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Abstract

In this paper, we present multistage stochastic mixed-integer programs for optimizing gas

contract and scheduling maintenance for a gas-fueled thermal plant in a hydro dominated power

system. We consider the specifications of the power generation obligation, the gas supply con-

tract with take-or-pay and make-up clauses, the trading in the spot electricity market, and the

maintenance scheduling issue. Since any decision made in one stage impact the future stages,

and the future spot electricity price is the major unknown parameter, the problem is multistage

and stochastic. We use a Two-reservoir Model to model the gas contract specifications, and the

maintenance scheduling problem is then included to formulate the multistage SMIP computa-

tional model. We introduce solution methods including the two-stage simulation method and

the multistage exact method to solve the problem. The two-stage simulation method concerns

stochasticity in the second stage and uses Monte Carlo method to sample future realizations,

which provides an estimation of the objective value. The L-shaped decomposition method, which

is an important kind of multistage exact methods that apply Benders decomposition, can give

optimal policies in each stage for the LP relaxation of the original model. We construct scenario

trees of the stochastic parameter and conduct computational tests on our problem specifications

for the various solution methods. The computational results and some comparisons and findings

are presented.
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mixed-integer programming
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1 Introduction

In countries with abundant water resource such as Brazil, Chile, Columbia and Iceland, hydropower

is the main source of power generation and hydro based power systems are adopted (Hreinsson,

2006; Wheeler). Hydro dominated systems have the characteristics that the spot electricity price

is mainly determined by hydro plants and the spot price is variable mainly due to the volatility of

hydrological conditions. During wet seasons the system has excess of hydro energy, which allows the

power demand to be met using little thermal resource and results in very low spot prices. However,

when dry seasons come, hydro plants alone are unable to supply the energy demand, thus the spot

prices increase abruptly. The thermal plants will make supplements for the power system in such

conditions (Chabar, 2005; Chabar et al., 2006).

A Regional Transmission Organization (RTO), or an Independent System Operator (ISO), is

responsible for coordinating, controlling and monitoring the operation of the system. In order

to meet the demand of the hydro based system with lowest possible operating cost, the RTO or

ISO carries out a least-cost hydro-thermal power generation portfolio based on the operating data,

such as the operational cost, the capacity and the must-run generation, of all participants of the

system (Chabar et al., 2006). The thermal plants are obliged to supply certain amounts of electricity

in each period according to the RTO’s or ISO’s arrangement.

For a gas-fueled thermal plant in the hydro based power system to meet its contract obligation, it

is cost effective to generate more electricity when spot prices are high so that it may sell excess power

to the spot market; while the thermal plant tends to generate less electricity and buy electricity

from the spot market when spot prices are low. Such operational flexibility is an attractive feature

for thermal plants in the hydro based systems, but is contradictory to the needs of gas suppliers.

As a consequence, gas contracts, including take-or-pay (ToP) clauses and make-up clauses, between

gas suppliers and gas-fueled thermal plants are signed which restrict the plants’ purchase flexibility

and thus reduce the volatility of the gas suppliers’ revenues. The ToP clause requires that gas has

to be paid whether taken or not, which specifies an obligation for the supplier to make available

defined volumes of gas and for the buyer to purchase a minimum amount of gas independently of

its consumption (Creti and Villeneuve, 2004). The gas purchased but not consumed in a period is

virtually “stored” for a certain length of time during which at any time the gas can be recovered

by the plant. This is the make-up clause (Chabar et al., 2006). The maintenance scheduling is

another important issue for the plant to consider. This is not only because any maintenance has

an execution cost, but also due to the impact on normal operation, thus the capacity in that
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period, of the maintenance. The scheduling of maintenance is made regarding both the maximal

length of time without maintenance and the average maintenance duration. Therefore the thermal

plant should develop an operation strategy taking into account jointly the uncertain spot market

electricity price, the contract obligation to the RTO or ISO, the gas supply contract with the gas

suppliers, and the maintenance scheduling, which becomes a complex problem.

The objective of this paper is to develop a model, which captures the aforementioned aspects

(the power generation obligation, the gas contract with take-or-pay and make-up clauses, the op-

portunity of trading in the spot market, and the maintenance scheduling issue), and the solution

methods, for a gas-fueled thermal plant to formulate operational strategies that minimize the over-

all (expected) cost. Our work relates most closely to that of Chabar et al. (2006), who make

a comprehensive investigation of the Brazilian power system and present a stochastic multistage

model applied on hydro-thermal dispatch problems, and the Stochastic Dual Dynamic Program-

ming (SDDP) (Pereira and Pinto, 1991) is used to find optimal solutions of the problem. As Chi-

ralaksanakul (2003) stated, the SDDP is more appropriated for solving multistage problems with

interstage independent stochastic process. However, the spot market price in reality is interstage

dependent regarding the natural evolution of hydrological conditions. Hence it is more appropriate

to apply methods for interstage dependent problems introduced by Chiralaksanakul (2003). In

this paper we model the problem as a multistage stochastic mixed-integer programming (SMIP)

problem, and explore several solution methods. The two-stage simulation method concerns stochas-

ticity in the second stage and uses Monte Carlo method to sample future realizations, it provides

an estimation of the objective value. We also solve the LP relaxation with Multistage L-shaped

Method, one of the multistage exact methods, which is computationally more demanding but gives

optimal policies in each stage and each scenario. We use Benders decomposition in both the two-

stage simulation method and the exact solution method and compare the results with those of the

deterministic equivalent problems. The results provide an overview of the performance of solution

methods including the direct solution of the original multistage SMIP problem, the two-stage simu-

lation with and without Benders decomposition to the LP relaxation, and the multistage L-shaped

method to the LP relaxation.

