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ABSTRACT. Multivariate failure time data arises when each study subject can potentially ex-
perience several types of failures or recurrences of a certain phenomenon, or when failure times are
sampled in clusters. We formulate the marginal distributions of such multivariate data with semi-
parametric accelerated failure time models (i.e. linear regression models for log-transformed failure
times with arbitrary error distributions) while leaving the dependence structures for related
failure times completely unspecified. We develop rank-based monotone estimating functions for the
regression parameters of these marginal models based on right-censored observations. The estimat-
ing equations can be easily solved via linear programming. The resultant estimators are consistent
and asymptotically normal. The limiting covariance matrices can be readily estimated by a novel
resampling approach, which does not involve non-parametric density estimation or evaluation of
numerical derivatives. The proposed estimators represent consistent roots to the potentially non-
monotone estimating equations based on weighted log-rank statistics. Simulation studies show that
the new inference procedures perform well in small samples. Illustrations with real medical data are
provided.
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1. Introduction

Multivariate failure time data are commonly encountered in scientific investigations because
each study subject can potentially experience several events or because there exists natural
or artificial clustering of study units such that the failure times within the same cluster are
correlated. We refer to the former situation as multiple events data and the latter as clustered
failure time data. An important special form of multiple events data are recurrent events data,
which represents the repetitions of the same phenomenon. Statistical analysis of multivariate
failure time data is complicated by right censoring as well as by the dependence of related
failure times. Lin (1994) provided a review of Cox-type regression models for such data.

An important alternative to the Cox proportional hazards model is the accelerated failure
time model (Kalbfleisch & Prentice, 2002, p. 44), which linearly regresses the logarithm of
failure time on covariates. Rank estimation of the accelerated failure time model has been
studied by Prentice (1978), Tsiatis (1990), Wei et al. (1990) and Lai & Ying (1991) among
others for univariate failure time data, and by Lin & Wei (1992), Lee et al. (1993) and Lin
et al. (1998) for multivariate failure time data. The rank estimators are derived from a class
of weighted log-rank statistics. It is difficult to calculate the rank estimators because the esti-
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mating functions are step functions with multiple roots, some of which are inconsistent; iden-
tification of a consistent root can be very challenging in practice. A further difficulty lies in
the variance–covariance estimation: the limiting covariance matrices of the rank estimators
involve the unknown hazard function of the error term and are thus not amenable to numeri-
cal evaluations.

For univariate failure time data, some efforts have been made to alleviate the aforemen-
tioned difficulties. In particular, Jin et al. (2003) proposed a class of monotone estimating
functions which approximates the weighted log-rank estimating functions around the true
values of the regression parameters. The corresponding estimators are consistent and asymp-
totically normal with covariance matrices that can be readily estimated by a simple
re-sampling technique. Both the parameter estimation and variance–covariance estimation
can be performed via linear programming.

In this paper, we extend the work of Jin et al. (2003) to marginal accelerated failure time
models for multivariate failure time data. We construct rank-based monotone estimating func-
tions for three types of accelerated failure time models dealing with multiple events, recurrent
events and clustered data. The resultant estimators are proven to be consistent and asymptoti-
cally normal. Furthermore, we develop a novel resampling approach which properly adjusts
for the dependence of related failure times in the variance–covariance estimation. The pro-
posed methods, like those of Jin et al. (2003), can be implemented efficiently through linear
programming. Because of the intraclass correlation, the resampling scheme employed here is
different from that of Jin et al. (2003) and entails considerable new technical challenges.

The rest of this paper is organized as follows. In sections 2–4, we present the models and
corresponding inference procedures for multiple events data, recurrent events data and clus-
tered failure time data respectively. In section 5, we report the results of our simulation
studies. In section 6, we apply the proposed methods to two medical studies. Some con-
cluding remarks are given in section 7. All the proofs are relegated to the appendix.

2. Multiple events data

2.1. Preliminaries

Consider a random sample of n subjects, each of whom can potentially experience K types of
events or failures. For i =1, . . ., n and k =1, . . ., K , let Tki be the time to the kth failure of the
ith subject; let Cki be the corresponding censoring time, and Xki be the corresponding pk ×1
vector of covariates. We assume that (T1i , . . ., TKi) and (C1i , . . ., CKi) are independent con-
ditional on (X1i , . . ., XKi). The data consists of (T̃ki , �ki , Xki) (k =1, . . ., K ; i =1, . . ., n), where
T̃ki =Tki ∧Cki and �ki = I (Tki ≤Cki). Here and in the sequel, a ∧b=min(a, b) and I (·) is the
indicator function.

We formulate the marginal distributions of the K types of events with accelerated failure
time models while leaving the dependence structures unspecified, i.e.

log Tki =�′
kXki + εki , i =1, . . ., n; k =1, . . ., K ,

where �k ≡ (�1k , . . ., �pk k)′ is a pk × 1 vector of unknown regression parameters, and
(ε1i , . . ., εKi) (i =1, . . ., n) are independent random vectors that are independent of the Xki with
a common, but completely unspecified, joint distribution.

Let

eki(�)= log T̃ki −�′Xki ,

Nki(�; t)=�kiI{eki(�)≤ t}
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and

S(r)
k (�; t)=n−1

n∑
i=1

I{eki(�)≥ t}Xr
ki(r =0, 1).

The weighted log-rank estimating function for �k is given by

Uk,�k (�)=
n∑

i =1

�ki�k(�; eki(�)){Xki −Xk(�; eki(�))},

or

Uk,�k (�)=
n∑

i =1

∫ ∞

−∞
�k(�; t){Xki −Xk(�; t)}dNki(�; t),

where

Xk(�; t)=S(1)
k (�; t)/S(0)

k (�; t)

and �k is a weight function which satisfies condition 5 of Ying (1993, p. 90). The resultant
estimator is denoted by �̂k,�k

. Note that the choices of 1, S(0)
k (�; t) and the Kaplan–Meier

estimator based on {eki(�), �ki} (i =1, . . ., n) as �k(�; t) correspond to the log-rank, Gehan–
Wilcoxon and Prentice–Wilcoxon statistics respectively.

Let

Mki(�; t)=Nki(�; t)−
∫ t

0
I{eki(�)≥u}�k(u) du, (1)

where �k(·) is the common hazard function of εki (i =1, . . ., n). Write s(r)
k (�; t)= limn→∞ S(r)

k (�; t)
(r =0, 1),

xk(t)= s(1)
k (�k ; t)/s(0)

k (�k ; t)

and

�0k(t)= lim
n→∞

�k(�k ; t).

Define

Ak,�k
= lim

n→∞
n−1

n∑
i =1

∫ ∞

−∞
�0k(t){Xki −xk(t)}⊗2

{
d log �k(t)

dt

}
dNki(�k ; t),

and

Vkl, �k�l
= lim

n→∞
n−1

n∑
i =1

uki,�k u′
li, �l

,

where a⊗2 =aa′ and

uki,�k
=
∫ ∞

−∞
�0k(t){Xki −xk(t)}dMki(�k ; t). (2)

Write B= (�′
1, . . ., �′

K )′ and B̂=(�̂
′
1,�1

, . . ., �̂
′
K ,�K

)′. The random vector n1/2(B̂ − B) is asymp-
totically zero-mean normal with covariance matrix {A−1

k,�k
Vkl,�k�l A

−1
l,�l

; k, l =1, . . ., K}.
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2.2. Gehan weight function

As mentioned earlier, the choice of �k(�; t)=S(0)
k (�; t) corresponds to the Gehan (1965) weight

function. In this case, Uk,�k (�) can be expressed as

Uk,G(�)=n−1
n∑

i =1

n∑
j =1

�ki(Xki −Xkj)I{eki(�)≤ ekj(�)},

which is the gradient of the convex function

Lk,G(�)≡n−1
n∑

i =1

n∑
j =1

�ki{eki(�)− ekj(�)}−,

where a− = I (a < 0)|a|. Let �̂k,G be a minimizer of Lk,G(�). The minimization of Lk,G(�) can
be implemented by linear programming, and is equivalent to the minimization of

n∑
i=1

n∑
j=1

�ki |eki(�)− ekj(�)|+
∣∣∣∣Q −�′

n∑
i=1

n∑
j=1

�ki(Xkj −Xki)

