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Transformation Models

Lin Huang1 and Zhezhen Jin2
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2Department of Biostatistics, Columbia University, New York, New York, USA

Abstract: Sequential tests have been used commonly in clinical trials to compare treatments.
For sequential analysis of right-censored survival data with covariate adjustment, several
different methods have been studied based on either Cox proportional hazards model
or accelerated failure time model. Here we propose a test process based on linear
transformation models for staggered entry data. The proposed test process is motivated
by Chen et al.’s (2002) estimating equations for linear transformation models. We show
that the test process can be approximated by a mean 0 multidimensional Gaussian process.
A consistent estimator of its covariance matrix function is provided. For given interim
analysis time points, a repeated significant test is developed based on the boundaries
procedure proposed by Slud and Wei (1982). Numerical studies show that the proposed test
process performs well.

Keywords: Censoring; Gaussian process; Linear transformation models; Repeated significant
test; Sequential analysis.

Subject Classifications: 62L10; 62N01; 62N03.

1. INTRODUCTION

In many clinical trials, it is often of interest to compare survival times between
two groups after adjustment of other risk factors. Due to ethical and economical
reasons, data are also often monitored and examined at different times of study
period to see if early stopping is possible or necessary. In addition, these trials
usually recruit patients sequentially. To deal with all of these considerations, several
sequential methods have been proposed; for example, Jones and Whitehead (1979),
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Sequential Analysis of Censored Data 173

Slud and Wei (1982), Tsiatis (1982), Sellke and Siegmund (1983), Slud (1984),
Tsiatis et al. (1985), Lin (1992), Gu and Ying (1993), Tsiatis et al. (1995), Gu
and Ying (1995), and Jennison and Turnbull (1997). In particular, for covariate
adjusted analysis, Tsiatis et al. (1985), Gu and Ying (1995), Scharfstein et al.
(1997), and Bilias et al. (1997) developed sequential procedures based on the
proportional hazards models, and Lin (1992) and Gu and Ying (1993) studied
sequential procedures based on the accelerated failure time model.

In this article, we develop a sequential test procedure based on linear
transformation models, which cover the proportional hazards model and the
proportional odds model as special cases. The linear transformation models are
specified as

H�T� = −�TX + �� (1.1)

where H�·� is an unknown monotone function satisfying H�0� = −�, � is an
unknown vector of regression parameters, and the error term � is assumed to follow
a known distribution F . Different distributions of the error term � would yield
different models. The Cox roportional hazards model and proportional odds model
are two special cases of linear transformation models.

The Cox proportional hazards model has the form of ��t� = �0�t� exp��
TX�.

Taking an integral from 0 to T on both sides of the Cox proportional hazards model
and making a log transformation, we will get

log��0�T�� = −�TX + log���T���

where ��·� is the cumulative hazard function for the survival time T . Here H�T� =
log��0�T��, the logarithm of the cumulative baseline hazard function, and log���T��
is the error term � which follows the extreme value distribution.

Consider the proportional odds model log S�t�/�1−S�t�	

S0�t�/�1−S0�t�	
= �TX, where S�·� is the

survival function of survival time T and S0�·� is the unknown baseline survival
function. By some simple algebra, we will get

log�S0�T�/�1− S0�T�	� = −�TX + log�S�T�/�1− S�T�	�


Here H�T� = log�S0�T�/�1− S0�T�	�, the logarithm of the odds of baseline survival
function, and the error term log�S�T�/�1− S�T�	� follows the logistic distribution.

Attempts to develop a unified estimation method for linear transformation
models have been made by Cheng et al. (1995, 1997), Fine et al. (1998), and
Cai et al. (2000), among others. These methods require the censoring variables to
be independent and identically distributed and also be independent of covariates.
Chen et al. (2002) were able to develop an estimation method which yields
consistent estimators of regression parameters and transformation function, without
the requirement of independence between censoring variable and covariates. Zeng
and Lin (2006, 2007) also studied the properties of the non-parametric maximum
likelihood estimator of a broad class of transformation models including the linear
transformation models.

Motivated by the work of Chen et al. (2002), in this article we propose a
test process based on linear transformation models for repeated significance tests
of regression hypothesis for staggered entry data under general right censoring.
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174 Huang and Jin

Notations and formulations are introduced in Section 2. In Section 3, the test
process with its corresponding theoretical results and a repeated significance test
based on the boundary procedure of Slud and Wei (1982) are presented. In
Section 4, simulation studies and analysis of a real dataset on prostate cancer are
provided. A further discussion is given in Section 5.

2. NOTATION AND FORMULATION

In many clinical trials, subjects enter the study sequentially, called staggered entry.
Interim analysis is often scheduled at several fixed calendar times. Thus, two time
scales appear in these trials. One is the observed survival time, which starts from
subject’s entry time point and ends at the last follow-up time point, which results in
either subject’s failure observed or censored. This timescale varies among subjects.
The other is calendar time, measuring from the beginning of the trial to the
scheduled analysis time. The relationship between the two timescales is illustrated
by Figure 1.

Let �i denote the calendar time when the ith patient enters a clinical trial, Ti

denote survival time since entry, and Ci denote censoring time since entry. Then the
longest possible time this patient would stay in the trial is from �i to �i + Ti ∧ Ci.
When an interim analysis is scheduled at calendar time t, the censoring variable
becomes Ci ∧ �t − �i�

+, where �t − �i�
+ = max�0� �t − �i��.

Define two variables T̃i�t� and �i�t� as follows:

T̃i�t� = Ti ∧ Ci ∧ �t − �i�
+� �i�t� = 1
Ti ≤ Ci ∧ �t − �i�

+�


They represent respectively observed survival time or censoring time at time t and
failure-censoring indicator up to calendar time t. Note that �i�t� = 1 if and only if
the patient enters the trial and dies before time t.