The remainder of this paper is organized as follows. Section 2 describes the general aspects

of the problem including the power supply obligation, the gas supply contract, the maintenance

scheduling, and the characteristics of decision under uncertainty. Section 3 presents the computa-

tional model and detailed formulation of the problem. Solution methods are introduced in Section 4.

Section 5 presents the computational results of different solution methods and makes comparisons
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considering several evaluation factors, such as the CPU runtime, optimality gap, and the objective

value. Section 6 concludes the paper.

2 Problem Description

In this section we present the general aspects of the problem and introduce the notation for the

following explanation.

2.1 Power Supply Obligation and Gas Contract

In each month t, a gas-fueled thermal plant is obliged to supply a certain amount of electricity to

the market coordinator (may be RTO or ISO), which is measured by the volume P of gas used

to generate that amount of electricity. The electricity selling price is ht per equivalent unit gas.

There are two ways for the plant to fulfill this contract. In the first or a normal way, the plant

purchases gas from gas suppliers and then generates electricity using the gas. In this way, there is a

gas supply agreement, i.e., the gas contract, restricting the plant’s purchase. Specifically, the plant

can purchase as much as Q amount of gas monthly, with a price of ct per unit gas. Considering

the take-or-pay (ToP) clause, the plant is obliged to purchase (but not necessarily to consume)

X% of the contract amount Q. At the end of the year, the plant should have purchased at least

Y% (Y ≥ X) of the annual contract amount, 12Q. In each month, the gas already purchased but

not consumed is “virtually” stored and can be recovered by the plant later at any time in the year

without additional payment, which is called the make-up clause. However, any “virtually” stored

gas that has not been recovered by the end of the year will be lost.

In the second way, the plant directly purchases electricity from the spot market at a price of qt

per equivalent unit gas. Then the amount of generated electricity and the purchased spot electricity

should sum up to the contract amount, P . On the other hand, it is also permissible for the plant

to generate more electricity than the contract amount. If this is the case, we assume that the plant

can sell all excess electricity to the spot market at the spot price qt, earning an additional profit.

Then the difference between the amount of generated electricity and the sold electricity is equal to

the contract amount, P .
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2.2 Maintenance Scheduling

Maintenance scheduling is another important issue for the plant to consider. According to Balevic

et al. (2004), maintenance inspection types may be broadly classified as standby, running and

disassembly inspections. The standby inspection is performed during off-peak periods when the unit

is not operating, and the running inspections is performed by observing key operating parameters

while the turbine is still running. Both of them do not interfere with the normal operation. However,

the disassembly inspection requires opening the turbine of internal components, resulting in the

shutdown of certain parts of the machine, has much higher execution cost and substantial impact

on the operation of the plant. There are three types of disassembly maintenance inspections:

combustion inspection, hot gas path inspection, and major inspection. Each maintenance inspection

has its own required maintenance frequency, average maintenance duration and maintenance cost.

Table 1 demonstrates a set of maintenance parameters from Chabar et al. (2006).

Maintenance Frequency (hours) Avg. Duration (days) Cost(MMR$)

Combustion 8,000 7 3.5

Hot gas path 24,000 14 10

Major 48,000 21 20

Table 1: Parameters of maintenance inspections

2.3 Decision under Uncertainty

As mentioned in the introduction part, the plant makes decision mainly depending on the spot

electricity price evolution which is stochastic. When spot price is low, the plant tends to take

less gas from the gas supplier and leave the paid but not consumed gas for future use. It will

instead purchase electricity from the spot market to meet the contract obligation, which is more

cost effective than generating itself. In addition, the plant prefers to schedule maintenance in such

conditions since the operation load is not heavy. When spot price is high, the plant prefers to take

more gas from the gas supplier, maybe by partly recovering the previously stored gas, to generate

greater amount of electricity than the contract obligation and sell the excess in the spot market.

The plant will tend not to schedule maintenance in such periods due to the heavy operation load.

Because the spot price is mainly affected by the hydro plants as a consequence of the hydrological

conditions, it is known only with conditional probability from the past records. Therefore the
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problem is stochastic and the thermal plant has to make decisions under uncertainty.

The objective of the plant is to minimize its net cost over a finite number of months t = 1, . . . , T .

In each month the plant has to determine the amount of gas to purchase from the gas supplier

(which, as mentioned before, should be between X%Q and Q), the amount of gas actually used

for generating electricity, and whether to schedule maintenance for each kind of the maintenance

inspections. The decision should result in a minimal expected cost over the future months in order

to achieve the objective.

3 Computational Model

In this section we present the computational model and detailed formulation of the problem. We

first develop a multistage deterministic mixed-integer programming (MIP) problem in which all

parameters are known at the first stage. The purchase and storage clauses are modeled with a

Two-reservoir Model which captures the characteristics of the gas contract and the trading in the

spot market. Then we include the maintenance scheduling constraints to formulate the multistage

MIP problem. Finally we include stochasticity and present the uncertainty using a rooted scenario

tree over the decision horizon and formulate the multistage SMIP problem and its deterministic

equivalent.

3.1 A Two-reservoir Model

As Figure 1 shows, we use reservoir A to store all monthly purchased gas that is not consumed

and reservoir B to store the difference between the annual ToP amount and the sum of all monthly

ToPs of a year. At the beginning of January in each year, (Y% − X%)(12Q) amount of gas is

pushed into reservoir B, while at the end of December in each year, all remaining gas in reservoir

B is pushed into reservoir A and all gas in reservoir A is discarded. Variables at and bt denote gas

levels in reservoir A and reservoir B at the beginning of month t, respectively.