∣∣∣∣,
where Q is any number which is greater than �′∑n

i =1

∑n
j =1 �ki(Xkj −Xki). This minimization

can be implemented via an L1− minimization algorithm.
We shall approximate the joint distribution of the �̂k,Gs by a resampling procedure. Let

L∗
k,G(�)=n−1

n∑
i =1

n∑
j =1

�ki{eki(�)− ekj(�)}−ZiZj , k =1, . . ., K ,

where (Z1, . . ., Zn) are independent positive random variables with E(Zi)=var(Zi)=1. It is
important to note that the same set of Zi (i =1, . . ., n) is used in all the K functions L∗

k,G(�)

(k =1, . . ., K ). Let �̂
∗
k,G be a minimizer of L∗

k,G(�) or a root of

U∗
k,G(�)≡n−1

n∑
i=1

n∑
j=1

�ki(Xki −Xkj)I{eki(�)≤ ekj(�)}ZiZj . (3)

Again, �̂
∗
k,G is obtained via linear programming. Write B̂∗

G = (�̂
∗′

1,G , . . ., �̂
∗′

K ,G)′ and B̂G =
(�̂

′
1,G , . . ., �̂

′
K ,G)′. We state below and prove in the appendix that the conditional distribution

of n1/2(B̂∗
G − B̂G) given the data (T̃ki , �ki , Xki) (k =1, . . ., K ; i =1, . . ., n) can be used to approxi-

mate the distribution of n1/2(B̂G −B).
Conditional on the data (T̃ki , �ki , Xki) (k =1, . . ., K ; i =1, . . ., n), the only random elements

in L∗
k,G(�) (k =1, . . ., K ) are the Zis. To approximate the distribution of B̂G , we obtain a large

number of realizations of B̂∗
G by repeatedly generating the random sample (Z1, . . ., Zn) while

holding the data (T̃ki , �ki , Xki) (k =1, . . ., K ; i =1, . . ., n) at their observed values. The covari-
ance matrix of B̂G can then be approximated by the empirical covariance matrix of B̂∗

G .
To make our statements precise, we impose the following regularity conditions:

Condition 1. For k =1, . . ., K and i =1, . . ., n, the Euclidean norms ‖Xki‖ are bounded by a
non-random constant.

Condition 2. Let fk(t) be the density function associated with �k(t), k =1, . . ., K . Then fk(t)
and dfk(t)/dt are bounded and

∫
(d log fk(s)/ds)2fk(s) ds < ∞.

Condition 3. The matrices Ak,G (k =1, . . ., K ) are non-singular, where Ak,G is Ak,�k evaluated
at �0k = s(0)

k .
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Remark 1. Conditions 1 and 2 correspond to conditions 1 and 2 of Ying (1993) that are
required to ensure the asymptotic linearity of the (weighted) log-rank estimating function.
As indicated by Ying (1993), condition 1 may be relaxed to maxk, i≤n ‖Xki‖=O(n�) for any
� > 0. It can be shown that all the commonly used error distributions satisfy condition 2.
Condition 3 holds if for each k, the vector of covariates does not lie in a lower dimensional
hyperplane, which is a minimum requirement for the identifiability of the regression para-
meters.

Theorem 1
Under conditions 1–3, the estimator B̂G is strongly consistent, and n1/2(B̂G − B) converges
in distribution to a zero-mean multivariate normal random vector with covariance matrix
{A−1

k,GVkl,GA−1
l,G ; k, l =1, . . ., K}, where Vkl,G is Vkl,�k�l evaluated at �0k = s(0)

k (k =1, . . ., K ).

Furthermore, the conditional distribution of n1/2(B̂∗
G − B̂G) given the data (T̃ki , �ki , Xki)

(k =1, . . ., K ; i =1, . . ., n) converges almost surely to the same limiting distribution.

The resampling scheme proposed here is different from that of Jin et al. (2003) even if
K =1 in that each term in the summation of the perturbed function L∗

k,G(�) is weighted by
ZiZj rather than Zi . This modification is required so as to properly account for the depen-
dence of the multiple failure times within the same subject, and it creates significant technical
challenges in the proofs.

As shown in the proof of theorem 1, n−1U∗
k,G(�) has the same asymptotic slope as

n−1Uk,G(�) for each k, and the conditional joint distribution of n−1/2{U∗
1,G(�1), . . ., U∗

K ,G(�K )}
given the data (T̃ki , �ki , Xki) (k =1, . . ., K ; i =1, . . ., n) converges to a zero-mean multivariate
normal distribution whose covariance matrix is the limiting covariance matrix of
n−1/2{U1,G(�1), . . ., UK ,G(�K )}. Thus, the conditional joint distribution of n1/2(B̂∗

G − B̂G) given
the data is the same in the limit as the joint distribution of n1/2(B̂G −B). If Zi instead of ZiZj

were used in (3), then the conditional marginal distributions of n−1/2{U∗
1,G(�1), . . ., U∗

K ,G(�K )}
given the data would still be the same in the limit as the marginal distributions of
n−1/2{U1,G(�1), . . ., UK ,G(�K )}, but the two joint distributions, specifically the two covariance
matrices would be different.

2.3. General weight functions

In general, Uk,�k (�) is non-monotone. We consider the monotone modification of Uk,�k (�):

Ũk,�k (�; �̂k)=
n∑

i =1

�ki�k(�̂k ; eki(�̂k))S(0)
k (�; eki(�)){Xki −Xk(�; eki(�))},

where

�k(�; t)=�k(�; t)/S(0)
k (�; t)

and �̂k is a preliminary consistent estimator of �k . Note that Ũk,�k (�; �̂k) is monotone com-
ponentwise and is the gradient of the convex function

Lk,�k (�; �̂k)≡n−1
n∑

i =1

n∑
j =1

�k(�̂k ; eki(�̂k))�ki{eki(�)− ekj(�)}−,

which can again be minimized via linear programming. The minimization is carried out
iteratively, i.e. �̂k(m) =arg min� Lk,�k (�; �̂k(m−1)) (m ≥ 1), where �̂k(0) = �̂k,G . If the iterative
algorithm converges as m → ∞, then the limit satisfies the original estimating equation
Uk,�k (�)=0. For most commonly used weight functions, the algorithm converges stochas-
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tically in that, with a suitable choice of m that depends on n, �̂k(m) is asymptotically equiv-
alent to the consistent roots of the original estimating equation Uk,�k (�)=0 (see Jin et al.,
2003). Whether the algorithm converges or not, �̂k(m) is consistent and asymptotically
normal.

To approximate the joint distribution of the �̂k(m)s, we again appeal to the resampling

approach. Let �̂
∗
k(0) = �̂

∗
k,G and �̂

∗
k(m) =arg min� L∗

k,�k
(�; �̂

∗
k(m−1)) (m≥1), where

L∗
k,�k

(�; b)=n−1
n∑

i =1

n∑
j =1

�k(b; eki(b))�ki{eki(�)− ekj(�)}−ZiZj .

Write B̂∗
(m) = (�̂

∗′

1(m), . . ., �̂
∗′

K (m))
′ and B̂(m) = (�̂

′
1(m), . . ., �̂

′
K (m))

′. We state below and prove in the

appendix that, for any m, the conditional distribution of n1/2(B̂∗
(m) − B̂(m)) given the data is

asymptotically equivalent to the limiting distribution of n1/2(B̂(m) −B).
We impose two additional regularity conditions:

Condition 4. For each k =1,…, K , both Ak,�k and (Ak,�k +Dk,�k ) are non-singular, where

Dk,�k
= lim

n→∞
n−1

n∑
i =1

∫ ∞

−∞
�̇0k(t)s(0)

k (�k ; t){Xki −xk(t)}⊗2 dNki(�k ; t),

and �̇0k(t) is the derivative of �0k(t)≡ limn→∞ �k(�k ; t).

Condition 5. For each k =1, . . ., K and for any �n and �n such that ‖�n −�k‖+ |�n|=o(n−ε)
almost surely for some ε > 0, �k(�n; t)=�k(�k ; t)+o(1) and �k(�n; t +�n)=�k(�n; t)+
�̇0k(t)�n +o(n−1/2 +�n), both uniformly in t.

