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SUMMARY 

Suppose that under a semiparametric setting an estimator of a vector of parameters of 
interest is obtained by optimising an objective function which has a U-process structure. 
The covariance matrix of the estimator is generally a function of the underlying density 
function, which may be difficult to estimate well by conventional methods. In this paper, 
we present a simple resampling method by perturbing the objective function repeatedly. 
Inferences of the parameters can then be made based on a large collection of the resulting 
optimisers. We illustrate our proposal by three examples with a heteroscedastic 
regression model. 

Some key words: Bootstrap; Heteroscedastic regression; Lp norm; Resampling method; Truncated regression; 
U-process. 

1. INTRODUCTION 

Let 0 be an r x 1 vector of parameters of interest for the distribution of a random vector 
Z. With n independent copies of Z, a consistent estimator 0 for 00, the true value of 0, 
can often be obtained by minimising an objective function Un(0). If the minimnand is 
smooth enough in 0, generally a large-sample approximation to the distribution of (0 - 00) 
can be obtained easily. If U,1(0) is not smooth, however, it may be difficult to estimate the 
covariance of 0 well by conventional methods, especially under the semiparametric setting 
with unknown underlying density functions. Resampling methods, such as bootstrap, jack- 
knife and so on, are particularly useful in dealing with this situation (Efron & Tibshirani, 
1993; Shao & Tu, 1995; Davison & Hinkley, 1997). Generally a resampling method gener- 
ates 'artificial' samples from the observed Z's and, for each generated sample, we obtain 
an estimate of 00 by minimising the corresponding minimand. Inferences about 00 can 
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382 Z. JIN, Z. YING AND L. J. WEI 

then be made based on a large collection of these estimates. Theoretical justification of 
the existing resampling methods is generally nontrivial and has to be made on a case by 
case basis. 

In this paper, we consider a large class of objective functions and propose a simple 
resampling method by perturbing the minimand directly. As with the bootstrap method, 
the new procedure does not involve any complicated and subjective nonparametric func- 
tional estimator. Our proposal is illustrated with three examples and, for each example, 
we show how the new method can be implemented easily with existing statistical software. 
Recently, Parzen et al. (1994) and Hu & Kalbfleisch (2000) proposed resampling methods 
by perturbing the 'score function' of the minimand directly. Often, however, the estimating 
function may not be continuous and solving the corresponding equations numerically can 
be rather challenging, especially when the dimension of the parameter vector is large. 

2. A GENERAL RESAMPLING METHOD 

Suppose that Zi (i= 1,.. , n) are independent and identically distributed random vec- 
tors and that 0 belongs to a compact space 0 c .r. Let 0 be a minimiser of a U-process 
of degree K, 

Un(O) = K h(Zii r *ri,; 0) 
i I< il < i2< *.** < iK < P 

where h(.) is symmetric in the Z's, and L denotes the summation over subsets of K integers 
(i1, ..., K) from {1, . . . , n}. For fixed 0, U,,(0) is simply a standard U-statistic with kernel 
h(.). Most of the minimands for the estimation procedures in the literature are U-processes. 
In Propositions 1 and 2 of the Appendix we show that, if, for large n, U,(0) has a 'good' 
quadratic approximation around 00, 0 is strongly consistent and asymptotically normal. 
When h(.; 0) is not twice differentiable with respect to 0, it is difficult to estimate the 
covariance matrix of 0, which generally involves the unknown underlying density functions. 

Let {zi} be the observed value of {Zi} and let {Vi} be n independent, identical copies 
of a nonnegative, completely known random variable V with mean [u and variance K2ft2. 
Consider a stochastic perturbation U,(0) of the observed Un(O), where 

Un)= ($7)-' Z (Vil *. ? + ViK)h(zi,. .. *ZiK ; 0). K 1 1< il < i2 < ... < iK,< n 
Let 0* be the minimiser of U,(0). Note that the only random quantities in U,1(0) are {IV}. 
In Proposition 3 of the Appendix, we show that, if U,(0) also has a 'good' quadratic 
expansion around 00, the distribution of ni(0 -0) can be used to approximate the 
distribution of n?(0 - 00), where 0 is the observed value of 0. 