In month t, mt is the amount of gas directly purchased from the gas supplier and ft is the

amount of gas transferred from reservoir B to reservoir A, both of which are at the contract gas

price ct. Then gt amount of gas is used by the plant for generating electricity. We temporarily

ignore the capacity constraint now, which will be considered in the maintenance scheduling problem

presented later. Since the plant is assumed to operate in every month, the fixed operational cost

V is incurred in every stage. The variable operational cost is v for each unit of gas used. Hence

the total operational cost in month t is V + vgt.
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Figure 1: A Two-reservoir Model

The marketing department then buys electricity from or sells electricity to spot market at the

price of qt per unit of equivalent gas, based on the amount of contract electricity and the amount

of electricity generated from purchased gas. The contract electricity is sold at the price of ht per

unit of equivalent gas. The aforementioned notation is restated below.

Parameters

Q : monthly contract gas volume

X : monthly ToP percentage, i.e. ToP = X%Q

Y : annual ToP percentage, i.e. Annual ToP = Y%(12Q)

P : monthly contract electricity supply, in equivalent gas volume

V : monthly fixed operational cost

ct : contract gas price in month t

ht : electricity price worth per equivalent unit gas in month t
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qt : spot electricity price worth per equivalent unit gas in month t

v : variable operational cost per unit of gas used

Variables

mt : amount of gas directly purchased from gas producer for reservoir A in month t

ft : amount of gas transfered from reservoir B to A in month t

gt : amount of gas used by the power plant for generating electricity in month t

at : gas level in reservoir A at the beginning of month t

bt : gas level in reservoir B at the beginning of month t

The gas portfolio management over months t = 1, . . . , T is given as

min
T∑
t=1

ct(mt + ft) + vgt + V − htP − qt(gt − P ) (1a)

s.t. at =

at−1 +mt−1 + ft−1 − gt−1 t 6= 1 + 12k

0 t = 1 + 12k
k ∈ N, t ∈ {1, . . . , T} (1b)

bt =


(Y%−X%)(12Q) t = 1 + 12k

bt−1 − ft−1 t 6= 1 + 12k

ft t = 12 + 12k

k ∈ N, t ∈ {1, . . . , T} (1c)

X%Q ≤ mt + ft ≤ Q t = 1, . . . , T (1d)

at, bt, gt,mt, ft ≥ 0 t = 1, . . . , T, (1e)

where (1a) is to minimize net cost over horizon T . Specifically, ct(mt+ft) is the cost of all purchased

gas, vgt+V is the operational cost, htP is the revenue obtained from the contract electricity supply,

and qt(gt − P ) is the revenue from selling electricity to spot market when gt ≥ P or the cost of

buying electricity from spot market when gt ≤ P . Equation (1b) and (1c) represent the balance of

gas in reservoir A and B during any month, notice that we discard all stored gas in A at the end

of the year. Constraint (1d) restricts the monthly purchased gas amount to be at least X%Q and

at most M in any month. Finally (1e) is the sign constraint.
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3.2 Maintenance Scheduling Problem

We now consider the maintenance scheduling problem, which involves three types of maintenance

inspections. For each maintenance i, the plant can work no longer than ∆i before it must undergo

the corresponding maintenance, and each maintenance takes an average duration of σi (which is

shorter than a month) and cost ui. Define rit as the remaining time before the next required

maintenance at the beginning of month t for maintenance i, and δi is the length of usable time in

each month for maintenance i. When the plant is operating normally, it consumes C amount of gas

per unit time, and it then has to determine when to schedule a maintenance for each maintenance

inspection. We use a binary variable zit to denote the decision of performing maintenance, such that

zit = 1 if the plant schedule maintenance during month t for maintenance i, and zit = 0 otherwise.

The aforementioned notation is restated below.

Parameters

∆i : maximal length of time without maintenance, i.e., the frequency, for maintenance i

δi : monthly length of usable time for maintenance i

σi : average maintenance duration for maintenance i

ui : maintenance cost for maintenance i

C : gas consumption per unit of operating time

Variables

rit : remaining hours before next required maintenance at the beginning of month t for mainte-

nance i

zit : binary variable denoting a decision of performing maintenance in month t for maintenance i

We have two preliminary specifications for modeling the maintenance constraints. First we

assume that for any type of maintenance, the length of its monthly usable time is longer than its

average maintenance duration and shorter than its maximal length of time without maintenance,

i.e., σi ≤ δi ≤ ∆i. Second, to simplify our modeling without violating the general condition, we

pay no attention to the exact scheduling of a maintenance within a month, which means that if

a maintenance is performed in a month, the remaining time before next required maintenance at
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the beginning of the next month is always set to the maximal length of non-maintenance time –

whenever this maintenance is actually performed within this month.