We use Zi to denote treatment arms and Xi to denote other covariates which
may also affect the distribution of survival time. It is assumed that �Ti� Ci� Zi� Xi� �i�
�i = 1� 2� 
 
 
 � are independent and identically distributed, and Ti and Ci are
conditionally independent given Zi and Xi. It is also assumed that Zi is independent

Figure 1. Lexis diagram with the two timescales in sequential analysis with staggered entry.
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Sequential Analysis of Censored Data 175

of Xi. With these notations, the data observed at time t consist of �T̃i�t�� �i�t�� Zi� Xi�
(i: �i < t).

The hypothesis to test is that the distribution of survival time is independent
of treatment variable Zi after adjustment of other covariates Xi. To reflect this, we
rewrite the linear transformation model (1.1) as follows:

H�Ti� = −�Zi − �TXi + �i� �i = 1� 
 
 
 � n� (2.1)

where � and � are unknown regression parameters. The null hypothesis is H0 � � = 0.
For simplicity, we assume that Z is binary variable, with Z = 1 for treatment group
and Z = 0 for the other group.

3. THEORETICAL RESULTS

For an analysis scheduled at calendar time t, we define the event indicator and the
risk indictor at t with the usual counting process notations, as

Yi�s� t� = 1
T̃i�t� ≥ s��

Ni�s� t� = �i�t�1
T̃i�t� ≤ s�

= 1
Ti ≤ Ci ∧ �t − �i�
+ ∧ s�


Then for any fixed t, the process

Mi�s� t� = Ni�s� t�−
∫ s

0
Yi�v� t�d�
�Zi + �TXi +H�v�� (3.1)

is a martingale in s, where ��·� is the cumulative hazard functions of �. Estimation
equations from Chen et al. (2002) for the linear transformation models based on the
data observered at time t are specified as:

∑
i��i<t

∫ �

0
Zi

[
dNi�s� t�− Yi�s� t�d�
�Zi + �′Xi +H�s��

] = 0� (3.2a)

∑
i��i<t

∫ �

0
Xi

[
dNi�s� t�− Yi�s� t�d�
�Zi + �′Xi +H�s��

] = 0� (3.2b)

∑
i��i<t

[
dNi�s� t�− Yi�s� t�d�
�Zi + �′Xi +H�s��

] = 0
 (3.2c)

Based on the estimation equation (3.2a), we propose to use the following
process to test H0 � � = 0

U
t� ��H�·�� = ∑
i��i<t

∫ �

0
Zi

[
dNi�s� t�− Yi�s� t�d�
�′Xi +H�s��

]
� (3.3)

An alternative expression of U
t� ��H�·��, without integral, is

U
t� ��H�·�� = ∑
i��i<t

Zi

[
�i�t�−�
�′Xi +H�T̃i�t���

]

 (3.4)
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176 Huang and Jin

In practice, � and H�·� are unknown. An estimator of � and H�·� can be obtained
by the estimating equations (3.2b) and (3.2c) under H0 � � = 0.

∑
i��i<t

∫ �

0
Xi

[
dNi�s� t�− Yi�s� t�d�
�′Xi +H�s� ���

] = 0� (3.5a)

∑
i��i<t

[
dNi�s� t�− Yi�s� t�d�
�′Xi +H�s� ���

] = 0
 (3.5b)

Under the null hypothesis H0 � � = 0, solutions of (3.5a) and (3.5b) provide
consistent estimators to � and H�·� as demonstrated in Chen et al. (2002). The
estimating equations (3.5a) and (3.5b) can be solved with an iterative algorithm
similar to the one in Chen et al. (2002).

We assume that there are K�t� observed distinct failure times, s1 < s2 < · · · <
sK�t�, at time t with K�t� being a nondecreasing integer sequence depending on time
t. Let dk denote the number of failures at sk, �k = 1� 2� 
 
 
 � K�t��.

The iterative algorithm starts from picking an initial value for unknown
parameter �, denoted as �0.

• Step 1: With � = �0, solve the equation

∑
i��i<t

Yi�s1� t��
�TZi +H�s1�� = 1

to obtain H�0��s1�, an estimation of H�s1�. Then, solve the following equations one
by one from k = 2 to k = K�t�,

∑
i��i<t

Yi�sk� t��
�TZi +H�sk�� = dk +
∑
i��i<t

Yi�sk� t��
�TZi +H�sk−��

with � = �0 to acquire H�0��s2�� 
 
 
 � H
�0��sK�t��.

• Step 2: Set H�·� = H�0��·� as a stepwise function. A new estimate of �, denoted as
�1, can be attained by solving the estimating equation (3.5a):

∑
i��i<t

∫ �

0
Xi

[
dNi�s� t�− Yi�s� t�d�
�′Xi +H�s� ���

] = 0


• Step 3: Reset �0 = �1, then repeat step 1 and step 2 until convergence.

Let �̂t and Ĥ�
� �̂t� be the estimators obtained by the above iterative
algorithm at time t. Plugging them into U�t� ��H�·��, we obtain the test statistic
U
t� �̂t� Ĥ�
� �̂t��, for the null hypothesis � = 0:

U
t� �̂t� H�
� �̂t��� =
∑
i��i<t

Zi

[
�i�t�−�
�̂′

tXi + Ĥ�T̃i�t�� �̂t���
]



For simplicity of notation, let Û �t� denote U
t� �̂t� Ĥ�
� �̂t��.
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Sequential Analysis of Censored Data 177

3.1. Asymptotical Properties of Û �t�

It is essential to know the distribution of the test statistic over time in order
to conduct a sequential test. If � and H�·� were known, then the test statistic
could be U
t� ��H�·�� = ∑

i��i<t Zi

[
�i�t�−�
�TXi +H�T̃i�t���

]
, which is a sum of

identically and independently distributed random variables at any given time t and
its asymptotic distribution can be obtained by the multivariate central limit theorem.
However, � and H�·� are unknown in practice and their consistent estimators �̂t and
Ĥ�
� �̂t� are needed.