Theorem 2
Suppose that conditions 1–5 hold. For each m, the estimator B̂(m) is strongly consistent, and
n1/2(B̂(m) −B) converges to a zero-mean multivariate normal distribution. Furthermore, the con-
ditional distribution of n1/2(B̂∗

(m) − B̂(m)) given the data (T̃ki , �ki , Xki) (k =1, . . ., K ; i =1, . . ., n)
converges almost surely to the same limiting distribution.

For notational simplicity, we shall drop the subscript (m) in B̂∗
(m) and B̂(m). To approximate

the distribution of B̂, we obtain a large number of realizations of B̂∗ by repeatedly generating
the random sample (Z1, . . ., Zn) while fixing the data (T̃ki , �ki , Xki) (k =1, . . ., K ; i =1, . . ., n) at
their observed values. The covariance matrix of B̂ can then be approximated by the empirical
covariance matrix of B̂∗, denoted by V̂.

The above results enable one to carry out simultaneous inference on B. Suppose, for
example, one is interested in the effects �k ≡�1k (k =1, . . ., K ) of a particular kind of covari-
ate on the K event times. Let V̂� be the part of V̂ corresponding to the covariance matrix of
(�̂1, . . ., �̂K )′, where �̂k = �̂1k . Then the null hypothesis H0 :�1 =�2 = · · ·=�K =0 can be tested by
using the quadratic form (�̂1, . . ., �̂K )V̂−1

� (�̂1, . . ., �̂K )′. One can also determine which of the in-
dividual hypotheses �k =0 (k =1, . . ., K ) should be rejected by using the sequential multiple
testing procedures discussed in Wei et al. (1989). Under the restriction that �1 =�2 = · · ·=
�K =�, the optimal linear estimator �̂≡∑K

k =1 ck �̂k , where (c1, . . ., cK )′ =(1′V̂−1
� 1)−1V̂−1

� 1 and
1= (1, . . ., 1)′, has the smallest asymptotic variance among all linear estimators
for �.
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3. Recurrent events data

3.1. Preliminaries

Suppose that we have a random sample of n subjects. For i =1, . . ., n and k =1, 2, . . ., let Tki

be the time to the kth recurrent event on the ith subject; let Ci and Xi be the censoring time
and the p × 1 vector of covariates for the ith subject. Assume that Ci is independent of Tki

(k =1, 2, . . .) conditional on Xi . Let

N∗
i (t)=

∞∑
k =1

I (Tki ≤ t).

We specify the following accelerated time model for the mean frequency function:

E{N∗
i (t)|Xi}=�0(t e−�′

0Xi ), (4)

where �0 is a p×1 vector of regression parameters, and �0(·) is an unspecified baseline mean
function. The weighted log-rank estimating function for �0 takes the form

U�(�)=
n∑

i =1

∞∑
k =1

I (Tki ≤Ci)�(�; Tki e−�′Xi ){Xi −X(�; Tki e−�′Xi )}, (5)

where

X(�; t)= S(1)(�; t)
S(0)(�; t)

, S(r)(�; t)=n−1
n∑

j =1

I (Cj e−�′Xj ≥ t)Xr
j (r =0, 1)

and � is a weight function. The resultant estimator �̂� is consistent and asymptotically
normal.

3.2. Gehan weight function

Lin et al. (1998) noted that, for the Gehan weight function, U�(�) reduces to

UG(�)=n−1
n∑

i =1

n∑
j =1

∞∑
k =1

I (Tki ≤Ci)(Xi −Xj)I{log Tki − log Cj ≤�′(Xi −Xj)}.

Thus, the corresponding estimator �̂G can be obtained by minimizing the convex function

LG(�)=n−1
n∑

i =1

n∑
j =1

∞∑
k =1

I (Tki ≤Ci){log Tki − log Cj −�′(Xi −Xj)}−

via linear programming. Define

L∗
G(�)=n−1

n∑
i =1

n∑
j =1

∞∑
k =1

I (Tki ≤Ci){log Tki − log Cj −�′(Xi −Xj)}−ZiZj ,

where (Z1, . . ., Zn) are the same as in section 2. Denote a minimizer of L∗
G(�) by �̂

∗
G , which

again is obtained via linear programming.
Let

Ni(�; t)=N∗
i (t e�′Xi ∧Ci)

and

Mi(�; t)=Ni(�; t)−
∫ t

0
I (Ci e−�′Xi ≥u) d�0(u).

Also, let

s(r)(�; t)= lim
n→∞

S(r)(�; t) (r =0, 1)
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and

x(t)= s(1)(�0; t)/s(0)(�0; t).

Define

A� = lim
n→∞

n−1
n∑

i =1

∫ ∞

0
�0(t)I (Ci e−�′

0Xi ≥ t){Xi −x(t)}⊗2 d{�̇0(t)t},

and

V� = lim
n→∞

n−1
n∑

i =1

u⊗2
i,� ,

where

ui,� =
∫ ∞

0
�0(t){Xi −x(t)}dMi(�0; t),

�0(t)= lim
n→∞

�(�0; t),

and

�̇0(t)=d�0(t)/dt.

We impose the following conditions:

Condition 6. For all i, ‖Xi‖+Ci +N∗
i (Ci) are bounded by a non-random constant.

Condition 7. The function �0 is continuously differentiable.

Condition 8. The matrix AG is non-singular, where AG is A� evaluated at �0 = s(0).

Theorem 3
Under conditions 6–8, the estimator �̂G is strongly consistent, and n1/2(�̂G − �0) converges in
distribution to a zero-mean normal random vector with covariance matrix A−1

G VGA−1
G , where

VG is V� evaluated at �0 = s(0). Furthermore, the conditional distribution of n1/2(�̂
∗
G − �̂G) given

the data (Ci , Tki , Xi) (Tki ≤Ci ; i =1, . . ., n) converges almost surely to the limiting distribution
of n1/2(�̂G −�0).

3.3. General weight functions

To approximate �̂� and its covariance matrix, we define

L�(�; b)=n−1
n∑

i =1

n∑
j =1

∞∑
k =1

�(b; Tki e−b′Xi )I (Tki ≤Ci){log Tki − log Cj −�′(Xi −Xj)}−,

L∗
�(�; b)=n−1

n∑
i =1

n∑
j =1

∞∑
k =1

�(b; Tki e−b′Xi )I (Tki ≤Ci){log Tki − log Cj −�′(Xi −Xj)}−ZiZj ,

where �(�; t)=�(�; t)/S(0)(�; t). For m ≥ 1, let �̂(m) =arg min� L�(�; �̂(m−1)), and �̂
∗
(m) =

arg min� L∗
�(�; �̂

∗
(m−1)), where �̂(0) = �̂G and �̂

∗
(0) = �̂

∗
G . We impose the following conditions.
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Condition 9. Both A� and (A� +D�) are non-singular, where

D� = lim
n→∞

n−1
n∑

i=1

∫ ∞

0
�̇0(t)ts(0)(�0; t){Xi −x(t)}⊗2 dNi(�0; t),

and �̇0(t) is the derivative of �0(t)≡ limn→∞ �(�0; t).

Condition 10. For any �n and �n such that ‖�n − �0‖+ |�n|=o(n−ε) almost surely for some
ε > 0, �(�n; t)=�(�0; t)+o(1) and �(�n; t(1+�n))=�(�n; t)+ �̇0(t)�n +o(n−1/2 +�n), both uni-
formly in t ≤ �, where �= sup{t : Pr(C e−�′

0X ≥ t) > 0}.

Theorem 4
Suppose that conditions 6–10 are satisfied. For each m, the estimator �̂(m) is strongly consistent,

and n1/2(�̂(m) −�0) converges to a zero-mean multivariate normal distribution. Furthermore, the

conditional distribution of n1/2(�̂
∗
(m) − �̂(m)) given the data (Ci , Tki , Xi) (Tki ≤Ci ; i =1, . . ., n) con-

verges almost surely to the same limiting distribution.

4. Clustered failure time data

4.1. Preliminaries

Suppose that we have a random sample of n clusters and there are Ki members in the ith clus-
ter. Let Tik and Cik be the failure time and censoring time for the kth member of the ith clus-
ter, and let Xik be the corresponding p×1 vector of covariates. We assume that (Ti1, . . ., TiKi )
and (Ci1, . . ., CiKi ) are independent conditional on (Xi1, . . ., XiKi ). The data consist of
(T̃ik , �ik , Xik) (k =1, . . ., Ki ; i =1, . . ., n), where T̃ik =Tik ∧Cik and �ik = I (Tik ≤Cik).