The following constraints describe the feasible region of the maintenance scheduling problem.

rit+1 ≤ rit − δi + (∆i + δi)zit ∀i = 1, 2, 3, t = 1, . . . , T (2a)

0 ≤ rit ≤ ∆i ∀i = 1, 2, 3, t = 1, . . . , T (2b)

zit ≥
δi − rit

∆i
∀i = 1, 2, 3, t = 1, . . . , T (2c)

gt ≤ C(δi − σizit) ∀i = 1, 2, 3, t = 1, . . . , T (2d)

zit ∈ {0, 1} ∀i = 1, 2, 3, t = 1, . . . , T, (2e)

where constraints (2a) and (2b) derive the remaining non-maintenance time. If maintenance is

scheduled in month t for maintenance i, i.e., zit = 1, the remaining non-maintenance time for the

next month is bounded by the maximal length of non-maintenance time ∆i; while if there is no

maintenance performed in month t for maintenance i, the remaining non-maintenance time for the

next month will be that for this month less the usable time in this month. Inequality (2c) forces zit

to be positive, i.e., to schedule a maintenance in month t for maintenance i, when the usable time

for maintenance i in one month is less than its remaining non-maintenance time at the beginning

of month t, which is obvious. Constraint (2d) illustrates the effect of a scheduled maintenance on

the electricity generation. For each cycle, if no maintenance is scheduled in month t, the capacity

of the plant, which is reflected by the amount of gas that can be used for generating electricity,

is bounded by Cδi. But if maintenance is performed, the capacity for directly generating gas is

reduced considering the maintenance period. Finally constraint (2e) makes zit a binary decision

variable.

Hence, the overall multistage deterministic MIP problem can be formulated as

min
T∑
t=1

{ct(mt + ft) + vgt + V − htP − qt(gt − P ) +
∑

i=1,2,3

uizit} (3)

s.t. (1b)− (1e), (2a)− (2e).

3.3 The Multistage SMIP Model

In the previous subsections we assume all parameters to be known at the beginning of the de-

cision horizon and formulate the deterministic model. In reality, the contract gas price ct, the

contract electricity price ht and the spot electricity price qt are unknown until the beginning of
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month t. For a T -stage stochastic problem, the stochastic parameters are given by a discrete time

stochastic process {ξ̃t}Tt=1 defined on a finite probability space (Ξ,F ,P), and a state in stage t is

a realization of the random parameters (ct(ξt), ht(ξt), qt(ξt)) corresponding to an elementary atom

ξt ∈ Ξ, ∀t = 1, . . . , T . The sequence of decisions, {xt}Tt=1, is made under uncertainty, where

xt = (mt, ft, gt, at, bt, r
i
t, z

i
t), ∀i = 1, 2, 3, t = 1, . . . , T .

We use a superscript t on an entity to denote its history through stage t, such that ξt =

(ξ1, . . . , ξt) and xt = (x1, . . . ,xt). Realizations of {ξ̃t}Tt=1 is described by a finite scenario tree, i.e.,

a tree arising from {ξ̃t}Tt=1 whose supports Ξt, ∀t = 1, . . . , T are finite, such that the realizations

of ξ̃t can be enumerated as ξt,1, . . . , ξt,nt , where nt is the number of nodes at stage t. An example

three-stage scenario tree is shown in Figure 2, and the corresponding notation is given by Table 2.

The scenario tree at each stage consists of a set of nodes. We use ξjt to denote node j in stage t

and use ξt,j to denote the history through node ξjt . The scenario tree has a total number of nT leaf

nodes, one for each scenario ξT,j , j = 1, . . . , nT . For a particular node j in stage t < T with history

ξt,j , we denote n(t, j) as the number of descendant nodes of node j in stage t+ 1. The descendant

node ξkt+1 corresponds to the realization ξt+1,k, and we use Dj
t to represent the descendant index

set of k, thus |Dj
t | = n(t, j). The ancestor of ξjt is denoted by ξ

a(j)
t−1 , where a(j) is an integer between

1 and nt−1, hence a(k) = j, ∀k ∈ Dj
t .

Figure 2: An example of a three-stage scenario tree

At the beginning of each month t, the information for that month, ξt, becomes available, and

decision xt is made with the knowledge of the past decisions xt−1 and of the realized random vectors

ξt, such that the conditional expected cost, given the history ξt, is minimized. The multistage SMIP
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R A B C D E F G

ξjt ξ11 ξ12 ξ22 ξ13 ξ23 ξ33 ξ43 ξ53

n(t, j) 2 2 3 0 0 0 0 0

Dj
t {1,2} {1,2} {3,4,5} ∅ ∅ ∅ ∅ ∅

a(j) – 1 1 1 1 2 2 2

Table 2: A notation for the scenario tree in Figure 2

model is given by the following recourse model:

min
x1

c1(ξ1)x1 + Eξ̃2|ξ1 [α1(x1, ξ̃2)] (4a)

s.t. A1x1 ≥ b1 (4b)

x1 ∈ X, (4c)

where for t = 2, . . . , T ,

αt−1(xt−1, ξt) = min
xt

ct(ξt)xt + Eξ̃t+1|ξt [αt(xt, ξ̃t+1)] (4d)

s.t. Atxt ≥ bt −Btxt−1 (4e)

xt ∈ X, (4f)

and αT = 0.

Here we assume that ξ1 is known at stage t = 1 and only ct is dependent of the uncertain

data since the stochastic price parameters only exist in the coefficients of the objective functions.

We denote Eξ̃t+1|ξt as the expectation with respect to the distribution of ξ̃t+1 conditioned on the

observation of ξt. For each stage t and realization of ξt, we suppose that At,Bt, ct, and bt are

rational matrices and vectors of conformable dimensions. The set X denotes restrictions that

require some of the decision variables, i.e., the maintenance scheduling variables, to be binary.