We will show in Appendix A that when the two covariates Z and
X are independent, n−1/2Û �t� �̂t� Ĥ�
� �̂t�� is asymptotically equivalent to
n−1/2Û �t� �� Ĥ�
� ���. n−1/2Û �t� �� Ĥ�
� ��� can be written as two parts, one is a sum
of integrals of identical and independent martingales and the other is a term which
goes to 0 when sample size goes to infinity.

We follow the notations and regularity conditions in Chen et al.’s (2002) paper.
Define �0 and H0 as the true value of � and H . Let ��·� be the derivative of ��·�,
�′�·� be the derivative of ��·�, and � = inf
t � P�T̃ > t� = 0�. Define

B�s� u� t� = exp
( ∫ s

u

E��′
�T
0X +H0�x��Y�x� t�	

E��
�T
0X +H0�x��Y�x� t�	

dH0�x�

)
�

�Z�s� t� =
E�Z�′
�T

0X +H0�s��Y�s� t�B�s� T̃ � t�	

E��
�T
0X +H0�s��Y�s� t�	

�

�2�t� t� =
∫ �

0
E�
Z − �Z�s� t��

2�
�T
0X +H0�s��Y�s� t�	dH0�s��

�2�t1� t2� =
∫ �

0
E�
Z − �Z�s� t1��
Z − �Z�s� t2���
�

T
0X +H0�s��Y�s� t1�	dH0�s�


�t1 < t2�

The asymptotic properties of the process Û �·� is given in following theorem.

Theorem 3.1. Under the null hypothesis H0 � � = 0, for any given K and time sequence
t1 < t2 < · · · < tK , 
n

−1/2Û �t1�� n
−1/2Û �t2�� 
 
 
 � n

−1/2Û �tK�� converges weakly to a K-
dimensional normal vector with 0 mean and covariance matrix 
�2�tl� tm�� l�m =
1� 
 
 
 � K�, where �2�tl� tm� can be consistently estimated by

�̂2�tl� tm� =
1
n

n∑
i=1

∫ �

0

(
Zi − Z̄�s� tl�

)(
Zi −�Z�s� tm�

)
× 1
T̃i�tl ∧ tm� > s��
�̂TXi + Ĥ�s��dĤ�s��

where

�Z�s� t� =
∑

i Zi�
�̂
TXi + Ĥ�T̃i�t���Y�s� t�B̂�s� T̃i�t��∑

i Zi�
�̂
TXi + Ĥ�T̃i�t���Y�s� t�

�

B̂�s� T̃i�t�� = exp
( ∫ s

T̃i�t�

∑
j �

′
�̂TXj + Ĥ�x��Y�s� t�∑
j �
�̂

TXj + Ĥ�x��Y�s� t�
dĤ�x�

)
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178 Huang and Jin

Remark 3.1. Except for the special case of the Cox proportional hazards model
when the underlying cumulative hazard function of � is exp�t�, the score process
n−1/2Û �t� �̂t� Ĥ�
� �̂t�� do not have independent increment property in general. See
the proof in Appendix B for more details.

3.2. Repeated Significance Test

Based on Theorem 3.1, a sequential test can be constructed with rejection
boundaries proposed by Slud and Wei (1982).

Let Wi (i = 1� 2� 
 
 
 � K) be the standardized testing statistics of n−1/2Û �ti�

Wi = n−1/2Û �ti�/�̂�ti� ti�


Then, the variance of Wi is 1 and the covariance of Wi and Wj

Cov�Wi�Wj� = �̂2�ti� tj�/�̂�ti� ti��̂�tj� tj�


Let t1� 
 
 
 � tK denote the time sequence at which interim analyses will be
conducted. Split the overall significance level � into K parts �1� 
 
 
 � �K with � =
�1 + · · · + �K , where �i acts as the significance level at interim time ti.

At the ith (i = 1� 2� 
 
 
 � K) interim analysis, the Slud and Wei rejection
boundary ci can be calculated by solving the equation P
�W1� < c1� 
 
 
 � �Wi−1� <
ci−1� �Wi� ≥ ci� = �i under the null hypothesis. ci is the only unknown variable in
this equation. If the absolute value of Wi is greater than ci, the trial should be ended
and the null hypothesis is rejected; otherwise, the trial continues to the next interim
analysis until the null hypothesis is rejected or the trial reaches the final analysis.

The Slud and Wei rejection boundaries c1� 
 
 
 � cK calculation equations can be
expressed in the following way:

PH0

�W1� > c1� = �1


PH0

�W1� < c1� �W2� > c2� = �2







PH0

�W1� < c1� 
 
 
 � �WK−1� < cK−1� �WK� ≥ cK� = �K


Solving these equations involve calculating multivariate normal probability. In our
simulations and example presented in Section 4, we used the QSIMVNV function
(Genz, 1992) in MATLAB.

3.3. Û �t� under the Cox Proportional Hazards Model

The Cox model is the most widely used model in survival analysis which is a
special case of linear transformation models. As we mentioned in Section 1, several
sequential methods have been developed based on the Cox proportional hazards
model, to test treatment effect after adjustment of other covariates. It is interesting
to study the behavior of the unified test statistic Û �t� under this special case.
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Sequential Analysis of Censored Data 179

Let the cumulative hazard function ��t� of � equal to exp�t�. Then the linear
transformation model (2.1) becomes equivalent to the Cox model ��s �Z�X� =
�0�s� exp��Z + �TX�. It is easy to verify that under H0 � � = 0, the estimating
equation (3.5b) has the following form:

d exp�H�s� ��	 = ∑
i��i<t

dNi�s� t�

/ ∑
i��i<t

Yi�s� t� exp
�
TXi� (3.6)

Plugging the above equation into the estimating equation (3.5a) under the Cox
model, we obtain the equation

∑
i��i<t

∫ �

0

{
Xi −

∑n
j=1 XjYi�s� t� exp��

TXj�∑n
j=1 Yi�s� t� exp��TXj�

}
dNi�s� t� = 0
 (3.7)

Equation (3.7) involves unknown parameter, �. It is easy to see that the left side
of this equation is the same as the Cox’s partial likelihood score with respect to �.
Thus, the solution of equation (3.7), �̂t, is the maximum partial likelihood estimator
under H0 at time t.

