is to use the standard exponential distribution which has
mean 1 and variance 1.

3. Simulation studies

We conducted simulation studies to examine the finite sample performance of the proposed methods. The failure
times were generated from the model

log T = 2 + X1 + X2 + �,

where X1 was generated from the Bernoulli distribution with 0.5 success probability, X2 was generated from normal
distribution with mean 0 and standard deviation 0.5, and � had the standard normal, extreme-value distribution. The
censoring times were generated from the uniform distribution U[0, c], where c was chosen to yield a desired level
of censoring. We considered a sample size of 100. The Lr norm with r = 1.5 and 2.5 was considered for the M-
estimation. We estimated �1 and �2 with three iterations with the resampling being based on 1000 realizations of
standard exponential random variables.

The results based on 1000 simulated data sets were summarized in Table 1. The parameter estimator is virtually unbi-
ased. The resampling procedure estimated standard errors accurately. Most of the coverage probabilities of confidence
intervals were close to the 0.95 confidence coefficient. The results also showed that the proposed methods perform
slightly better for the extreme-value error case than the standard normal error case.

4. Remark

In this note, we propose a new class of M-estimation procedure for the semiparametric linear regression model for
censored data. The M-estimator �̂ satisfying �(�̂; s) = 0 can be obtained if the convergence of �̂(m) is reached as
m → ∞. It is also noted that the proposed approach can be extended to the analysis of multiple events data including
clustered failure time data along the line of Jin et al. (2006a, b).
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Appendix A. Proofs of asymptotic results

We first prove the following Lemma. It will be used in the proof of Theorems 1 and 2.

Lemma 1. Under the conditions (C1) and (C3),

�i s(ei(�0)) + (1 − �i )

∫∞
ei (�0)

s(u) dF(u)

1 − F(ei(�0))
= Es(�i ) +

∫ ∞

−∞

{
s(t) −

∫∞
t

s(u) dF(u)

1 − F(t)

}
dMi(t), (A.1)

where Mi(t) = Ni(�0, t) − ∫ t

0 I {ei(�0)�u}�(u) du.

Proof. Notice that∫ ∞

−∞

{
s(t) −

∫∞
t

s(u) dF(u)

1 − F(t)

}
dMi(t)

= �i s(ei(�0)) −
�i

∫∞
ei (�0)

s(u) dF(u)

1 − F(ei(�0))
−
∫ ei (�0)

−∞

{
s(t) −

∫∞
t

s(u) dF(u)

1 − F(t)

}
�(t) dt .

By integration by part,∫ ei (�0)

−∞

{
s(t) −

∫∞
t

s(u) dF(u)

1 − F(t)

}
�(t) dt = −

∫∞
ei (�0)

s(u) dF(u)

1 − F(ei(�0))
+
∫ ∞

−∞
s(u) dF(u)

= −
∫∞
ei (�0)

s(u) dF(u)

1 − F(ei(�0))
+ Es(�i ).

Consequently, (A.1) holds. �

Proof of Theorem 1. It was shown in Jin et al. (2003) that �̂(0) = �̂G is consistent and
√

n(�̂G −�0) is asymptotically
normally distributed. We first prove the theorem when m = 1, then prove when m > 1 by the induction method.

(i) Consistency of �̂(1). Observe that

�U(�; �̂(0), s)

��

∣∣∣∣∣
�=�̂(0)

= −
n∑

i=1

(Xi − X̄)XT
i ṡ(ei(�̂(0))).

By assumptions (C1)–(C4) and Slutsky’s Theorem,

− 1

n

�U(�; �̂(0), s)

��

∣∣∣∣∣
�=�̂(0)

→ Ds (A.2)

as n → ∞.
Write U(b) = U(b; b, s). With the arguments similar to those in Lai and Ying (1994) we can show that, uniformly in

‖b − �0‖�n−1/3,

U(b) = U(�0) − nAs(b − �0) + o(n1/2 + n‖b − �0‖) (A.3)
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almost surely. In particular, since
√

n(�̂(0) − �0) = OP(1),

U(�̂(0)) = U(�0) − nAs(�̂(0) − �0) + oP(n1/2).