The above model is formulated from the objective function (3) and constraints (1b)-(1e), (2a)-

(2e). Specifically,

ct(ξt)xt = ct(mt + ft) + vgt + V − htP − qt(gt − P ) +
∑

i=1,2,3

uizit, (5)

and constraint (4b) or (4e) has the following set of constraints (note that the equality constraints
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are not presented as two corresponding “≥” inequalities here, which does not affect our analysis):

mt + ft ≥ X%Q ∀t = 1, . . . , T (6a)

−mt − ft ≥ −Q ∀t = 1, . . . , T (6b)

at +mt + ft − gt ≥ 0 ∀t = 1, . . . , T (6c)

bt − ft ≥ 0 ∀t = 1, . . . , T (6d)

− rit ≥ −∆i ∀t = 1, . . . , T, i = 1, 2, 3 (6e)

∆izit + rit ≥ δi ∀t = 1, . . . , T, i = 1, 2, 3 (6f)

− Cσizit − gt ≥ −Cδi ∀t = 1, . . . , T, i = 1, 2, 3 (6g)

− rit ≥ δi − rit−1 − (∆i + δi)zit−1 ∀t = 2, . . . , T, i = 1, 2, 3 (6h)

at = 0 ∀t = 1, 13, 25, . . . (6i)

bt = (Y%−X%)(12Q) ∀t = 1, 13, 25, . . . (6j)

at = at−1 +mt−1 + ft−1 − gt−1 ∀t 6= 1, 13, 25, . . . (6k)

bt = bt−1 − ft−1 ∀t 6= 1, 13, 25, . . . (6l)

bt − ft = 0 ∀t = 12, 24, 36, . . . , (6m)

and the domain of the decision variables (4c) and (4f) are

at, bt, gt,mt, ft, r
i
t ≥ 0 ∀t = 1, . . . , T, i = 1, 2, 3 (6n)

zit ∈ {0, 1} ∀t = 1, . . . , T, i = 1, 2, 3. (6o)

With the definition of the scenario tree, equations (4) can be restated by replacing the expec-

tation operators with summations:

min
x1

c1(ξ1)x1 +

n2∑
j=1

p
j|1
2 α1(x1, ξ

j
2) (7a)

s.t. A1x1 ≥ b1 (7b)

x1 ∈ X, (7c)

where for all k ∈ Dj
t , j = 1, . . . , nt, t = 2, . . . , T ,

αt−1(xt−1, ξ
k
t ) = min

xt

ct(ξ
k
t )xt +

∑
l∈Dk

t

p
l|k
t+1αt(xt, ξ

l
t+1) (7d)

s.t. Atxt ≥ bt −Btxt−1 (7e)

xt ∈ X, (7f)
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and αT = 0. The conditional probability mass function p
k|j
t is defined as p

k|j
t = P (ξ̃t = ξkt |ξ̃t−1 =

ξt−1,j), k ∈ Dj
t , j = 1, . . . , nt, t = 2, . . . , T , and p

k|j
T+1 = 0, ∀j, k. This shows that the problem has

interstage dependency.

The multistage SMIP problem can also be stated as a large-scale MIP, i.e., its deterministic

equivalent, of the following form:

min

T∑
t=1

nt∑
j=1

pjtct(ξ
j
t )x

j
t (8a)

s.t. A1x
1
1 ≥ b1 (8b)

Atx
j
t ≥ bt −Btx

a(j)
t−1 ∀j = 1, . . . , nt, t = 2, . . . , T (8c)

xjt ∈ X ∀j = 1, . . . , nt, t = 1, . . . , T, (8d)

where pjt is the probability of node ξjt and xjt is the decision vector corresponding to node ξjt , ∀j =

1, . . . , nt, t = 1, . . . , T . Notice that the nonanticipativity constraints are implicitly included in the

above deterministic equivalent model since every decision vector is associated with a single node in

the scenario tree.

4 Solution Methods

In this section we introduce the solution methods for solving our multistage SMIP problem. We

first present the two-stage simulation method which gives an estimation of the optimal objective

value by using Monte Carlo sampling to generate sample scenario trees. Then we present the exact

method which applies multistage L-shaped decomposition method to obtain optimal solutions to

the LP relaxation of the original problem.

4.1 Two-stage Simulation Method

The multistage SMIP problems formulated in Section 3 can be solved directly via an optimization

algorithm (with a possible numerical tolerance) which works on the recourse model or its deter-

ministic equivalent, but the computational effort increases exponentially with the scenario tree size

even if each stage has a manageable number of states. To reduce the computational difficulty while

obtaining an estimation of the objective value, we can adopt Monte Carlo sampling-based method

to solve the multistage stochastic programs. The method works by first generating a sample sce-

nario tree using Monte Carlo sampling and then applying optimization algorithms to the sample
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scenario tree to get the optimal objective function value and the corresponding optimal solution,

which is an estimation of the original problem based on the entire scenario tree.

To construct a two-stage sample scenario tree, we perform Monte Carlo sampling in the following

fashion: we begin by associating the root node with the first stage realization ξ1 which is known

at the beginning of the decision horizon. Then we enumerate all n(1, 1) = n2 possible stage-2

realizations ξ̃2 to form the nodes in the second stage. After this, for each node ξj2, ∀j = 1, . . . , n2

in stage 2, we form one descendant by drawing n(2, j) = 1 observation of ξ̃3 from F3(ξ3|ξ2,j). This

process continues until we have sampled n(T − 1, j) = 1 observation of ξ̃T from FT (ξT |ξT−1,j)
for each node ξjT−1, ∀j = 1, . . . , nT−1 in stage T − 1. In this way, n(t, j) = 1, Dj

t = {j}, ∀j =

1, . . . , n(1, 1), t = 2, . . . , T , and a(j) = j, ∀t = 3, . . . , T, a(j) = 1, for t = 2. Figure 3 shows an

example of the two-stage sample scenario tree construction.