Plugging equation (3.6) and �̂t into the test statistics Û �t�, we obtain

Û �t� = ∑
i��i<t

∫ �

0
Zi

[
dNi�s� t�− Yi�s� t� exp
�̂

T
t Xi�d exp
H�s��

]

= ∑
i��i<t

∫ �

0

{
Zi −

∑n
j=1 ZjYi�s� t� exp��̂

T
t Xj�∑n

j=1 Yi�s� t� exp��̂T
t Xj�

}
dNi�s� t� (3.8)

= ∑
i��i<t

�i�t�

{
Zi −

∑n
j=1 ZjYi�s� t� exp��̂

T
t Xj�∑n

j=1 Yi�s� t� exp��̂T
t Xj�

}



Note that the log partial likelihood function for a Cox model at time t has the
form

l�t� �� �� = ∑
i��i<t

�i�t�

[
�Zi + �TXi − log

{ n∑
j=1

Yi�s� t� exp��Zi + �TXj�

}]
(3.9)

By some simple algebra, it can be verified that the test statistic (3.8) is the same
as Cox’s partial likelihood score with respect to � with � = �̂t.

Û �t� = �

��
l�t� �� ��

∣∣∣∣
�=0��=�̂t

(3.10)

The result reveals that the test statistics have independent increments under the
special case of Cox model; thus Pocock’s (1977) and O’Brien and Fleming’s (1979)
boundaries can be validly used and multivariate normal integral can be avoided.

4. SIMULATIONS AND EXAMPLES

4.1. Simulations

Simulations were based on model H�Ti� = −�Zi − �TXi + �i. We chose H0�t� =
log�t� and the hazard function of � being ��t� = exp�t�/
1+ r exp�t��. The treatment
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180 Huang and Jin

indicator Z was generated from a Bernoulli distribution with p = 0
5 and covariate
X was generated from a standard normal distribution. The entry time � was from
a uniform distribution U�0� 5�. The censoring time was independently generated
from U�0� 10�. Five interim analyses were conducted at times 3, 4, 5, 6, and 7.
The overall type I error was set to 0.05, and an equal nominal type I error
0.01 was assigned to each interim analysis. All simulations were based on 10,000
replications. The maximum possible sample size was set to be 200. We conducted
nine scenarios of simulations where the value of � being one of �0� 1� 2� and � being
one of �0�−0
5�−1�. Three models were used in simulations with r = �0� 0
5� 1�.
Note that r = 0 specifies the Cox proportional hazards model and r = 1 specifies
the proportional odds model. Repeated significance test was carried out with the
boundary of Slud and Wei (1982). The MATLAB function QSIMVNV developed by
Genz (1992) was used to calculate multivariate normal probabilities for obtaining
Slud and Wei boundaries.

To assess the performance of the proposed method, each simulated dataset was
analyzed by three methods: the Û �t� proposed in Section 3, traditional logrank test
without covariates adjustment, and the test based on Cox’s partial likelihood with
covariates adjustment.

The simulation results are presented in Tables 1–3.
The simulations showed that when the underlying model is the Cox

proportional hazard model, the proposed method provided very similar results to

Table 1. Operating characteristic in the simulation studies

� = 0 � = 1 � = 2

r � Û �t� Logrank Cox Û �t� Logrank Cox Û �t� Logrank Cox

0 0 0.0428 0.0400 0.0396 0.0404 0.0419 0.0424 0.0413 0.0398 0.0381
(0.0020) (0.0020) (0.0019) (0.0020) (0.0020) (0.0020) (0.0020) (0.0019) (0.0019)

−0.5 0.8251 0.8337 0.8292 0.7896 0.4920 0.7965 0.7318 0.2328 0.7437
(0.0038) (0.0037) (0.0038) (0.0041) (0.0050) (0.0040) (0.0044) (0.0042) (0.0044)

−1 1.0000 1.0000 1.0000 0.9998 0.9780 0.9998 0.9995 0.6991 0.9993
(0.0000) (0.0000) (0.0000) (0.0001) (0.0015) (0.0001) (0.0002) (0.0046) (0.0003)

0.5 0 0.0482 0.0432 0.0425 0.0521 0.0433 0.0481 0.0615 0.0406 0.0653
(0.0021) (0.0020) (0.0020) (0.0022) (0.0020) (0.0021) (0.0024) (0.0020) (0.0025)

−0.5 0.6109 0.5637 0.5585 0.5944 0.3830 0.5489 0.5839 0.2052 0.5211
(0.0049) (0.0050) (0.0050) (0.0049) (0.0049) (0.0050) (0.0049) (0.0040) (0.0050)

−1 0.9928 0.9911 0.9902 0.9904 0.9222 0.9839 0.9851 0.6396 0.9719
(0.0008) (0.0009) (0.0010) (0.0010) (0.0027) (0.0013) (0.0012) (0.0048) (0.0016)

1 0 0.0461 0.0424 0.0410 0.0509 0.0409 0.0504 0.0576 0.0412 0.0735
(0.0021) (0.0020) (0.0020) (0.0022) (0.0020) (0.0022) (0.0023) (0.0020) (0.0026)

−0.5 0.4494 0.4040 0.3940 0.4319 0.3053 0.3883 0.4123 0.1812 0.3774
(0.0050) (0.0049) (0.0049) (0.0049) (0.0046) (0.0049) (0.0049) (0.0038) (0.0048)

−1 0.9548 0.9371 0.9347 0.9400 0.8378 0.9115 0.9205 0.5729 0.8698
(0.0021) (0.0024) (0.0025) (0.0024) (0.0037) (0.0028) (0.0027) (0.0049) (0.0034)

The values without parentheses are empirical type I errors when � = 0 and are empirical
powers when � = −0
5 or � = −1 respectively.