Therefore, (1/n)U(�̂(0)) = oP(1). This together with (A.2) and expression (4), the consistency of �̂(1) follows.

(ii) Convergence of
√

n(�̂(1) − �0). By the expression (4) and (A.2)–(A.3),

√
n(�̂(1) − �0) = √

n(�̂(0) − �0) + D−1
s

[
1√
n

U(�(0)) − As

√
n(�̂(0) − �0)

]
+ oP(1)

= (I − D−1
s As)

√
n(̂�G − �0) + D−1

s

1√
n

U(�0) + oP(1). (A.4)

Note that

U(�0) =
n∑

i=1

(Xi − X)

{
�i s(ei(�0)) + (1 − �i )

∫∞
ei (�0)

s(u) dF̂�0
(u)

1 − F̂�0
(ei(�0))

}

=
n∑

i=1

(Xi − X)

{
�i s(ei(�0)) + (1 − �i )

∫∞
ei (�0)

s(u) dF(u)

1 − F(ei(�0))

}

+
n∑

i=1

(Xi − X)(1 − �i )

{∫∞
ei (�0)

s(u) dF̂�0
(u)

1 − F̂�0
(ei(�0))

−
∫∞
ei (�0)

s(u) dF(u)

1 − F(ei(�0))

}
. (A.5)

It follows from the martingale representation of the Kaplan–Meier estimator (Fleming and Harrington, 1991, p. 98)
that, almost surely,∫∞

ei (�0)
s(u) dF̂�0

(u)

1 − F̂�0
(ei(�0))

−
∫∞
ei (�0)

s(u) dF(u)

1 − F(ei(�0))
= n−1

n∑
j=1

∫ ∞

−∞
�i (t) dMj(t) + o(n−1/2) (A.6)

for some random process �i (t). By (A.1) in Lemma 1 and (A.5)–(A.6),

U(�0) =
n∑

i=1

∫ ∞

−∞

[
(Xi − X)

{
s(t) −

∫∞
t

s(u) dF(u)

1 − F(t)

}
+ �

x
(t)

]
dMi(t) + o(n1/2), (A.7)

where �
x
(t) is the limit of n−1∑n

i=1(Xi − X)(1 − �i )�i (t).
As shown by Jin et al. (2003, 2006b),

√
n(̂�G − �0) = A−1

G
1√
n

n∑
i=1

∫ ∞

−∞
�i (t) dMi(t) + oP(1), (A.8)

where the �i (t)’s are nonrandom functions.
Consequently, by (A.4) and (A.7)–(A.8),

√
n(̂�(1) − �0) = 1√

n

n∑
i=1

Hi1 + oP(1), (A.9)

where

Hi1 =
∫ ∞

−∞

(
(I − D−1

s As)A
−1
G �i (t) + D−1

s

[
(Xi − X)

{
s(t) −

∫∞
t

s(u) dF(u)

1 − F(t)

}
+ �

x
(t)

])
dMi(t).

The convergence of
√

n(̂�(1) − �0) follows from the multivariate central limit theorem. Its asymptotic variance is the

limit of (1/n)
∑n

i=1H
⊗2
i1 as n → ∞.
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(iii) Consistency of �̂(m) and the convergence of
√

n(�̂(m) −�0) for m > 1. The proof can be obtained by the induction
method with the use of the similar arguments in (i) and (ii) repeatedly. In fact, it can be shown that

√
n(̂�(m) − �0) = (I − D−1

s As)
√

n(̂�(m−1) − �0) + D−1
s

1√
n

U(�0) + oP(1). (A.10)

Consequently, by the induction method, the consistency of �̂(m) follows and

√
n(̂�(m) − �0) = 1√

n

n∑
i=1

Him + oP(1), (A.11)

where

Him =
∫ ∞

−∞

(
(I − D−1

s As)
mA−1

G �i (t)

+
{
I − (I − D−1

s As)
m
}

A−1
s

[
(Xi − X)

{
s(t) −

∫∞
t

s(u) dF(u)

1 − F(t)

}
+ �

x
(t)

])
dMi(t)

for each fixed m > 1. Thus,
√

n(̂�(m) − �0) is asymptotically normal as n → ∞ with the variance as the limit of

(1/n)
∑n

i=1H
⊗2
im as n → ∞. This completes the proof of Theorem 1. �

Proof of Theorem 2. The consistency of �̂
∗
(0) = �̂

∗
G and the convergence of

√
n(�̂

∗
(0) − �̂(0)) were shown in Jin et al.