We specify that the marginal distributions of the Tik satisfy the accelerated failure time
model:

log Tik =�′
0Xik + εik , k =1, . . ., Ki ; i =1, . . ., n,

where �0 is a p × 1 vector of unknown regression parameters, and (εi1, . . ., εiKi ) (i =1, . . ., n)
are independent random vectors. For each i, the error terms εi1, . . ., εiKi are potentially cor-
related, but are assumed to be exchangeable with a common marginal distribution; for any i
and j, and K ≤Ki ∧Kj , the vectors (εi1, . . ., εiK )′ and (εj1, . . ., εjK )′ have the same distribution.

Let eik(�)= log T̃ik − �′Xik and S(r)(�; t)=n−1
∑n

i =1

∑Ki
k =1 I{eik(�) ≥ t}Xr

ik(r =0, 1). Under
the independence working assumption, the weighted log-rank estimating function takes the
form

U�(�)=
n∑

i =1

Ki∑
k =1

�ik�
(
�; eik(�)

){
Xik −X

(
�; eik(�)

)}
, (6)

where X(�; t)=S(1)(�; t)/S(0)(�; t) and � is a weight function. Denote the estimator by �̂�.

4.2. Gehan weight function

For �(�; t)=S(0)(�; t), we can express U�(�) as

UG(�)=n−1
n∑

i =1

Ki∑
k =1

n∑
j =1

Kj∑
l =1

�ik(Xik −Xjl )I{eik(�)≤ ejl (�)},
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which is the gradient of

LG(�)≡n−1
n∑

i =1

Ki∑
k =1

n∑
j =1

Kj∑
l =1

�ik{eik(�)− ejl (�)}−.

Let �̂G be a minimizer of LG(�), which can again be obtained by linear programming. Define

L∗
G(�)=n−1

n∑
i =1

Ki∑
k =1

n∑
j =1

Kj∑
l =1

�ik{eik(�)− ejl (�)}−ZiZj ,

where (Z1, . . ., Zn) are defined in section 2. Let �̂
∗
G be a minimizer of L∗

G(�).
Define Nik(�; t)=�ikI{eik(�)≤ t} and Mik(�; t)=Nik(�; t)−∫ t

−∞I{eik(�)≥u}�0(u) du, where
�0(·) is the common hazard function of the εiks. Also, define

A� = lim
n→∞

n−1
n∑

i =1

Ki∑
k =1

∫ ∞

−∞
�0(t){Xik −x(t)}⊗2

{
d log �0(t)

dt

}
dNik(�0; t),

and

V� = lim
n→∞

n−1
n∑

i =1

(
Ki∑

k =1

uik,�

)⊗2

,

where

uik,� =
∫ ∞

−∞
�0(t){Xik −x(t)}dMik(�0; t),

�0(t)= lim
n→∞

�(�0; t),

x(t)= s(1)(�0; t)
s(0)(�0; t)

,

and s(r)(�; t)= limn→∞ S(r)(�; t)(r =0, 1). We impose the following regularity conditions:

Condition 11. For all i,
∑Ki

k =1 ‖Xik‖+Ki are bounded by a nonrandom constant.

Condition 12. Let f be the density function associated with �0. Then f (t) and df (t)/dt are
bounded, and

∫ {d log f (t)/dt}2f (t)dt < ∞.

Condition 13. The matrix AG is non-singular, where AG is A� evaluated at �0 = s(0).

Theorem 5
Under conditions 11–13, the estimator �̂G is stongly consistent, and n1/2(�̂G −�0) converges in
distribution to a zero-mean normal random vector with covariance matrix A−1

G VGA−1
G , where VG

is V� evaluated at �0 = s(0). Furthermore, the conditional distribution of n1/2(�̂
∗
G − �̂G) given the

data (T̃ik , �ik , Xik) (k =1, . . ., Ki ; i =1, . . ., n) converges almost surely to the limiting distribution
of n1/2(�̂G −�0).
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4.3. General weight functions

We consider

L�(�; b)≡n−1
n∑

i =1

Ki∑
k =1

n∑
j =1

Kj∑
l =1

�
(

b; eik(b)
)
�ik{eik(�)− ejl (�)}−,

L∗
�(�; b)≡n−1

n∑
i =1

Ki∑
k =1

n∑
j =1

Kj∑
l =1

�
(

b; eik(b)
)
�ik{eik(�)− ejl (�)}−ZiZj ,

where �(�; t)=�(�; t)/S(0)(�; t). For m ≥ 1, let �̂(m) =arg min� L�(�; �̂(m−1)) and �̂
∗
(m) =

arg min� L∗
�(�; �̂

∗
(m−1)), where �̂(0) = �̂G and �̂

∗
(0) = �̂

∗
G . We impose two additional conditions:

Condition 14. Both A� and (A� +D�) are non-singular, where

D� = lim
n→∞

n−1
n∑

i =1

Ki∑
k =1

∫ ∞

−∞
�̇0(t)s(0)(�0; t){Xik −x(t)}⊗2 dNik(�0; t),

and �̇0(t) is the derivative of �0(t)≡ limn→∞ �(�0; t).

Condition 15. For any �n and �n such that ‖�n − �0‖+ |�n|=o(n−ε) almost surely for some
ε > 0, �(�n; t)=�(�0; t)+o(1) and �(�n; t +�n)=�(�n; t)+ �̇0(t)�n +o(n−1/2 +�n), both uni-
formly in t.

Theorem 6
Suppose that conditions 11–15 are satisfied. For each m, the estimator �̂(m) is strongly con-

sistent and n1/2(�̂(m) −�0) converges to a zero-mean multivariate normal distribution. Further-

more, the conditional distribution of n1/2(�̂
∗
(m) − �̂(m)) given the data (T̃ik , �ik , Xik) (k =1, . . ., Ki ;

i =1, . . ., n) converges almost surely to the same limiting distribution.

5. Numerical studies

We carried out extensive simulation studies to evaluate the small-sample properties of the
methods developed in sections 2–4. We focused on the Gehan and log-rank weight func-
tions. The (approximate) log-rank estimates were obtained with three iterations. The differ-
ences between the estimates with three iterations and those at convergence are generally
negligible.

For multiple events and clustered data, two failure times T1 and T2 were generated from
Gumbel (1960) bivariate distribution:

F (t1, t2)=F1(t1)F2(t2)[1+	{1−F1(t1)}{1−F2(t2)}],

where −1 ≤ 	 ≤ 1. The correlation between T1 and T2 is 	/4. The two marginal distribu-
tions Fk(tk) (k =1, 2) were exponential with hazard rates �k = e�1X1k +�2X2k , where X1k (k =1, 2)
were Bernoulli with 0.5 success probability and X2k (k =1, 2) were independent standard nor-
mal truncated at ±2. For multiple events, T1 and T2 shared the same set of covariates, i.e.
X11 =X12 and X21 =X22; for clustered data, the covariates were generated independently. The
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censoring times were generated from the uniform (0, �) distribution, where � was chosen to
yield a desired level of censoring.

For recurrent events, the covariates were generated in the same manner as in the case
of multiple events. The gap times between successive events were generated from the afore-
mentioned Gumbel’s bivariate exponential distribution. The resultant recurrent event process
is Poisson under 	=0 and non-Poisson under 	 � =0. The follow-up time was an indepen-
dent uniform (0, 2.5) random variable, which on average yielded approximately 2.60 and 2.86
events per subject for the Poisson and non-Poisson cases respectively.