The values within parentheses are empirical standard errors of the type I errors and
powers of simulation.
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Sequential Analysis of Censored Data 181

Table 2. Average sample size of simulation studies

� = 0 � = 1 � = 2

r � Û �t� Logrank Cox Û �t� Logrank Cox Û �t� Logrank Cox

0 0 198 198 198 198 198 198 198 199 198
(11.3) (10.7) (10.3) (11.1) (11.0) (10.9) (11.2) (10.6) (10.3)

−0.5 163 163 164 165 181 165 168 191 167
(35.7) (35.4) (35.4) (35.6) (31.4) (35.7) (35.1) (23.1) (35.4)

−1 124 124 124 124 138 124 125 167 125
(14.6) (14.2) (14.7) (15.2) (29.3) (15.4) (16.7) (35.9) (16.4)

0.5 0 199 198 198 199 198 198 199 198 197
(9.5) (11.0) (10.6) (9.0) (11.0) (11.7) (9.0) (10.5) (13.3)

−0.5 181 178 179 182 185 178 183 192 179
(31.3) (32.6) (32.4) (29.9) (28.5) (32.4) (28.5) (21.7) (32.4)

−1 137 134 135 140 148 136 143 171 138
(27.6) (26.3) (26.9) (28.9) (34.0) (27.9) (30.1) (35.1) (29.6)

1 0 199 198 198 199 198 198 199 198 197
(9.1) (10.9) (10.7) (9.1) (10.6) (11.8) (8.8) (10.7) (14.2)

−0.5 187 185 186 188 189 185 189 193 185
(27.3) (29.0) (28.3) (25.9) (25.8) (28.5) (24.1) (20.8) (28.5)

−1 150 146 147 153 158 149 158 175 153
(33.7) (33.2) (33.4) (34.1) (35.9) (34.4) (34.2) (34.0) (35.5)

The maximal sample size for each simulation is 200.
The values within parentheses are the empirical standard deviation for sample size.

Table 3. Average stopping time of simulation studies

� = 0 � = 1 � = 2

r � Û �t� Logrank Cox Û �t� Logrank Cox Û �t� Logrank Cox

0 0 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9
(0.6) (0.6) (0.6) (0.6) (0.6) (0.6) (0.6) (0.6) (0.6)

−0.5 2.5 2.5 2.6 2.7 3.6 2.7 2.9 4.4 2.8
(1.5) (1.5) (1.6) (1.6) (1.6) (1.6) (1.6) (1.3) (1.6)

−1 1.1 1.1 1.1 1.1 1.5 1.1 1.1 2.9 1.1
(0.3) (0.3) (0.3) (0.4) (1.0) (0.4) (0.4) (1.7) (0.4)

0.5 0 4.9) 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.8
(0.5) (0.6) (0.6) (0.5) (0.6) (0.7) (0.6) (0.6) (0.8)

−0.5 3.5 3.5 3.5 3.6 4.0 3.5 3.6 4.4 3.5
(1.6) (1.6) (1.6) (1.5) (1.5) (1.6) (1.5) (1.2) (1.7)

−1 1.5 1.4 1.4 1.5 1.9 1.5 1.6 3.1 1.5
(0.9) (0.8) (0.8) (0.9) (1.3) (0.9) (0.9) (1.7) (1.0)

1 0 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.8
(0.5) (0.6) (0.6) (0.5) (0.6) (0.7) (0.5) (0.6) (0.8)
3.9 3.9 3.9 4.0 4.2 3.9 4.1 4.5 3.9

−0.5 (1.5) (1.5) (1.5) (1.4) (1.4) (1.5) (1.4) (1.2) (1.5)
−1 1.9 1.8 1.9 2.0 2.4 2.0 2.2 3.3 2.2

(1.2) (1.2) (1.2) (1.2) (1.5) (1.3) (1.3) (1.7) (1.4)

Total five analyses (four interim and one final) were planned.
The values within parentheses are empirical standard deviation for the number of analyses

conducted.
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182 Huang and Jin

the test based on the Cox’s partial likelihood, which has been proved theoretically.
When the underlying model is not the Cox proportional hazards model, the
proposed method showed some increased power than the Cox model. The biggest
increase in our simulation cases was about 0.06 (0.5839 vs. 0.5211). When there was
no other covariate in the model (� = 0), the three methods performs similar. When
� �= 0 (i.e., covariate X has effect on survival time), the proposed method had better
performance compared to the logrank test: the larger � was, the better performance
was in the sense of higher powers (Table 1) and the smaller sample sizes
(Table 2). Table 3 shows that the average stopping time were similar for the three
methods.

4.2. An Example

We applied the proposed sequential method to the prostatic cancer data in Byar
(1985). The data were from a double-blinded randomized clinical trial. The aim
of the study was to compare four treatments for patients with prostatic cancer in
Stage 3 and Stage 4. The four treatments were placebo, 0.2mg diethylstilbestrol
(DES), 1.0mg of DES, and 5mg of DES. Total 506 patients were recruited into the
trial sequentially from 1967 to 1969. We chose the subgroup of 253 patients who
were in either placebo group or 1.0mg of DES group and no missing covariates.
Events were defined as death from all causes.

We considered the linear transformation model H�Ti� = −�Zi − �Xi + �i, where
Zi is the indicator of the treatment and Xi is the indicator of Stage 3 or 4. The
hazard function of � was chosen to be ��t� = exp�t�/
1+ r exp�t��. We fitted three
models for the data with r = 0, r = 0
5, and r = 1. A total of six analyses (five
interim analyses plus a final analysis) were planned at the end of each year from
1969 to 1974. The overall type I error was set to be 0.05, which was distributed
evenly among the six analyses. The repeated significance test was conducted with
the rejection boundaries based on the method of Slud and Wei (1982).