Figure 3: An example of a two-stage sample scenario tree

In the above sample scenario tree construction, stage-2 nodes consist of all possible descendants

evolved from the first stage, and each of them is followed by an independently generated series

of observations based on the conditional probability distributions. After constructing the sample

scenario tree, each series of observations starting from stage 2, {ξjt }Tt=2, ∀j = 1, . . . , n(1, 1), will be

regarded as a single deterministic problem, thus the original multistage stochastic problem can be

solved as a two-stage stochastic problem. By solving the multistage SMIP based on this two-stage

sample scenario tree we can obtain an approximated objective function value. We may improve

the precision of the estimation by repeating the sampling and solution procedure and getting the

mean of the objective values. If the number of states per stage is manageable, this method will

give a good estimation result.

Based on the sample scenario tree, the two-stage SMIP problem is given by the following specific
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recourse model:

min
x1

c1(ξ1)x1 + Eξ̃2|ξ1 [α(x1, ξ̃2)] (9a)

s.t. A1x1 ≥ b1 (9b)

x1 ∈ X, (9c)

where for j = 1, . . . , n(1, 1), i.e., all realizations of ξ̃2 given ξ1,

α(x1, ξ
j
2) = min

T∑
t=2

ct(ξ
j
t )x

j
t (9d)

s.t. Atx
j
t ≥ bt −Btx

a(j)
t−1 ∀t = 2, . . . , T (9e)

xjt ∈ X ∀t = 2, . . . , T. (9f)

Considering the specific problem settings, ct(ξ
j
t )x

j
t , ∀j = 1, . . . , nt is similarly defined by (5)

and constraints (9b) and (9e) have the set of constraints presented by (6) for all j = 1, . . . , nt (note

that the equality constraints are not presented as two corresponding “≥” inequalities in (6), which

does not affect the analysis).

Taking into account the two-stage sample scenario tree, the objective function (9a) can also be

stated by replacing the expectation operator with summation:

min
x1

c1(ξ1)x1 +

n(1,1)∑
j=1

p
j|1
2 α(x1, ξ

j
2), (10)

where the conditional probability mass function p
j|1
2 is defined as p

j|1
2 = P (ξ̃2 = ξj2|ξ̃1 = ξ1), ∀j =

1, . . . , n(1, 1).

The deterministic equivalent of the above two-stage SMIP problem is given by

min c1(ξ1)x1 +

n(1,1)∑
j=1

p
j|1
2

T∑
t=2

ct(ξ
j
t )x

j
t (11a)

s.t. A1x
1
1 ≥ b1 (11b)

Atx
j
t ≥ bt −Btx

a(j)
t−1 ∀j = 1, . . . , n(1, 1), t = 2, . . . , T (11c)

xjt ∈ X ∀j = 1, . . . , n(1, 1), t = 1, . . . , T. (11d)

The aforementioned two-stage stochastic MIP problem can be solved directly by solving its

deterministic equivalent (11), or by applying the decomposition method to its LP relaxation.
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We first relax the binary restrictions (6o) as

0 ≤ zit ≤ 1 ∀t = 1, . . . , T, i = 1, 2, 3, (12)

to get the LP relaxation of the original MIP problem. We still use formulation (9) except that (12)

replaces (6o) which makes it the LP relaxation. The LP relaxation of the two-stage stochastic MIP

is restated as:

min
x1

c1(ξ1)x1 +

n(1,1)∑
j=1

p
j|1
2 α(x1, ξ

j
2) (13a)

s.t. A1x1 ≥ b1 (13b)

x1 ≥ 0, (13c)

where for j = 1, . . . , n(1, 1), i.e., all realizations of ξ̃2 given ξ1, the stage-2 subproblem sub(j) under

realization ξj2 is

α(x1, ξ
j
2) = min

T∑
t=2

ct(ξ
j
t )x

j
t (13d)

s.t. Atx
j
t ≥ bt −Btx

a(j)
t−1 ∀t = 2, . . . , T (13e)

xjt ≥ 0 ∀t = 2, . . . , T, (13f)

where (13b) and (13e) have included the second “≤” inequality of constraints (12) and (13c) and

(13f) have included the first “≤” inequality of constraints (12).

Assigning dual variables πt, ∀t = 2, . . . , T to constraints (13e), we can write the dual of

sub(j), ∀j = 1, . . . , n(1, 1) as

max
πt

T∑
t=2

πt(bt −Btx
a(j)
t−1 ) (14a)

s.t. πtAt ≤ ct(ξ
j
t ) ∀t = 2, . . . , T (14b)

πt ≥ 0 ∀t = 2, . . . , T, (14c)

and we denote πjt as the optimal dual solution for sub(j).

Since each optimal dual objective function provides a cut

θ ≥
T∑
t=2

πjt (bt −Btx
a(j)
t−1 ) (15)
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for the stage-1 problem (the master problem), considering the conditional probability mass function

of stage-2 subproblems, we should combine the n(1, 1) cuts (15) from stage-2 subproblems as one

cut by their conditional probability as

θ ≥
n(1,1)∑
j=1

p
j|1
2

T∑
t=2

πjt (bt −Btx
a(j)
t−1 ). (16)

Then each iteration of the decomposition method adds a cut (16) to the master problem until

the optimality gap is within the given tolerance. We now restate the master problem as

min
x1,θ

c1(ξ1)x1 + θ (17a)

s.t. A1x1 ≥ b1 (17b)

eθ ≥ ~Gx1 + ~g (17c)

x1 ≥ 0, θ urs, (17d)

where constraint (17c) is the combined cuts from all iterations, and e is a vector of all 1’s for

combining all cuts. The cut-gradient matrix and the cut-intercept vector are denoted by ~G and ~g,

respectively. Observing the cut constraint (16), we form each row of the cut-gradient matrix and

each component of the cut-intercept vector as

G = −
n(1,1)∑
j=1

p
j|1
2 πj2B2, (18)

and

g =

n(1,1)∑
j=1

p
j|1
2

T∑
t=2

πjtbt −
n(1,1)∑
j=1

p
j|1
2

T∑
t=3

πjtBtx
a(j)
t−1 , (19)

respectively.