Tables 1 and 2 summarizes the results on the estimation of �1 when �1 =1 and �2 =0.5.
The results for �2 are similar and thus omitted. Each entry in the table was based on 1000
simulated data sets. For each data set, we approximated the limiting distribution of the para-

Table 1. Simulation results for multiple events and clustered data

Multiple events Clustered data
Censoring

	 n (%) Weight Bias SE SEE CP Bias SE SEE CP

0 50 0 Gehan 0.001 0.245 0.238 0.945 0.002 0.241 0.233 0.940
Log-rank 0.003 0.218 0.213 0.937 0.004 0.211 0.206 0.934

25 Gehan 0.012 0.364 0.360 0.937 −0.041 0.353 0.357 0.951
Log-rank 0.021 0.334 0.343 0.948 −0.042 0.327 0.333 0.957

50 Gehan 0.019 0.518 0.481 0.922 −0.067 0.550 0.534 0.944
Log-rank 0.016 0.487 0.491 0.952 −0.073 0.526 0.515 0.952

100 0 Gehan −0.007 0.165 0.166 0.957 −0.002 0.160 0.164 0.960
Log-rank −0.004 0.147 0.146 0.949 −0.002 0.144 0.145 0.946

25 Gehan −0.003 0.246 0.247 0.950 0.001 0.245 0.246 0.947
Log-rank 0.002 0.223 0.229 0.947 −0.004 0.223 0.226 0.954

50 Gehan 0.005 0.351 0.355 0.949 −0.005 0.348 0.357 0.953
Log-rank 0.008 0.329 0.344 0.956 −0.011 0.319 0.336 0.956

1 50 0 Gehan −0.007 0.289 0.273 0.930 0.010 0.234 0.233 0.944
Log-rank −0.011 0.249 0.239 0.937 0.011 0.202 0.207 0.953

25 Gehan 0.009 0.408 0.397 0.939 −0.028 0.354 0.352 0.953
Log-rank 0.017 0.373 0.378 0.942 −0.027 0.328 0.328 0.950

50 Gehan 0.031 0.560 0.528 0.923 −0.064 0.542 0.526 0.936
Log-rank 0.036 0.521 0.541 0.949 −0.067 0.506 0.509 0.947

100 0 Gehan 0.007 0.186 0.190 0.951 0.005 0.165 0.164 0.956
Log-rank 0.006 0.165 0.163 0.946 0.004 0.143 0.143 0.950

25 Gehan −0.002 0.268 0.276 0.952 −0.007 0.249 0.244 0.952
Log-rank 0.001 0.250 0.257 0.960 −0.005 0.230 0.226 0.940

50 Gehan 0.007 0.387 0.379 0.937 −0.007 0.370 0.356 0.941
Log-rank 0.010 0.368 0.370 0.953 −0.012 0.336 0.336 0.951

Bias and SE represents the bias and standard error of the estimator, SEE represents the mean of the
standard error estimator and CP represents the coverage probability of the 95% Wald-type confidence
interval. The results for multiple events pertain to the optimal linear estimator.

Table 2. Simulation results for recurrent events data

	 n Weight Bias SE SEE CP

0 50 Gehan −0.022 0.249 0.235 0.935
Log-rank −0.019 0.237 0.223 0.932

100 Gehan −0.009 0.165 0.165 0.941
Log-rank −0.009 0.157 0.156 0.941

1 50 Gehan −0.004 0.269 0.261 0.946
Log-rank −0.008 0.265 0.253 0.938

100 Gehan 0.007 0.188 0.185 0.942
Log-rank 0.004 0.178 0.179 0.950

For explanation see Table 1.
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meter estimator using 1000 samples of (Z1, . . ., Zn), where the Zis are standard exponential
random variables. The simulation results show that the proposed methods perform well in
small samples. The parameter estimators are virtually unbiased. The standard error esti-
mators are accurate, and the confidence intervals have proper coverage probabilities.

6. Examples

To illustrate the methods of sections 2 and 3 and to compare with the existing methods of Lin
& Wei (1992) and Lin et al. (1998), we consider the well-known bladder cancer data reported
by Wei et al. (1989). These data were obtained from a randomized clinical trial assessing the
potential benefit of thiotepa in reducing recurrences of bladder tumours. There are 38 patients
in the thiotepa group with a total of 45 observed recurrences and 48 placebo patients with
a total of 87 observed recurrences. To compare with the results of Lin & Wei (1992), we
consider the first three recurrences of each patient. For i =1, . . ., 86 and k =1, 2, 3, let Tki be
the time from the initiation of treatment to the kth tumour recurrence on the ith patient, let
X1ki indicated by the values 1 versus 0 whether the ith patient received thiotepa or placebo,
and let X2ki be the number of initial tumours for the ith patient. We regress log10 Tki on X1ki

and X2ki . Recurrence times of 0 are replaced with 0.5. In this section, the log-rank estimates
at convergence are reported, and the resampling was performed in the same manner as in
section 5 except that 10,000 samples are used. The results of our analysis are presented in
Table 3. The log-rank estimates for individual recurrences are similar to those of Lin & Wei
(1992). The optimally combined log-rank estimate is about 10% smaller than the estimate of
Lin & Wei (1992) based on minimum-dispersion statistics. More importantly, our confidence
intervals are much narrower than Lin & Wei’s. In fact, our two-sided p-value for testing no
overall treatment effect is approximately 0.039 whereas that of Lin & Wei (1992) is approxi-
mately 0.05. These differences reflect the fact that the Lin–Wei estimator is not based on the
optimal linear combination.

Following Lin et al. (1998), we regard the tumour recurrences for each patient as a single
counting process and fit model (4) with three covariates: (i) treatment indicator; (ii) number
of initial tumours; and (iii) the diameter of the largest initial tumour; the treatment indicator
takes the value 1 for placebo and 0 for thiotepa. Table 4 displays the results of our analysis,
which are similar to those of Lin et al. (1998). Incidentally, Lin et al. (1998) used ad hoc
iterative (one-dimensional) bisection search to solve the estimating functions along with a
different resampling technique.

Table 3. Estimation of treatment effects on the first three tumor recurrences of
bladder cancer patients

Weight Tumour Parameter Estimated 95% Wald confidence
function recurrences estimate standard error interval

Gehan First 0.289 0.205 −0.114 to 0.691
Second 0.302 0.126 0.055 to 0.549
Third 0.246 0.126 −0.001 to 0.492
First three 0.272 0.120 0.037 to 0.506

Log-rank First 0.392 0.213 −0.026 to 0.809
Second 0.295 0.151 −0.002 to 0.592
Third 0.248 0.127 −0.001 to 0.497
First three 0.260 0.126 0.013 to 0.508

The optimal linear estimator is used to estimate the overall treatment effect on
the first three recurrences.
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Table 4. Regression analysis on the mean frequency of tumour recurrences in bladder cancer patients

95% confidence intervals
Weight Parameter Estimated
function Covariate estimate standard error Wald Percentile

Gehan Treatment 0.658 0.300 0.070 to 1.246 0.108 to 1.264
Initial number 0.218 0.093 0.035 to 0.400 0.079 to 0.434
Initial size −0.023 0.098 −0.215 to 0.170 −0.195 to 0.195

Logrank Treatment 0.542 0.292 −0.029 to 1.114 0.052 to 1.167
Initial number 0.204 0.077 0.054 to 0.354 0.097 to 0.391
Initial size −0.038 0.085 −0.204 to 0.127 −0.198 to 0.141

We change � to −� so as to be consistent with the parameterization of Lin et al. (1998).

For a real example of clustered data, we consider the litter-matched tumorigenesis data
originally reported by Mantel et al. (1977) and reproduced in Table 1 of Lee et al. (1993).
There are 50 female litters in the study, each having three rats. For i =1, . . ., 50 and k =1, 2, 3,
let Tik be the time of tumour appearance for the kth rat in the ith litter, and let Xik indi-
cate, by the values 0 versus 1, whether the kth rat in the ith litter was drug-treated or not.
We regress log Tik on Xik . The Gehan estimate is 0.156 with an estimated standard error of
0.093, and the corresponding Wald 95% confidence interval is (−0.026, 0.338). The log-rank
estimate is 0.161 with an estimated standard error of 0.090, and the corresponding Wald 95%
confidence interval is (−0.016, 0.338). The log-rank results differ slightly from those of Lee
et al. (1993).

7. Discussion

Although Cox-type regression methods for multivariate failure time data have been studied
extensively, it is desirable to explore the accelerated failure time regression approach for
several reasons. First, accelerated failure time models may fit the data better than propor-
tional hazards models. Secondly, the accelerated failure time model formulates a natural and
direct regression relationship, whereas the relative risk modelled by the Cox regression has
no physical interpretation when the censored response variable is not failure time. Thirdly, the
regression parameters under multivariate accelerated failure time models have both the
population-averaged and subject-specific interpretations. This is not true of proportional
hazards models.