In practice, the distribution of 0* can be estimated by generating a large number, 
M, say, of random samples {Vi, i = 1, .. ., n}. For the jth realised sample from {IV}, we 
obtain Oj0 by minimising Un(0) (j = 1,... ,M). The theoretical distribution of 0* or0 
can then be approximated by the usual empirical distribution function based on 
{0]7, j = 1, ... , M}. The covariance matrix of 0 can then be estimated by the sample 
covariance matrix constructed from {0 j, j = 1, ... , M}. 

To make our resampling method practically useful, one needs reliable and efficient 
optimisation algorithms for minimising U,(0) and U,1(0). In ? 3, we consider three examples 
to illustrate our proposal. For each case, easily accessible software exists for solving the 
above optimisation problem. 
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Simple resampling method 383 

3. EXAMPLES 

3 1. Model and dataset 
Consider a heteroscedastic linear regression model 

YX= oc + X, + ei, (3.1) 

where ST = (2, /T), Eei = 0, Zi = (Xi, 17), Xi is bounded, and the components of Xi are 
linearly independent in a nonnull set, i = 1, . . . , n. For X = x, let f(. I x) be the density 
function of 8, which may depend on x. Under this model, we consider three cases to 
illustrate our resampling method using a well-known dataset from 41 prepubescent boys 
(Hettmansperger & McKean, 1998, p. 204). For each individual subject in the dataset, the 
response is the level of free fatty acid while the independent variables are age, weight and 
skin-fold thickness. 

3 2. Estimation based on Lp norm 
The estimator 0 using the Lp norm for model (3 1) is a minimiser of the U-process 

n 

U,,(O)=n-1l E1-oc-XIDIP. 
i=l1 

Here, the degree K of the U-process is 1. The corresponding Un(O) is 

i~1 UJO() = n , Vi|yi-oc-xTflJP, 

where (y, x) is the observed value of (Y, X). When p > 1, UO(O) is a convex function of 0. 
The program RLLP in the IMSL statistical package (1991) can be used to estimate the 
regression coefficients of (341) with the general Lp norm. For the case with p = 1, minimis- 
ation of UO(O) can be efficiently handled by linear programming techniques, and an efficient 
algorithm developed by Koenker & D'Orey (1987) is available in S-Plus to obtain 0. 
Furthermore, when p > 2, Un(O) is twice differentiable and 0 can be obtained trivially. 
Note that when p <2 all the existing estimators for the covariance matrix of 0 are 
derived under the assumption that the distribution of the error term 8 is free of the covari- 
ate X. Otherwise, further parametric structures on the error term or high-dimensional 
nonparametric function estimators are needed for the variance estimation. 

For the resampling method proposed in ? 2, when p t 2, assume that, with respect to t, 
f(t I x) satisfies the usual Lipschitz condition and is symmetric about 0. Also, assume that 
f(0tx)> 0 and El 81(p-2) < oo. Under these mild assumptions, all the conditions in 
Propositions A1-A3 of the Appendix are satisfied. The details of the proof are given in 
an unpublished report by Z. Jin, Z. Ying and L. J. Wei. It follows that, for the general Lp 
norm, the distribution of 0 can be approximated by that of 0*. Furthermore, the aforemen- 
tioned software can also be used to obtain 0* numerically. It is important to note that 
our procedure is valid without imposing any parametric structure on f(. I x). 

For the free fatty acid example, estimates for the regression coefficients of model (341) 
were obtained with various L norms. For each case, 1000 0*'s were generated to estimate 

A " 

the covariance matrix of 0 with several different types of random variable V in U. In 
Table 1(a), we report the results with p = 1, 1 5, 2 and 2 5 and with V being the gamma 
distribution Ga(1, 1) and beta distribution Be(12 - 1, 1). For comparison, we also ana- 
lysed the data with the subroutine RLLP from IMSL (1991) and with the heteroscedastic 
bootstrap method (Efron, 1982, p. 36). The standard error estimates under the heading 

This content downloaded from 156.145.72.198 on Sun, 15 Dec 2013 19:56:38 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


384 Z. JIN, Z. YING AND L. J. WEI 

_ 

b~~~~~~al m CD CD nOO 

U~~~~~~~- 11 m CD CD O!n.?? 