The decomposition algorithm for solving the LP relaxation of the two-stage SMIP problem is

shown in Figure 4.

4.2 Multistage Exact Method

Exact solution methods for stochastic programs give an exact optimal solution to a stochastic

program (Chiralaksanakul, 2003). For a stochastic problem whose random vector is finite with a

relatively small number of realizations, its deterministic equivalent problem can be solved directly

by applying the simplex method if it is a linear problem or the branch-and-bound algorithm if it
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Figure 4: The two-stage decomposition algorithm for the LP relaxation

is a mixed-integer problem. However, if the stochastic problem has random information with large

number of realizations, its deterministic equivalent problem may be hard or even impossible to solve

directly. In such conditions decomposition methods may be used for solving linear programming

problems or the LP relaxation of MIP problems within a numerical tolerance (Lulli and Sen, 2004;

Singh et al., 2009). Among decomposition methods, the L-shaped method (Van Slyke and Wets,

1969) is a good example which decomposes the original multistage problem by stage such that each

stage has a collection of subproblems corresponding to the nodes in that stage in the scenario tree.

To apply the L-shaped method we should relax the binary restrictions (6o) as (12) to get the

LP relaxation of the original MIP problem. We still use formulation (7) except that (12) replaces

(6o) which makes it the LP relaxation.

Applying the single-cut L-shaped decomposition method to stage t subproblem under realization

ξt,j , which is presented in (7d) to (7f), we can express this subproblem, denoted by sub(t, j), as

min
xt,θt

ct(ξ
j
t )xt + θt (20a)

s.t. Atxt ≥ bt −Btx
a(j)
t−1 (20b)

eθt ≥ ~Gj
txt + ~gjt (20c)

xt ≥ 0, θt urs, (20d)

for j = 1, . . . , nt, t = 1, . . . , T − 1. And for t = T , θT = 0 and there is no constraint (20c).
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Constraints (20c) are the cuts, which combine all cut constraints in matrix form. Specifically,

e is a vector of all 1’s combining all cuts. The cut-gradient matrix ~Gj
t consisting of Gj

t and the

cut-intercept vector ~gjt consisting of gjt are computed from sub(t+ 1, k), k ∈ Dj
t .

Assign dual variables πt and µt to constraints (20b) and (20c), respectively, we can write the

dual of sub(t, j) as

max
πt,µt

πt(bt −Btx
a(j)
t−1 ) + µt~g

j
t (21a)

s.t. πtAt − µt ~Gj
t ≤ ct(ξ

j
t ) (21b)

µte = 1 (21c)

πt, µt ≥ 0, (21d)

for j = 1, . . . , nt, t = 1, . . . , T − 1, and

max
πt

πt(bt −Btx
a(j)
t−1 ) (21e)

s.t. πtAt ≤ ct(ξ
j
t ) (21f)

πt ≥ 0, (21g)

for j = 1, . . . , nT , t = T . We denote (πjt , µ
j
t ) as the optimal dual solution.

Since each optimal dual objective function provides a cut for the previous stage, by comparing

(20c) with (21e) and noticing the conditional probability mass function, we form each row of the

cut-gradient matrix and each component of the cut-intercept vector of sub(t, j) as

Gj
t = −

∑
k∈Dj

t

p
k|j
t+1π

k
t+1Bt+1, (22)

and

gjt =
∑
k∈Dj

t

p
k|j
t+1π

k
t+1bt+1 +

∑
k∈Dj

t

p
k|j
t+1µ

k
t+1~g

k
t+1, (23)

respectively.

Since sub(T, j), j = 1, . . . , nT , do not contain cut constraints and the variable θT , as presented

in (21), the components of the cut-intercept vectors, gjT−1, j = 1, . . . , nT−1, do not contain the last

term in (23).

The multistage L-shaped decomposition algorithm is then presented in Figure 5.
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Figure 5: The multistage L-shaped algorithm for the LP relaxation
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5 Computational Results

In this section we conduct computational tests and present the computational results of different

solution methods based on artificially generated data. We then make some comparisons concerning

several evaluation factors such as the CPU runtime, the optimality gap, the objective value, the

number of iterations, etc.

In our computational settings, the gas-fueled thermal plant has a monthly energy supply obli-

gation of 650 units of equivalent gas at $170 per unit. The monthly contract gas volume is 1000

units at $100 per unit. In this contract, the percentages of monthly ToP and annual ToP are 50%

and 60%, respectively. The plant has a fixed monthly operational cost of $6500 and a variable oper-

ational cost of 10 units of equivalent gas. The monthly length of usable time for each maintenance

inspection is 30 days and the gas consumption per operating day is 20 units. The maintenance

specifications are listed in Table 3.