Table 4 presents the analysis results. Analysis under the three models had
consistent results that the trial would stop at the end of 1973 with the null
hypothesis rejected. In this example, early stopping did not save any sample size,
but it would save one year of the study time.

Table 4. Repeated significant test for prostatic cancer data

r = 0 r = 0
5 r = 1

Date of No. of No. of Std. Boun- Std. Boun- Std. Boun-
analysis entered deaths test stats dary test stats dary test stats dary

Dec. 69 253 74 0.16 2.64 0.16 2.64 0.17 2.64
Dec. 70 253 117 −1.13 2.53 −1.12 2.53 −1.11 2.53
Dec. 71 253 138 −1.17 2.44 −1.16 2.44 −1.15 2.44
Dec. 72 253 158 −2.28 2.33 −2.26 2.33 −2.25 2.33
Dec. 73 253 166 −2.66 2.22 −2.65 2.22 −2.64 2.22
Dec. 74 253 166 — — — — — —
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Sequential Analysis of Censored Data 183

5. DISCUSSION

The proposed method is justified with the assumption that the treatment variable
is independent of other covariates, which is valid for randomized clinical trials
but might not be always true for nonrandomized clinical trials and observational
studies, which is of interest for further investigation.

APPENDIX A: PROOF OF ASYMPTOTIC EQUIVALENCE OF
n−1/2U�t� �̂t� Ĥ��� �̂t�� AND n−1/2U�t� �0� Ĥ��� �0��

We assume regularity conditions as those assumed in Chen et al. (2002) for ensuring
the consistency and asymptotical normality of estimations.

First, expand n−1/2U
t� �̂t� Ĥ�
� �̂t�� with respect to � at the true value �0,

n−1/2U
t� �̂t� Ĥ�
� �̂t��

= n−1/2U
t� �0� Ĥ�
� �0��+
1
n

�

��
U
t� �� Ĥ�
� ���

∣∣
�=�0

[
n1/2��̂t − �0�

]
+ op�max
1� n1/2��̂t − �0����

where

1
n

�

��
U
t� �� Ĥ�
� ���

∣∣
�=�0

= 1
n

n∑
i=1

∫ �

0
−ZiYi�s� t�d�
�

′
0Xi + Ĥ�s� �0��

[
Xi +

�

��
Ĥ�s� ����=�0

]T

→ −E

[ ∫ �

0
ZY�s� t�d�
�′

0X + Ĥ�s� �0��

[
X + �

��
Ĥ�s� ����=�0

]T]

= −�EZ�E

[ ∫ �

0
Y�s� t�d�
�′

0X + Ĥ�s� �0��

[
X + �

��
Ĥ�s� ����=�0

]T]

The last equation holds because our assumption that under H0, the covariate Z is
independent with all other random variables.

Under H0 � � = 0, from the third estimation equation, we have

n∑
i=1

�dNi�s� t�− Yi�s� t�d�
�Xi + Ĥ�s� ���	 = 0


Differentiating the above equation with respect to �, we have

n∑
i=1

Yi�s� t�

{
d�
�′

0Xi + Ĥ�s� �0��

[
Xi +

�

��
Ĥ�s� ����=�0

]T}
= 0

Thus,

E

[
Y�s� t�d�
�′

0X + Ĥ�s� �0��

[
X + �

��
Ĥ�s� ����=�0

]T]
= 0
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184 Huang and Jin

Plugging the above result into the relation (2.6) above, we have that

1
n

�

��
U
t� �� Ĥ�
� ���

∣∣
�=�0

P−→ 0


Then we get

n−1/2U
t� �̂t� Ĥ�
� �̂t��

= n−1/2U
t� �0� Ĥ�
� �̂0��+ op�max
1� n1/2��̂t − �0���

APPENDIX B: PROOF OF THE THEOREM

Let a > 0 and b be fixed finite numbers. Define

B�u� s� t� = exp
( ∫ s

u

E��′
�′
0X +H0�x��Y�x� t�	

E��
�′
0X +H0�x��Y�x� t�	

dH0�x�

)
�∗
H0�s�� t� = B�a� s� t�

B1�s� t� =
∫ s

a
E��′
�′

0X +H0�x��Y�x� t�	dH0�x�

B2�s� t� = E��
�′X +H0�s��Y�s� t�	

�∗�x� t� =
∫ x

b
�∗�s� t�ds


Then we will see easily that

B�u� s� t� = �∗
H0�u�� t�

�∗
H0�s�� t�
�

and

d�∗
H0�s�� t� = dB�a� s� t�

= �∗
H0�s�� t�
E��′
�′

0X +H0�s��Y�s� t�	

E��
�′
0X +H0�s��Y�s� t�	

dH0�s�

= �∗
H0�s�� t�

B2�s� t�
dB1�s� t�

Then following Step A2 in the Appendix of Chen et al. (2002), we have

−1
n

n∑
i=1

Mi�s� t� = −1
n

n∑
i=1

∫ s

0
�dNi�x� t�− Yi�x� t�d�
�′

0Xi +H0�x��

= −1
n

n∑
i=1

∫ s

0
Yi�x� t��d�
�′

0Xi + Ĥ�x��− d�
�′
0Xi +H0�x��	

According to the estimation equation

n∑
i=1

dNi�x� t�− Yi�x� t�d�
�′
0Xi + Ĥ�x�� = 0�
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= −1
n

n∑
i=1

∫ s

0
Y�x� t�d

(
�
�′

0Xi +H0�x��

�∗
H0�x�� t�

[
�∗
Ĥ�x�� t�−�∗
H0�x�� t�

])

+ op

(
1√
n

)