F 6666 666 

s O C _ _ 

Ct m DL~,t CD O 5 OCDL,? ? 

H 00 0 0 > a O0O0 

x Ws, ~~~CD1 CD CD Cl co c o o - -c 

clt 4-, J . 

<^ I-noC ~f- 4 O m 6O6O O 
g~66 666 O 

X 1 1 1 ~~~ 

v:~~~~~~~~~~~~ 0 -'Q --' 

X X aD H E '~ 
X ~~ ~ E O O O_ O- C> O- O Q 

o Z 0 o 66 o. ?O 

t I I I I I 

66666666 -~~~~~~~~~~~~ 
* ~ ~~ ~ ~ ~~~~~~~~~~~ , 0Wa a,~~~~~~~~~~~~~~~~~~~~~~~~ v ,, 

_4 ~~ ClfCW X 0 X 
* OQ ; XX ;S 

This content downloaded from 156.145.72.198 on Sun, 15 Dec 2013 19:56:38 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Simple resampling method 385 

'Bootstrap' in Table 1(a) are based on 1000 bootstrap samples. The results from both 
methods are fairly similar to those obtained from our resampling procedure. The variance 
estimates of the regression coefficient estimates used in IMSL were obtained under a strong 
assumption, namely that the errors are independent of {Xi}. 

3 3. Estimation based on Wilcoxon statistic 
The rank estimator based on the Wilcoxon test statistic for linear regression model 

(31) is a minimiser of 

Un( (2) E I Yil yil (Xil Xi2 )T#I 
i il < i2 -<- PI 

a U-process with degree 2, which is a convex function of ,B. Note that the intercept term 
in (341) is not estimable with this type of rank estimation. The corresponding U,(/3) is 

n-' 

2 ) (Vil + Vi2) IYil -Yi2 (Xil Xi2 )TA 
1 iI < i2 <- P 

Minimisation of U,,(/3) or U,1(/3) is a linear programming problem. If f(. x) and its deriva- 
tive f'(. Ix) are bounded, one can show that all the conditions in Propositions A1-A3 of 
the Appendix are satisfied. It is important to note that, for our resampling method, there 
is no need to assume that the distribution of - is free of X. On the other hand, this 
assumption is crucial for existing methods, which involve nonparametric density function 
estimation, for estimating the variance of ,B. 

For the free fatty acid example, we generated 1000 /P*'s with various random variables 
V. In Table l(b), we report the results with V being Ga(0 25, 05) and Be(0 125, 1 125). 
For comparison, we also report the standard error estimates of /B using nonparametric 
density function estimates with the software Minitab (Hettmansperger & McKean, 1998, 
p. 181), and those using the heteroscedastic bootstrap method. 

3 4. Truncated median regression 
Suppose that E in (3 1) has a unique median at 0 for any given x. Let c < d be two 

known constants. It is not unusual that, because of the limitation of instruments, the 
response variable Y may not be accurately measured when it is above d or below c. This 
results in a truncated variable T from Y such that 

c, if Yj < c, 
Ti = Yi if c < Yi < d, 

d, if Yi > d. 

Recently, Fitzenberger (1997) proposed an estimation procedure defined by minimising 
n 

U1(O) = n-1 Y jT-min{d, max(c, oc+XiTf)j, 
i=l1 

and showed that the resulting estimator 0 is consistent and asymptotically normal under 
some regularity conditions. However, it is quite difficult to estimate well the covariance 
matrix of 0. For our resampling method, UJ1(O) is 

1 I 

Un(O) = n' 1 E/t V t-min {d, max(c, oc? x77B)} 1, 
i=l1 
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where t is the observed value of T. Minimisation of UJ(O) or U11(0) can be implemented 
by the algorithm developed by Koenker & Park (1996), or by an adaptation of the 
Barrodale-Roberts algorithm for the one-sided censored quantile regression (Fitzenberger, 
1997). In the econometrics literature, the one-sided truncated regression model, with either 
the c = -oo or d = oo, has been extensively studied, for example by Powell (1984, 1986) 
and Pollard (1990). 