The proposed resampling approach differs from that of Jin et al. (2003) and entails con-
siderable technical challenges. The fact that this approach correctly adjusts for the intraclass
dependence is remarkable. In all the existing methods for multivariate failure time data, either
under proportional hazards models or accelerated failure time models, each estimating func-
tion is approximated by a sum of independent and identically distributed (i.i.d.) terms and
the empirical variances and covariances of these sums are calculated. These calculations led
to complicated variance–covariance expressions, which may perform poorly in small samples.
The proposed resampling procedure does not involve complicated i.i.d. approximations in the
variance–covariance estimation.

We have focused on the estimation of the regression parameters. A related problem is the
estimation of the failure time distributions. The cumulative hazard functions for multiple
events and clustered data as well as the mean frequency functions for recurrent events can
be estimated consistently by the Aalen–Breslow type estimators (see Lin et al., 1998, p. 608).
Upon normalizations, these estimators converge weakly to zero-mean Gaussian processes. We
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can approximate the limiting distributions by extending the resampling technique developed
in this paper, and construct appropriate confidence intervals and confidence bands.

Residuals similar to those of proportional hazards models (Kalbfleisch & Prentice, 2002,
pp. 210–212) can be used to check accelerated failure time models. It is also possible to
develop formal goodness-of-fit methods based on the comparison of the rank-type estimators
with different weight functions (Wei et al., 1990) or on the cumulative sums of residuals (Lin
et al., 1993). The resampling technique presented in this paper will be useful in evaluating
the distributions of the test statistics.
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Appendix

Proofs of asymptotic results
The proofs in this appendix are more technical and more rigorous than those of Jin et al.
(2003). We omit the kind of derivation given in the appendix of Jin et al. (2003) and focus on
new technical issues. We first state and prove a lemma that is used repeatedly in our proofs.

Lemma 1
Let Hn(t) and Wn(t) be two sequences of bounded processes. Suppose that Hn(t) is component-
wise monotone and converges in probability to H(t) uniformly in t and Wn(t) converges weakly
to a zero-mean process with continuous sample paths. Then for any continuously differentiable
function g,∫ ∞

−∞
[g{Hn(t)}−g{H(t)}] dWn(t)=op(1).

Proof of lemma 1
By the strong embedding arguments as used in Lin et al. (2000, p. 726), Hn and Wn can be
assumed to converge to their respective limits almost surely. One can then apply lemma 1 of
Lin et al. (2000) repeatedly and component-wise to obtain the desired approximation.

Proof of theorem 1
The classical strong law of large numbers for U statistics (Serfling, 1980, section 5.4) implies
that, under condition 1, Lk,G converges almost surely for each k. Note that Lk,G is a con-
vex function, so that the convergence is uniform in any compact region. By condition 2, the
limiting function is strictly convex at the true parameter value �k . Therefore, �̂k,G

a.s.−→�k .
Under conditions 1–3, we can apply the arguments of Ying (1993) to obtain

n1/2(�̂k,G −�k)=−A−1
k,Gn−1/2Uk,G(�k)+o(1+n1/2||�̂k,G −�k ||), a.s. (7)

Recall that

Uk,G(�)=
n∑

i =1

∫ ∞

−∞
S(0)

k (�; t){Xki −Xk(�; t)}dNki(�; t).

The simple equality

n∑
i =1

I{eki(�)≥ t}{Xki −Xk(�; t)}=0

implies that

Uk,G(�)=
n∑

i =1

∫ ∞

−∞
S(0)

k (�; t){Xki −Xk(�; t)}dMki(�; t), (8)

where the Mki(�; t) are defined in (1). It is well known that E{Mki(�k ; t)}=0. By the uniform
strong law of large numbers (Pollard, 1990, section 8), S(r)

k (�; t) a.s.−→ s(r)
k (�; t) uniformly in � and

t. It then follows from lemma 1 that

n−1/2Uk,G(�k)=n−1/2
n∑

i =1

uki, G +op(1), (9)

where
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uki, G =
∫ ∞

−∞
s(0)

k (�k ; t){Xki −xk(t)}dMki(�k ; t).

In view of (7) and (9), the convergence of n1/2(B̂G −B) stated in theorem 1 follows from the
multivariate central limit theorem.

Because of the way the random perturbation is introduced, the loss function L∗
k,G retains

the convexity of Lk,G . Thus, the above arguments for the consistency of �̂k,G can be used to

show that �̂
∗
k,G

a.s.−→�k .
Through algebraic manipulations, we can express (3) as

U∗
k,G(�)=

n∑
i =1

∫ ∞

−∞
S̃(0)

k (�; t){Xki −X
∗
k(�; t)}dNki(�; t)Zi , (10)

where

S̃(r)
k (�; t)=n−1

n∑
j =1

I{ekj(�)≥ t}Xr
kjZj (r =0, 1),

and

X
∗
k(�; t)= S̃(1)

k (�; t)/S̃(0)
k (�; t).

This is a functional of weighted empirical processes, just like Uk,G , but with the extra weights
Zi . Thus, the arguments for establishing the asymptotic linearity of Uk,G are applicable to
U∗

k,G under conditions 1–3. In particular, we can expand U∗
k,G(�̂

∗
k,G) at �̂k,G to obtain

n1/2(�̂
∗
k,G − �̂k,G)=−A−1

k,Gn−1/2U∗
k,G(�̂k,G)+o(1+n1/2||�̂∗

k,G − �̂k,G ||), a.s. (11)

Note that (7) and (11) have the same slope matrix Ak,G . This is because n−1Uk,G(�) and
n−1U∗

k,G(�) converge to the same limiting function as Zi are independent of the data with
mean 1.

As
n∑

i =1

I{eki(�)≥ t}Zi{Xki −X
∗
k(�; t)}=0,

we can rewrite (10) as

U∗
k,G(�)=

n∑
i =1

∫ ∞

−∞
S̃(0)

k (�; t){Xki −X
∗
k(�; t)}dMki(�; t)Zi . (12)

This result arises from the specific way in which the random weights Zi are introduced into
L∗

k,G(�), and does not hold under the weighting scheme of Jin et al. (2003). In fact, the latter

would not lead to a correct approximation. We shall show that S̃(0)
k and X

∗
k in (12) can be

replaced by S(0)
k and Xk . This part of the proof is much more delicate than its counterpart

in Jin et al. (2003).
Simple algebraic manipulations of (12) yield the following decomposition:

U∗
k,G(�̂k,G)=

n∑
i =1

∫ ∞

−∞
S(0)

k (�̂k,G ; t){Xki −Xk(�̂k,G ; t)}dMki(�̂k,G ; t)Zi

+
∫ ∞

−∞
{S̃(0)

k (�̂k,G ; t)−S(0)
k (�̂k,G ; t)}d

n∑
i =1

XkiMki(�̂k,G ; t)Zi

−
∫ ∞

−∞
{S̃(1)

k (�̂k,G ; t)−S(1)
k (�̂k,G ; t)}d

n∑
i =1

Mki(�̂k,G ; t)Zi .

(13)
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Let Fn be the 
-algebra generated by all potential data (Tki , Cki , Xki) (k =1, . . ., K ; i =
1, . . ., n). For random vectors Wn involving the Zis, we use the notation Wn = õ(dn) to de-
note the fact that Pr(‖d−1

n Wn‖> ε|Fn) a.s.−→0 for every ε > 0. Conditional on Fn, n1/2{S̃(r)
k (�; ·)−

S(r)
k (�; ·)} (r =0, 1) converge weakly, and

n−1
n∑

i =1

Mki(�̂k,G ; t)Zi →0

and

n−1
n∑

i =1

XkiMki(�̂k,G ; t)Zi →0

uniformly in t. It then follows from lemma 1, together with integration by parts that the
second and third terms on the right-hand side of (13) are both of order õ(n1/2). Clearly,

U∗
k,G(�̂k,G)=U∗

k,G(�̂k,G)−Uk,G(�̂k,G)+ õ(n1/2)

as �̂k,G is a root of Uk,G(�). By subtracting (8) evaluated at �= �̂k,G from the first term on
the right-hand side of (13), we have

U∗
k,G(�̂k,G)=

n∑
i =1

∫ ∞

−∞
S(0)

k (�̂k,G ; t){Xki −Xk(�̂k,G ; t)}dMki(�̂k,G ; t)(Zi −1)+ õ(n1/2). (14)

Conditional on Fn, the first term on the right-hand side of (14) is a sum of zero-mean random
vectors. Thus, the multivariate central limit theorem implies that the conditional distribution
of the random vector n−1/2{U∗′

1, G(�̂1, G), . . ., U∗′
K ,G(�̂K ,G)}′ given Fn converges almost surely to

a pK -variate normal random vector with mean zero and covariance matrix

{Ṽkl, G ; k, l =1, . . ., K},

where

Ṽkl, G = lim
n→∞

n−1
n∑

i =1

ũki, G ũ′
li, G ,

and

ũki, G =
∫ ∞

−∞
S(0)

k (�̂k,G ; t){Xki −Xk(�̂k,G ; t)}dMki(�̂k,G ; t), k =1, . . ., K ; i =1, . . ., n.