= −
∫ s

0

1
n

n∑
i=1

Yi�x� t��
�
′
0Xi +H0�x��

�∗
H0�x�� t�

[
d�∗
Ĥ�x�� t�− d�∗
H0�x�� t�

]

−
∫ s

0

[
�∗
Ĥ�x�� t�−�∗
H0�x�� t�

]1
n

n∑
i=1

Yi�x� t�d

[
�
�′

0Xi +H0�x��

�∗
H0�x�� t�

]

+ op

(
1√
n

)

= −
∫ s

0

B2�x� t�

�∗
H0�x�� t�

[
d�∗
Ĥ�x�� t�− d�∗
H0�x�� t�

]
+

∫ s

0

[
�∗
Ĥ�x�� t�−�∗
H0�x�� t�

]
× �∗
H0�x�� t�dB1�x� t�− B2�x� t�d�

∗
H0�x�� t�[
�∗
H0�x�� t�

]2 + op

(
1√
n

)
(B.1)

Recall that

d�∗
H0�s�� t� =
�∗
H0�s�� t�

B2�s� t�
dB1�s� t� (B.2)

Plugging (B.2) into (B.1) we get the following equation

−1
n

n∑
i=1

Mi�s� t� = −
∫ s

0

B2�x� t�

�∗
H0�x�� t�

[
d�∗
Ĥ�x�� t�− d�∗
H0�x�� t�

]+ op

(
1√
n

)



Thus, we have

�∗
Ĥ�s�� t�− d�∗
H0�s�� t� =
1
n

n∑
1

∫ s

0

�∗
H0�x�� t�

B2�x� t�
dMi�x� t�+ op

(
1√
n

)

After all of these preparations, we now study the asymptotic behaviors of the
test process n−1/2U
t� �̂t� Ĥ�
� �̂t��. Since we have proved that n−1/2U
t� �̂t� Ĥ�
� �̂t��
and n−1/2U
t� �0� Ĥ�
� �0�� are asymptotically equivalent, then we can study
n−1/2U
t� �0� Ĥ�
� �0�� instead.

Start from the definition of U
t� �0� H�
� �0��,

U
t� �0� Ĥ�
� �0�� =
n∑

i=1

∫ �

0
Zi

[
dNi�s� t�− Yi�s� t�d�
�′Xi + Ĥ�s� �0��

]

=
n∑

i=1

∫ �

0
ZidMi�x� t�−

n∑
i=1

Zi

(
�
�′

0Xi + Ĥ�T̃i�t�� �0��

−�
�′
0Xi +H0�T̃i�t���

)
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=
n∑

i=1

∫ �

0
ZidMi�x� t�−

n∑
i=1

Zi�
�
′
0Xi +H0�T̃i�t���

�∗
H0�T̃i�t��� t�

[
�∗
Ĥ�T̃i�t��� t�

−�∗
H0�T̃i�t��� t�
]+ op�

√
n�

=
n∑

i=1

∫ �

0
ZidMi�x� t�−

n∑
i=1

Zi�
�
′
0Xi +H0�T̃i�t���

�∗
H0�T̃i�t��� t�

1
n

n∑
j=1

∫ T̃i�t�

0

�∗
H0�s�� t�

B2�s� t�
dMj�s� t�+ op�

1√
n
�

=
n∑

i=1

∫ �

0
ZidMi�x� t�−

n∑
j=1

∫ �

0
E

[
Z�
�′

0X +H0�T̃ �t���

�∗
H0�T̃ �t��� t�

]

× �∗
H0�s�� t�

B2�s� t�
dMj�s� t�+ op

(
1√
n

)

=
n∑

i=1

∫ �

0

(
Zi − E

[
Z�
�′

0X +H0�T̃ �t���

�∗
H0�T̃ �t��� t�

]
�∗
H0�s�� t�

B2�s� t�

)
dMi�s� t�

+ op

(
1√
n

)



Therefore,

n−1/2U
t� �̂t� Ĥ�
� �̂t��

= n−1/2U
t� �0� Ĥ�
� �0��+ op�max
1� n1/2��̂t − �0���

= n−1/2
n∑

i=1

∫ �

0

(
Zi − E

[
Z�
�′

0X +H0�T̃ �t���Y�s� t�

�∗�H0�T̃ �t���

]
�∗
H0�s�� t�

B2�s� t�

)
dMi�s� t�

+ op�max
1� n1/2��̂t − �0����
which means that the proposed test process is asymptotically equivalent to a sum of
independent and identically distributed random variables for a fixed t. Let �i�t� be
a single term of the summation; that is,

�i�t� =
∫ �

0

(
Zi − E

[
Z�
�′

0X +H0�T̃ �t���Y�s� t�

�∗�H0�T̃ �t���

]
�∗
H0�s�� t�

B2�s� t�

)
dMi�s� t�


Then n−1/2U
t� �̂t� Ĥ�
� �̂t�� = n−1/2 ∑n
i=1 �i�t�+ op�1� since n1/2��̂t − �0� = Op�1�.

Therefore, for any given time points t1� t2� 
 
 
 � tK ,

n−1/2




U
t1� �̂t1
� Ĥ�
� �̂t1

��

U
t2� �̂t2
� Ĥ�
� �̂t2

��
·
·
·

U
tK� �̂tK
� Ĥ�
� �̂tK

��




= n−1/2
n∑

i=1




�i�t1�

�i�t2�
·
·
·

�i�tK�




+ op�1�


By the standardmultivariate central limit theorem, n−1/2∑n
i=1��i�t1�� �i�t2�� 
 
 
 � �i�tK��

T

converges weakly to a K-dimensional normal vector with mean 0 and
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K × K covariance matrix 
�2�tl� tm�� l�m = 1� 
 
 
 � K�, where �2�tl� tm� =
cov��1�tl�� �1�tm��. Consequently, (n

−1/2U
t1� �̂t1
� Ĥ�
� �̂t1

��, n−1/2U
t2� �̂t2
� Ĥ�
� �̂t2

���


 
 