If 

pr{XTO E (c, d)} > 0, pr(XTO = c) = 0, pr(XTO = d) = 0, 

one can show that the conditions in Propositions 1-3 of the Appendix are satisfied. For 
the free fatty acid example, we artificially set c = 0 325 and d = 1P016 to create a dataset 
with 20% truncation for the response variable. The results, using the algorithm by Koenker 
& Park (1996), are reported in Table l(c) with V being Ga(1, 1) and Be(12 - 1, 1). For 
comparison, the standard error estimates based on 1000 bootstrap samples are also 
reported in Table 1(c). 

4. REMARKS 

In this paper, we present a rather simple resampling method by perturbing the minimand 
directly. In generating an approximation to the distribution of 0, the problem of choosing 
an appropriate number M of samples {Vi} is similar to that of choosing the number of 
bootstrap samples. One may start with 500 0*'s, say, for constructing a confidence interval 
of the parameter of interest and then repeat the same kind of analysis with 500 additional 
0*'s. If the discrepancy between the two intervals is practically insignificant, no further 
resampling is needed. 

Several extensive simulation studies were conducted to evaluate the adequacy of the 
new proposals. The results indicate that the new resampling method behaves well even 
for small sample sizes. For example, in one of the numerical studies, we mimicked the 
set-up of the free fatty acid example to examine if the new interval estimation procedure 
based on L1 norm for the regression coefficient of model (341) has correct coverage prob- 
abilities. To this end, we generated 1000 samples {(yi, zi), i = 1, . .. , 41} from the model 

Y-1 1702-0002 x Age-0015 x Weight + 0 205 x SFT + 8, 

where SFT is the skin-fold thickness, the regression coefficients are the least squares esti- 
mates from the free fatty acid data and E is a normal error with various variance structures. 
For each of these 1000 samples, the covariates were fixed and taken from the free fatty 
acid data, and 1000 0*'s were generated for estimating the covariance matrix of 0 with 
several distinct random variables V. The empirical coverage probabilities and estimated 
average lengths for the resulting intervals are summarised in Table 2 with V being Ga(1, 1) 
and Be(12 - 1, 1). For comparison, we also report the results based on the unconditional 
bootstrap method and the procedure in RLLP from IMSL. We find that, when the variance 
of the error term in the model is constant, the intervals obtained from the bootstrap 
method are similar to ours in terms of the empirical coverage probabilities and estimated 
average lengths. The procedure used in the commercial software IMSL is slightly better 
than these two resampling methods. This superiority, however, vanishes when the sample 
size is moderate or large, n > 100, say. If the variance of the error term is not constant, 
for example if the variance is proportional to the square of the standardised weight, the 
empirical coverage probabilities of the existing procedure obtained from the IMSL can be 
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extremely low. On the other hand, the new method performs well; see Table 2. Through 
our simulation studies, we also find that the choice of V for the resampling method is 
rather robust. 

Table 2. Empirical coverage probabilities and estimated mean lengths of 
confidence intervals for various procedures based on L1 norm with n = 41 

(a) Gaussian error with mean 0 and constant variance 0 0464 

Confidence Gamma Beta Bootstrap IMSL 
level ECP EML ECP EML ECP EML ECP EML 

Intercept 0.95 0 97 1 92 0 98 2 03 0 98 2.00 0.95 1 76 
Age 098 002 099 002 098 002 094 002 
Weight 098 003 099 003 098 003 095 003 
SFT 0 98 1 01 0.99 1 10 0.99 1 08 0 94 0 90 
Intercept 090 094 1 61 095 1 71 095 1 68 091 1 48 
Age 095 002 096 002 096 002 090 002 
Weight 096 002 097 002 097 002 091 002 
SFT 0 95 0 84 0 96 0 92 0 96 0 90 0 91 0 75 
Intercept 0 85 0.91 1 41 0 93 1 49 0 92 1 47 0 86 1 30 
Age 089 001 093 002 092 001 086 001 
Weight 0.91 0.02 0 94 0.02 0 93 0.02 0 87 0.02 
SFT 0 92 0 74 0 94 0 80 0 94 0 79 0 87 0 66 