As S(r)
k (�; t) a.s.−→ s(r)

k (�; t) (r =0, 1) and �̂k,G
a.s.−→�k , we have Ṽkl, G

a.s.−→Vkl, G . It then follows from

(11) that the conditional distribution of n1/2(�̂
∗′

1, G − �̂
′
1, . . ., �̂

∗′

K ,G − �̂
′
K )′ given Fn converges al-

most surely to a zero-mean normal distribution with covariance matrix {A−1
k,GVkl,GA−1

l,G ; k,

l =1, . . ., K}, which is the limiting distribution of n1/2(�̂
′
1, G −�′

1, . . ., �̂
′
K ,G −�′

K )′.

Proof of theorem 2
The convex analysis arguments for establishing the consistency of �̂k,G and �̂

∗
k,G in the proof

of theorem 1 can be used repeatedly to show that both �̂k(m) and �̂
∗
k(m) are strongly consistent.

To derive the asymptotic distributions, we note that �̂k(m) and �̂
∗
k(m) are the roots of

Ũk,�k (�; �̂k(m−1))≡
n∑

i =1

∫ ∞

−∞
�k(�̂k(m−1); t + (�− �̂k(m−1))

′Xki)

×S(0)
k (�; t){Xki −Xk(�; t)}dNki(�; t),
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Ũ∗
k,�k

(�; �̂
∗
k(m−1))≡

n∑
i =1

∫ ∞

−∞
�k(�̂

∗
k(m−1); t + (�− �̂

∗
k(m−1))

′Xki)

× S̃(0)
k (�; t){Xki −X

∗
k(�; t)}dNki(�; t)Zi

respectively. Under condition 5,

Ũk,�k (�; �̂k(m−1))=
n∑

i =1

∫ ∞

−∞
�k(�̂k(m−1); t)S(0)

k (�; t){Xki −Xk(�; t)}dNki(�; t)

+
n∑

i =1

∫ ∞

−∞
�̇0k(t)S(0)

k (�; t){Xki −Xk(�; t)}dNki(�; t)

× (�− �̂k(m−1))
′Xki +o(n1/2 +n‖�− �̂k(m−1)‖)

(15)

Ũ∗
k,�k

(�; �̂
∗
k(m−1))=

n∑
i =1

∫ ∞

−∞
�k(�̂

∗
k(m−1); t)S̃(0)

k (�; t){Xki −X
∗
k(�; t)}dNki(�; t)Zi

+
n∑

i =1

∫ ∞

−∞
�̇0k(t)S̃(0)

k (�; t){Xki −X
∗
k(�; t)}dNki(�; t)

×Zi(�− �̂
∗
k(m−1))

′Xki +o(n1/2 +n‖�− �̂
∗
k(m−1)‖).

(16)

Given (7) and (15), we can extend the arguments for establishing (11) of Jin et al. (2003)
to show that the following result holds under conditions 1–5,

n1/2(�̂k(m) −�k)=−n−1/2[I −{(Ak,�k +Dk,�k )−1Dk,�k }m]A−1
k,�k

Uk,�k (�k)

−n−1/2{(Ak,�k +Dk,�k )−1Dk,�k }mA−1
k,GUk,G(�k)

+o

(
1+n1/2

m∑
j =0

||�̂k(j) −�k ||
)

.

Note that condition 4 is necessary for the above equation to be meaningful. By the arguments
for establishing (9) in the proof of theorem 1, we have

n−1/2Uk,�k (�k)=n−1/2
n∑

i =1

uki,�k +op(1),

where the uki,�k are defined in (2). Thus,

n1/2(�̂k(m) −�k)=−n−1/2
n∑

i =1

(
[I −{(Ak,�k +Dk,�k )−1Dk,�k }m]A−1

k,�k
uki,�k

+{(Ak,�k +Dk,�k )−1Dk,�k }mA−1
k,Guki, G

)
+o
(

1+n1/2
m∑

j =0

||�̂k(j) −�k ||
)

.

(17)

In analogy to (12) of Jin et al. (2003), the following result follows from (16)

Ũ∗
k,�k

(�̂
∗
k(m); �̂

∗
k(m−1))=

n∑
i =1

∫ ∞

−∞
�k(�̂k(m−1); t +(�̂k(m) − �̂k(m−1))

′Xki)

× S̃(0)
k (�̂k(m); t){Xki −X

∗
k(�̂k(m); t)}dNki(�̂k(m); t)Zi

+n(Ak,�k +Dk,�k )(�̂
∗
k(m) − �̂k(m))

−nDk,�k (�̂
∗
k(m−1) − �̂k(m−1))+d∗

k ,

(18)

where
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d∗
k = õ

(
n1/2 +n

m∑
j =0

{||�̂k(j) −�k ||+ ||�̂∗
k(j) −�k ||}

)
.

Under condition 5, up to an asymptotically negligible term, the first term on the right-hand
side of (18) can be written as∑∫

�k(�̂k(m−1); t)S̃(0)
k (�̂k(m); t){Xki −X

∗
k(�̂k(m); t)}dNki(�̂k(m); t)Zi

+nDk,�k (�̂k(m) − �̂k(m−1)),

or ∑∫
�k(�̂k(m−1); t)S̃(0)

k (�̂k(m); t){Xki −X
∗
k(�̂k(m); t)}dMki(�̂k(m); t)Zi

+nDk,�k (�̂k(m) − �̂k(m−1)),

which, up to order õ(n1/2), is equivalent to∑∫
�k(�̂k(m−1); t)S(0)

k (�̂k(m); t){Xki −Xk(�̂k(m); t)}dMki(�̂k(m); t)Zi

+nDk,�k (�̂k(m) − �̂k(m−1)).

The equivalence between the last two expressions follows from a decomposition similar to
(13). On the other hand, Ũk,�k (�̂k(m); �̂k(m−1)) can be expressed as∑∫

�k(�̂k(m−1); t)S(0)
k (�̂k(m); t){Xki −Xk(�̂k(m); t)}dMki(�̂k(m); t)

+nDk,�k (�̂k(m) − �̂k(m−1))

plus an asymptotically negligible term. Thus, the subtraction of Ũk,�k (�̂k(m); �̂k(m−1)) from the
right-hand side of (18) yields

Ũ∗
k,�k

(�̂
∗
k(m); �̂

∗
k(m−1))=

n∑
i =1

ũki,�k (Zi −1)+n(Ak,�k +Dk,�k )(�̂
∗
k(m) − �̂k(m))

−nDk,�k (�̂
∗
k(m−1) − �̂k(m−1))+d∗

k ,

where

ũki,�k
=
∫ ∞

−∞
�k(�̂k(m−1); t)S(0)

k (�̂k(m); t){Xki −Xk(�̂k(m); t)}dMki(�̂k(m); t).

Therefore,

n1/2(�̂
∗
k(m) − �̂k(m))=−n−1/2

n∑
i =1

(
[I −{(Ak,�k +Dk,�k )−1Dk,�k }m]A−1

k,�k
ũki,�k

+{(Ak,�k +Dk,�k )−1Dk,�k }mA−1
k,G ũki, G

)
(Zi −1)+n−1/2 d∗

k .