(2006b). We first prove the theorem when m = 1, then prove when m > 1 by the induction method.
(i) Consistency of �̂

∗
(1) and convergence of the conditional distribution of

√
n(�̂

∗
(1) − �̂(1)) given Fn. Notice that

�U∗(�; �̂
∗
(m−1), s)

��
= −

n∑
i=1

Zi(Xi − X̄)XT
i ṡ(ei(�)).

Since EZi = 1, by the strong law of large number, as n → ∞,

1

n

n∑
i=1

(Zi − 1)(Xi − X̄)XT
i ṡ(ei(�)) → 0.

If �̂
∗
(m−1) is consistent, by Slutsky’s theorem, as n → ∞,

1

n

n∑
i=1

(Xi − X̄)XT
i ṡ(ei(�̂

∗
(m−1))) → Ds ,

which implies that, as n → ∞,

1

n

n∑
i=1

Zi(Xi − X̄)XT
i ṡ(ei(�̂

∗
(m−1))) → Ds . (A.12)

Since �̂
∗
(0) is consistent, (A.12) holds for �̂

∗
(0). Thus, as n → ∞,

− 1

n

�U∗(�; �̂
∗
(0), s)

��

∣∣∣∣∣
�=�̂

∗
(0)

→ Ds .

Write U∗(b) = U∗(b; b, s). By incorporating the random weights Zi into the derivation of the asymptotic linearity
in Lai and Ying (1994), we can establish the following linear approximation analogous to (A.3):

U∗(̂�∗
(0)) = U∗(̂�(0)) − nAs(̂�

∗
(0) − �̂(0)) + o(n1/2 + n‖̂�∗

(0) − �0‖ + n‖̂�(0) − �0‖) (A.13)



3902 Z. Jin / Journal of Statistical Planning and Inference 137 (2007) 3894–3903

almost surely. The slope matrix As remains the same as in (A.2) since EZi = 1 and As is the limit of the gradient of
n−1EU∗(b) at b = �0. Observe that

U∗(̂�(0)) − U(̂�(0)) = I + II , (A.14)

where

I =
n∑

i=1

(Zi − 1)(Xi − X)[s(ei (̂�(0))) + (1 − �i )	is(�̂(0)) − 	̄s(�̂(0))],

II =
n∑

i=1

(Xi − X)(1 − �i )

⎡⎣	is(�̂(0)) −
∫∞
ei (̂�(0))

s(u) dF̂�̂(0)
(u)

1 − F̂�̂(0)
(ei (̂�(0)))

⎤⎦ .

Notice that

s(ei (̂�(0))) + (1 − �i )	is(�̂(0)) = �i s(ei (̂�(0))) + (1 − �i )

⎧⎨⎩
∫∞
ei (̂�(0))

s(u) dF̂ ∗̂
�(0)

(u)

1 − F̂ ∗̂
�(0)

(ei (̂�(0)))

⎫⎬⎭ .

With expansion at �0, it can be shown that

s(ei (̂�(0))) + (1 − �i )	is(�̂(0)) − 	̄s(�̂(0)) = �i s(ei(�0)) + (1 − �i )

{∫∞
ei (�0)

s(u) dF(u)

1 − F(ei(�0))

}
− Es(�i ) + oP(n−1/2).