(b) Gaussian error with mean 0 and heteroscedastic variance 

Confidence Gamma Beta Bootstrap IMSL 
level ECP EML ECP EML ECP EML ECP EML 

Intercept 0 95 0 95 1 86 0 97 1 95 0 96 1 92 0 71 0 91 
Age 099 001 099 001 099 001 094 001 
Weight 097 002 098 003 097 003 076 001 
SFT 0 99 0 75 1 00 0 81 1 00 0 79 0 90 0 46 
Intercept 0 90 0 91 1 56 0 92 1 64 0 92 1 61 0 61 0 77 
Age 096 001 097 001 097 001 089 001 
Weight 0 93 0 02 0 94 0 02 0 94 0 02 0 68 0 01 
SFT 0 97 0 63 0 98 0 68 0 98 0 66 0 83 0 39 
Intercept 0 85 0 87 1 36 0 89 1 44 0 88 1 41 0 55 0 67 
Age 094 001 095 001 095 001 085 001 
Weight 089 002 091 002 091 002 062 001 
SFT 0 93 0 55 0 95 0 60 0 95 0 58 0 79 0 34 

ECP, empirical coverage probabilities; EML, estimated mean lengths. 
IMSL, method based on program RLLP in the IMSL package; SFT, skin fold thickness. 

The estimating function bootstrap method proposed by Hu & Kalbfleisch (2000) is 
valid only for the case with a linear estimating equation with independent terms. Using 
similar techniques presented in this paper, one may be able to generalise their method to 
the case in which the estimating function has a U-process structure. 
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APPENDIX 

Large-sample properties of 0 an.d * 
PROPOSITION Al. Assume that {h(z1,. . ., ZK; 0): e ?_ } is Euclidean (Nolan & Pollard, 1987, 

Definition 8, p. 789), and there exists a function H(Z1, . . ., ZK) such that EH(Z1, .. ., ZK) < oo and 
Ih(ZI... , ZK; 0)l < H(Z1,... , ZK) alinost surely for all 0 e 0. 

A 
Furthermore, assume that 

Eh(Z1, ... , ZK; 0) is continuous and has a unique minimum at 00. Then 0- 00 almost surely as n- oo. 

Proof. Since {h(z1, . , ZK; 0): 0 ec 0) is Euclidean, by Theorem 3.1 of Arcones & Gine (1993), 
supo 0 , 1 U,(0) - EU,(0) I 0 almost surely. This, coupled with the fact that Eh(Zl, . . ., ZK; 0) has 
a unique minimum at 00, implies that 0 -+00 almost surely. D 

Note that 'h(.) is Euclidean' is not a strong assumption (Nolan & Pollard, 1987, Lemma 22, 
p. 797). For the weak convergence of 0, assume that there exists an r-dimensional function 
q(zl, . , ZK; 0), the gradient of h(z1, . , ZK; 0) with respect to 0 if it exists, such that 

Eq(Z1, Z2,... , ZK; 0) = a {Eh(Z1,... , ZK; 0)}1/0, 

and E lq(Zl, ... , ZK; 0)112 < 00. Furthermore, assume that Eq(Zl,.. ., ZK; 0) is continuously 
differentiable and 

D = E{q(Z1, ,ZK; 0)} 

is nonsingular. Let 

W,l(0)=n2 (K) , q(Zil, z,;Zi; 0). 1 '<l <.. *-- <is %1 

By a central limit theorem for U-statistics (Serfling, 1980, p. 192), W,I(0O) converges in distribution 
to normal with mean 0 and covariance matrix F. 