 � n−1/2U
tK� �̂tK
� Ĥ�
� �̂tK

��) converges weakly to a K-dimensional normal vector.
The variance of �i�t� is

Var��i�t�� =
∫ �

0
E

[(
Z − E

[
Z�
�′

0X +H0�T̃ �t���Y�s� t�

�∗�H0�T̃ �t���

]
�∗
H0�s�� t�

B2�s� t�

)2

1
T̃ �t� > s��
�′
0X +H0�s��

]
dH0�s�


Since for different i and j, �i and �j are independent, the variance of
n−1/2U
t� �̂t� Ĥ�
� �̂t� equals to the variance of �i,

Var�n−1/2U
t� �̂t� Ĥ�
� �̂t�� =
∫ �

0
E

[(
Z − E

[
Z�
�′

0X +H0�T̃ �t���Y�s� t�

�∗�H0�T̃ �t���

]
�∗
H0�s�� t�

B2�s� t�

)2

1
T̃ �t� > s��
�′
0X +H0�s��

]
dH0�s�


A consistent estimator of this variance can be

�̂2�t� t� = 1
n

n∑
i=1

∫ �

0

(
Zi − Z̄�s� t�

)2

1
T̃i�t�>s��
�̂
′Xi + Ĥ�s��dĤ�s��

where

�Z�s� t� =
∑n

i=1 �
�̂
′Xi + Ĥ�T̃i�t���Y�s� t�B̂�s� T̃i�t��∑n

i=1 �
�̂
′Xi + Ĥ�T̃i�t���Y�s� t�

�

B̂�s� T̃i�t�� = exp
( ∫ s

T̃i�t�

∑n
j=1 Zi�

′
�̂′Xi + Ĥ�x��Y�s� t�∑n
j=1 Zi�
�̂

′Xi + Ĥ�x��Y�s� t�
dĤ�x�

)



For any two different time points t1 and t2, the cov��i�t1�� �i�t2�� is

cov��i�t1�� �i�t2�� =
∫ �

0
E

{(
Z − E

[
Z�
�′

0X +H0�T̃ �t1���Y�s� t1�

�∗�H0�T̃ �t1���

]
�∗
H0�s�� t1�

B2�s� t1�

)
(
Z − E

[
Z�
�′

0X +H0�T̃ �t2���Y�s� t2�

�∗�H0�T̃ �t2���

]
�∗
H0�s�� t2�

B2�s� t2�

)

1
T̃ �t1 ∧ t2� > s��
�′
0X +H0�s��

}
dH0�s�

So the covariance of n−1/2U�t1� and n−1/2U�t2� equals

cov��i�t1�� �i�t2�� =
∫ �

0
E

{(
Z − E

[
Z�
�′

0X +H0�T̃ �t1���Y�s� t1�

�∗�H0�T̃ �t1���

]
�∗
H0�s�� t1�

B2�s� t1�

)
(
Z − E

[
Z�
�′

0X +H0�T̃ �t2���Y�s� t2�

�∗�H0�T̃ �t2���

]
�∗
H0�s�� t2�

B2�s� t2�

)

1
T̃ �t1 ∧ t2� > s��
�′
0X +H0�s��

}
dH0�s�
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188 Huang and Jin

A consistent estimator of cov��i�t1�� �i�t2�� is

�̂2�t1� t2� =
1
n

n∑
i=1

∫ �

0

(
Zi − Z̄�s� t1�

)(
Zi −�Z�s� t2�

)
1
T̃i�t1∧t2�>s��
�̂

′Xi + Ĥ�s��dĤ�s�


The investigation of whether the process has independent increments also relies
on the structure of �i�t�. For any two different time points t1 and t2 (assume t2 > t1),
the covariance of n−1/2U�t1� and n−1/2�U�t2�− U�t1�� equals

cov��i�t1�� �i�t2�− �i�t1�� =
∫ �

0
E

{(
Z − E

[
Z�
�′

0X +H0�T̃ �t1���Y�s� t1�

�∗�H0�T̃ �t1���

]
�∗
H0�s�� t1�

B2�s� t1�

)
(
E

[
Z�
�′

0X +H0�T̃ �t1���Y�s� t1�

�∗�H0�T̃ �t1���

]
�∗
H0�s�� t1�

B2�s� t1�

− E

[
Z�
�′

0X +H0�T̃ �t2���Y�s� t2�

�∗�H0�T̃ �t2���

]
�∗
H0�s�� t2�

B2�s� t2�

)

1
T̃ �t1� > s��
�′
0X +H0�s��

}
dH0�s�

Under this general form, cov��i�t1�� �i�t2�− �i�t1�� doesnot always equal 0.
However, under the special case of the Cox proportional hazards model, the hazard
function ��·� of � is exp�·�, which leads to B2�s� t� = E�exp��T +H0�s��Y�s� t�� and
�∗
H0�s�� t� = exp�H0�s�−H0�a��. Thus, it is easy to see that

E

[
Z�
�′

0X +H0�T̃ �t���Y�s� t�

�∗�H0�T̃ �t���

]
�∗
H0�s�� t�

B2�s� t�

= E

[
Z exp
�′

0X +H0�T̃ �t���Y�s� t�

exp�H0�T̃ �t��−H0�a��

]
exp�H0�s�−H0�a��

E�exp��T +H0�s��Y�s� t��

= E�Z exp
�′
0X +H0�a��Y�s� t�	

1
E�exp��T +H0�a��Y�s� t��

= E�Z�

The last equation is based on the assumption that treatment indicator Z is
independent of X, and under the null hypothesis, Z is also independent of Y�s� t�.
Thus, we have, under the Cox proportional hazards model,

�i�t� =
∫ �

0
�Zi − E�Zi��dMi�s� t�


It is easy to see that cov��i�t1�� �i�t2�− �i�t1�� = 0.
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