(19)

By comparing (17) and (19), we conclude that the conditional distribution of n1/2(�̂
∗′

1(m) −
�̂

′
1(m), . . ., �̂

∗′

K (m) − �̂
′
K (m))

′ given Fn converges almost surely to the limiting distribution of

n1/2(�̂
′
1(m) −�′

1, . . ., �̂
′
K (m) −�′

K )′.

Proof of theorem 3
As in the proof of theorem 1, the convexity of the loss functions, LG and L∗

G , together with
the non-singularity of the second derivative of their common limit under condition 8, implies
that both �̂G and �̂

∗
G are strongly consistent.
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We can express (5) as

U�(�)=
n∑

i =1

∫ ∞

0
�(�; t){Xi −X(�; t)}dMi(�; t).

Under model (4), E{Mi(�0; t)}=0 (i =1, . . ., n). It follows from the functional central limit
theorem (Pollard, 1990, p. 53) that n−1/2

∑n
i =1 XiMi(�0; ·) and n−1/2

∑n
i =1 Mi(�0; ·) converge to

zero-mean Gaussian processes. By the uniform strong law of large numbers, S(r)(�; t) a.s.−→ s(r)

(�; t) (r =0, 1) uniformly in � and t. It then follows from lemma 1 that n−1/2U�(�0)=n−1/2∑n
i =1 ui,� +op(1). In view of this equation, the multivariate central limit theorem implies that

n−1/2UG(�0) converges weakly to a zero-mean normal random vector with covariance matrix
VG .

It can be shown through algebraic manipulations that the derivative of L∗
G(�) takes the

form

U∗
G(�)=

n∑
i =1

∫ ∞

0
S̃(0)(�; t){Xi −X

∗
(�; t)}dMi(�; t)Zi ,

where X
∗
(�; t)= S̃(1)(�; t)/S̃(0)(�; t), and S̃(r)(�; t)=n−1

∑n
j =1 I (Cj e−�′Xj ≥ t)Xr

j Zj (r =0, 1). Let
Fn denote the 
-algebra generated by (Ci , Tki , Xi) (Tki ≤ Ci ; i =1, . . ., n). By the arguments
leading to (14),

U∗
G(�̂G)=

n∑
i =1

∫ ∞

0
S(0)(�̂G ; t){Xi −X(�̂G ; t)}dMi(�̂G ; t)(Zi −1)+ õ(n1/2). (20)

Thus, the multivariate central limit theorem implies that the conditional distribution of
n−1/2U∗

G(�̂G) converges almost surely to a zero-mean normal random vector with covariance
matrix VG .

As both UG(�) and U∗
G(�) are functionals of empirical processes, we can establish under

conditions 6–8 the asymptotic linearities for UG(�) and U∗
G(�) similar to (7) and (11). As

E(Zi)=1 (i =1, . . ., n), the slope matrices in the two expansions are identical. It follows that
the conditional distribution of n1/2(�̂

∗
G − �̂G) given Fn converges almost surely to the limiting

distribution of n1/2(�̂G −�0).

Proof of theorem 4
The strong consistency of �̂(m) and �̂

∗
(m) again follow from the convexity arguments. Note that

�̂(m) and �̂
∗
(m) are the roots of

Ũ�(�; �̂(m−1))≡
n∑

i =1

∫ ∞

0
�(�̂(m−1); t e(�−�̂(m−1))

′Xi )S(0)(�; t){Xi −X(�; t)}dNi(�; t),

Ũ∗
�(�; �̂

∗
(m−1))≡

n∑
i =1

∫ ∞

0
�(�̂

∗
(m−1); t e(�−�̂

∗
(m−1))

′Xi )S̃(0)(�; t){Xi −X
∗
(�; t)}dNi(�; t)Zi

respectively. Under condition 10, we can take the expansion of � with respect to its second
argument at t. In doing so, the arguments for establishing (17) and (19), together with
theorem 2 of Lin et al. (1998), can be used to show that

n1/2(�̂(m) −�0)=−n−1/2
n∑

i =1

(
[I −{(A� +D�)−1D�}m]A−1

� ui,�

+{(A� +D�)−1D�}mA−1
G ui,G

)
+o
(

1+n1/2
m∑

j =0

||�̂(j) −�0||
)

,
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n1/2(�̂
∗
(m) − �̂(m))=−n−1/2

n∑
i =1

(
[I −{(A� +D�)−1D�}m]A−1

� ũi,�

+{(A� +D�)−1D�}mA−1
G ũi,G

)
(Zi −1)

+ õ
(

1+n1/2
m∑

j =0

{||�̂(j) −�0||+ ||�̂∗
(j)−�0||}

)
,

where ũi,� =∫ ∞
0 �(�̂(m−1); t)S(0)(�̂(m); t){Xi − X(�̂(m); t)}dMi(�̂(m); t). Thus, the conditional dis-

tribution of n1/2(�̂
∗
(m) − �̂(m)) given Fn converges almost surely to the limiting distribution of

n1/2(�̂(m) −�0).

Proof of theorem 5
Under conditions 11–13, the strong consistency of �̂G and �̂

∗
G follows from the same argu-

ments as in the proofs of theorem 1. We may express (6) as

U�(�)=
n∑

i =1

Ki∑
k =1

∫ ∞

−∞
�(�; t){Xik −X(�; t)}dMik(�; t).

It is simple to show that the Mik(�0; ·) are zero-mean processes. The uniform law of large
numbers, together with lemma 1, entails that n−1/2U�(�0)=∑n

i =1

∑Ki
k =1 uik,� +op(1). Con-

sequently, n−1/2UG(�0) is asymptotically zero-mean normal with covariance matrix VG .
The derivative of L∗

G(�) can be written as

U∗
G(�)=

n∑
i =1

Ki∑
k =1

∫ ∞

−∞
S̃(0)(�; t){Xik −X

∗
(�; t)}dMik(�; t)Zi ,

where S̃(r)(�; t)=n−1
∑n

i =1

∑Ki
k =1 I{eik(�)≥ t}Xr

ikZi (r =0, 1), and X
∗
(�; t)= S̃(1)(�; t)/S̃(0)(�; t).

Let Fn denote the 
-algebra generated by (Tik , Cik , Xik) (i =1, . . ., n; k =1, . . ., Ki). Analogous
to (14) and (20),

U∗
G(�̂G)=

n∑
i =1

Ki∑
k =1

S(0)(�̂G ; t){Xik −X
∗
(�̂G ; t)}dMik(�̂G ; t)(Zi −1)+ õ(n1/2).

It then follows from the multivariate central limit theorem that the conditional distribution
of n−1/2U∗

G(�̂G) given Fn converges almost surely to a zero-mean normal random vector with
covariance matrix VG . Because n−1UG(�) and n−1U∗

G(�) have the same asymptotic slope
matrix, the conditional distribution of n1/2(�̂

∗
G − �̂G) given Fn converges almost surely to

the asymptotic distribution of n1/2(�̂G −�0).

Proof of theorem 6
The strong consistency of �̂(m) and �̂

∗
(m) follows from the proof of theorem 2. The following

two equations, which are analogous to (17) and (19), hold under conditions 11–15,

n1/2(�̂(m) −�0)=−n−1/2
n∑

i =1

Ki∑
k =1

(
[I−{(A� +D�)−1D�}m]A−1

� uik,�

+{(A� +D�)−1D�}mA−1
G uik,G

)
+o
(

1+n1/2
m∑

j =0

||�̂(j) −�0||
)

,

 Board of the Foundation of the Scandinavian Journal of Statistics 2005.



Scand J Statist 33 Multivariate rank regression 23

n1/2(�̂
∗
(m) − �̂(m))=−n−1/2

n∑
i =1

Ki∑
k =1

(
[I−{(A� +D�)−1D�}m]A−1

� ũik,�

+{(A� +D�)−1D�}mA−1
G ũik,G

)
(Zi −1)

+ õ
(

1+n1/2
m∑

j =0

{||�̂(j) −�0||+ ||�̂∗
(j)−�0||}

)
,

where ũik,� =∫ ∞
−∞ �(�̂(m−1); t)S(0)(�̂(m); t){Xik − X(�̂(m); t)}dMik(�̂(m); t). It follows that the

conditional distribution of n1/2(�̂
∗
(m) − �̂(m)) given Fn converges almost surely to the limiting

distribution of n1/2(�̂(m) −�0).
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