PROPOSITION A2. Assume that all the conditions listed in Proposition Al are satisfied. In addition, 
assume that, almost surely, 

Un(01)- U,n(02)=n-W (02)(01 -02)+(01-02 D(01-02)/2 + o(1 01 -0212 + n') (A-1) 

holds uniformly in 1101 - 00 1 < d,, and 1102 - 00 < d,, where {d,, } is any sequence of positive randon 
variables, converging to 0 almost surely. Then 

2(0-00) = -DV (0)?o(1 + V (02) +1 0 - 00) (A.2) 

almost surely. 
A 

Proof. Since 0 is strongly consistent, by (Al1), 

u,l(b)- 

ul(0) 

=2 
W , 00(-) + (a-o _)T D(a 

- 0)/2 + o(I 0| _-00112 + n1). (A.3 

Also, since ni- 2 WI(00) converges to 0, again by (A 1), 

2 

{0- -D' (00)}-U,,(00) = 1-1W 'I4(00)TD'I4'(01) + ( I 1 2 
) (A4) 

Furthermore, since 0 is a minimiser of U,(0), U,(0) , U,, {0O - 1nD'W(00)}. It follows from (A 3) 
and (A 4) that 

{0 - 00 + n-D'D-1(0 )}TD{0 - 00 + n_-D-'W,I(00)}/2 

+o(0-l 0012+n'1 1I4(0o)11 +in1)0, 

almost surely. This implies (A 2). D 
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For the resampling part, we consider the unconditional perturbed objective function 

= (\) ) (Vil + * + VJK)h(Zil, ... z i; 0). K 11<il< .. < iK < 1 
A\ 

Now let 0* be the minimiser of U,,(0). Without loss of generality, we assume that the mean and 
variance of V are 1/K and 1, respectively. Since U,, is also a U-process of degree K, exactly the 
same arguments as for Propositions Al and A2 are applicable to obtain the following proposition, 
but with W,1(0) replaced by 

WI (0) =n-1- K n ) (V'l + + ViK)q(Zi,, ...,~ 'iK; 0) 
1 < il< . .. < iK1<1 

PROPOSITION A3. Assume that the conditions in Proposition Al are satisfied. Then 0* is strongly 
consistent. Assumefurthermnore that, almost surely, 

Un (O 1) - Un (02) =n 
-2- 

W,, (02)(01 - 02) + (01 - 02) D(01- 02)/2 + o( Il 01- 02 l +),(A 5) 
uniformly in 1101 -00 01 d, ,, 02 -00 d,,. Then, in probability space generated by {V, Z}, 

1A A i- A - A 1 A A 

n2(0* 0) -D'Wd?(0) + o(l + 14 W,'(0) 1 +n 2 01- 0 1) (A.6) 

almost surely. 

Note that, since Eh(Z1, ..., ZK; 0) = E{(V1 + .... + VK)h(Zl,..., ZK; 0)}, the matrix D in (A 5) 
is the same as that in (Al1). It follows from Proposition A2 that the asymptotic distribution of 
n2(0 -00) is the same as that of D W14(00). Thus, in view of(A 6), to show that for every realisation 
of {Z} the conditional distribution of n (0 -0) converges to the same limiting distribution as 
that of n2(0 - 00), it suffices to show that for every realisation of {Z} the conditional distribution 
of W,1(0) converges to normal with mean 0 and covariance matrix F, the limiting distribution 
of WI(00). A A A A 

Let 01 = 0 - n-DI-1D (0) and 02 = 0 in (A1). Since 0 is a minimiser, it follows that 
0 S -n'lWT(I)D-'I4 (0)/2 + o(n' 1W,?()ll + 1-) 

almost surely, which implies 14'(0) o(l) almost surely in the space of {Z}. Thus, up to an 
almost surely negligible term, 

WK) (0l<).iKt {( lf K) Vi 
- 

+ 
( il K ) q(Zi-1 z 

ZiK; a) 

2 l (y K~)( (n-1) . .(n-K)ZL q(Zi, Zi2,. '' ZiK 0), (A7) 

where the last summation is over i2,. . ., iK such that no pair of indices among i, i2, , i are equal. 
By the strong law of large number for U-processes (Arcones & Gine6, 1993, Theorem 3.1) and 
Proposition Al, the covariance matrix of (A 7) converges almost surely to F. Moreover, by the 
usual multivariate central limit theorem (Serfling, 1980, p. 30), for every realisation of {Z} the 
conditional distribution of (A 7) converges to normal with mean 0 and covariance matrix F. Hence, 
n(0- 0) has the same asymptotic distribution as that of n(O* - 0). 
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