Since E(Zi − 1|F) = 0, we have

I =
n∑

i=1

(Zi − 1)

∫ ∞

−∞
(Xi − X)

{
s(t) −

∫∞
t

s(u) dF(u)

1 − F(t)

}
dMi(t) + oP(n1/2). (A.15)

As in Jin et al. (2006a), by approximating F̂ ∗̂
�(0)

− F̂�̂(0)
with a weighted sum of Zi − 1, we can show that

II =
n∑

i=1

(Xi − X)(1 − �i )

⎧⎨⎩
∫∞
ei (̂�(0))

s(u) dF̂ ∗̂
�(0)

(u)

1 − F̂ ∗̂
�(0)

(ei (̂�(0)))
−
∫∞
ei (̂�(0))

s(u) dF̂�̂(0)
(u)

1 − F̂�̂(0)
(ei (̂�(0)))

⎫⎬⎭
=

n∑
i=1

(Zi − 1)

∫ ∞

−∞
�

x
(t) dMi(t) + oP(n1/2). (A.16)

By (A.13)–(A.16), we obtain

U∗(̂�∗
(0)) = U(̂�(0)) +

n∑
i=1

(Zi − 1)

∫ ∞

−∞

[
(Xi − X)

{
s(t) −

∫∞
t

s(u) dF(u)

1 − F(t)

}
+ �

x
(t)

]
dMi(t)

− nAs(̂�
∗
(0) − �̂(0)) + o(n1/2 + n‖̂�∗

(0) − �0‖ + n‖̂�(0) − �0‖). (A.17)

Because of (A.12) and (A.17), the difference between the expressions (9) and (6) for m = 1 leads to

√
n(̂�

∗
(1) − �̂(1)) = 1√

n
D−1

s

n∑
i=1

(Zi − 1)

∫ ∞

−∞

[
(Xi − X)

{
s(t) −

∫∞
t

s(u) dF(u)

1 − F(t)

}
+ �

x
(t)

]
dMi(t)

+ (I − D−1
s As)

√
n(̂�

∗
(0) − �̂(0)) + o(1 + √

n‖̂�∗
(0) − �0‖ + √

n‖̂�(0) − �0‖).
It was shown by Jin et al. (2003, 2006b) that

√
n(̂�

∗
(0) − �̂(0)) = 1√

n
A−1

G

n∑
i=1

(Zi − 1)

∫ ∞

−∞
�i (t) dMi(t) + oP(1). (A.18)
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Since
√

n(̂�
∗
(0) − �0) = OP(1) and

√
n(̂�(0) − �0) = OP(1), we have

√
n(̂�

∗
(1) − �̂(1)) = 1√

n

n∑
i=1

(Zi − 1)Hi1 + oP(1), (A.19)

where Hi1 is the same as that in (A.9). Note that conditional on Fn, we have that (Zi − 1)Hi1 are independent with
mean 0 and covariance H⊗2

i1 . Consequently, �̂
∗
(1) is consistent and the conditional distribution of

√
n(̂�

∗
(1) − �̂(1)) given

Fn converges to the asymptotic distribution of
√

n(̂�(1) − �0) in probability.

(ii) Consistency of �̂
∗
(m) and convergence of the conditional distribution of

√
n(�̂

∗
(m) − �̂(m)) given Fn for m > 1. By

replacing �̂
∗
(0) and �̂(0) with �̂

∗
(m−1) and �̂(m−1), respectively, in the part (1) and with similar arguments therein, we can

show that

�̂
∗
(m) − �̂(m) = n−1D−1

s

n∑
i=1

(Zi − 1)

∫ ∞

−∞

[
(Xi − X)

{
s(t) −

∫∞
t

s(u) dF(u)

1 − F(t)

}
+ �

x
(t)

]
dMi(t)

+ (I − D−1
s As)(̂�

∗
(m−1) − �̂(m−1)) + oP(n−1/2).

By induction,

�̂
∗
(m) − �̂(m) = (I − D−1

s As)
m(̂�

∗
(0) − �̂(0)) + n−1{I − (I − D−1

s As)
m}A−1

s

×
n∑

i=1

(Zi − 1)

∫ ∞

−∞

[
(Xi − X)

{
s(t) −

∫∞
t

s(u) dF(u)

1 − F(t)

}
+ �

x
(t)

]
dMi(t) + oP(n−1/2).

Combined with (A.18), we have

√
n(̂�

∗
(m) − �̂(m)) = 1√

n

n∑
i=1

(Zi − 1)Him + oP(1). (A.20)

Consequently, �̂
∗
(m) is consistent and the conditional distribution of

√
n(̂�

∗
(m)− �̂(m)) givenFn converges to the limiting

distribution of
√

n(̂�(m) − �0) in probability. This completes the proof of Theorem 2. �
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