Maintenance Frequency (days) Avg. Duration (days) Cost(K$)

Combustion 70 5 10

Hot gas path 100 10 20

Major 160 15 25

Table 3: Maintenance specifications

The spot electricity price is the only stochastic parameter in our problem, which has S possible

scenarios in each stage. In our computational tests we consider S = 2 and S = 3, which result

in a binary scenario tree and a ternary scenario tree, respectively. For the binary scenario tree,

the possible realizations and the transition probabilities of the spot electricity price are given by

Table 4. The initial stage takes the low value 90 of the spot price.

q 90 130

90 0.8 0.2

130 0.2 0.8

Table 4: Possible spot electricity price and its transition probabilities for S = 2

For the ternary scenario tree, the possible realizations and the transition probabilities are given

by Table 5. The initial stage takes the medium value 110 of the spot price.
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q 90 110 130

90 0.7 0.2 0.1

110 0.15 0.7 0.15

130 0.1 0.2 0.7

Table 5: Possible spot electricity price and its transition probabilities for S = 3

We test the solution methods for fifteen problem instances that differ by the number of stages

in the binary scenario tree (eight problems from 2 stages to 9 stages) and the number of stages in

the ternary scenario tree (seven problems from 2 stages to 8 stages). For both the binary scenario

tree and the ternary scenario tree, we generate the realizations (nodes) of the spot electricity price,

qjt , ∀j = 1, . . . , nt, t = 1, . . . , T , via the following procedure. Figure 6 illustrates the binary scenario

tree of the three-stage problem instance.

Initialize q1 with the given value, let its probability p11 = 1;

for each stage t = 1 to T − 1 do

for each node j in stage t do

Generate S descendants of qjt by enumerating possible q values;

for each descendant node s = 1 to S do

Compute its probability as pjt times the transition probability;

end for

end for

end for

Figure 6: The problem instance with a three-stage binary scenario tree

The abbreviations we use to denote the various solution methods tested are listed in Table 6.
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We now present detailed formulation of these solution methods.

For MIP-DE, the formulation given by (8) has the following detailed form in our computational

tests:

min

T∑
t=1

nt∑
j=1

pjt{ct(m
j
t + f jt ) + vgjt + V − htP − qjt (g

j
t − P )

+
∑

i=1,2,3

uizj,it } (24a)

s.t. mj
t + f jt ≥ X%Q ∀j = 1, . . . , nt, t = 1, . . . , T (24b)

−mj
t − f

j
t ≥ −Q ∀j = 1, . . . , nt, t = 1, . . . , T (24c)

ajt +mj
t + f jt − g

j
t ≥ 0 ∀j = 1, . . . , nt, t = 1, . . . , T (24d)

bjt − f
j
t ≥ 0 ∀j = 1, . . . , nt, t = 1, . . . , T (24e)

− rj,it ≥ −∆i ∀j = 1, . . . , nt, t = 1, . . . , T, i = 1, 2, 3 (24f)

∆izj,it + rj,it ≥ δi ∀j = 1, . . . , nt, t = 1, . . . , T, i = 1, 2, 3 (24g)

− Cσizj,it − g
j
t ≥ −Cδi ∀j = 1, . . . , nt, t = 1, . . . , T, i = 1, 2, 3 (24h)

− rj,it ≥ δi − r
a(j),i
t−1 − (∆i + δi)z

a(j),i
t−1

∀j = 1, . . . , nt, t = 2, . . . , T, i = 1, 2, 3 (24i)

ajt = 0 ∀j = 1, . . . , nt, t = 1, 13, 25, . . . (24j)

bjt = (Y%−X%)(12Q) ∀j = 1, . . . , nt, t = 1, 13, 25, . . . (24k)

ajt = a
a(j)
t−1 +m

a(j)
t−1 + f

a(j)
t−1 − g

a(j)
t−1

∀j = 1, . . . , nt, t 6= 1, 13, 25, . . . (24l)

bjt = b
a(j)
t−1 − f

a(j)
t−1 ∀j = 1, . . . , nt, t 6= 1, 13, 25, . . . (24m)

bjt − f
j
t = 0 ∀j = 1, . . . , nt, t = 12, 24, 36, . . . (24n)

ajt , b
j
t , g

j
t ,m

j
t , f

j
t , r

j,i
t ≥ 0 ∀j = 1, . . . , nt, t = 1, . . . , T, i = 1, 2, 3 (24o)

zj,it ∈ {0, 1} ∀j = 1, . . . , nt, t = 1, . . . , T, i = 1, 2, 3. (24p)

For LP-DE, binary constraints (24p) are substituted by

z1,i1 ∈ {0, 1} ∀i = 2, 2, 3 (25a)

−zj,it ≥ −1 ∀j = 1, . . . , nt, t = 2, . . . , T, i = 1, 2, 3 (25b)

zj,it ≥ 0 ∀j = 1, . . . , nt, t = 2, . . . , T, i = 1, 2, 3, (25c)
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where we leave the binary variables z1,i1 , ∀i = 1, 2, 3 unchanged and relax the binary variables for

all other nodes.

For LP-BD, subproblem sub(t, j), ∀t = 1, . . . , T, j = 1, . . . , nt given by (20) along with the

dual variables has the following formulation.

min ct(mt + ft) + vgt + V − htP − qt(gt − P )

+
∑

i=1,2,3

uizit + θt Duals (26a)

s.t. mt + ft ≥ X%Q βt (26b)

−mt − ft ≥ −Q γt (26c)

at +mt + ft − gt ≥ 0 εt (26d)

bt − ft ≥ 0 ζt (26e)

− rit ≥ −∆i ∀i = 1, 2, 3 ηit (26f)

∆izit + rit ≥ δi ∀i = 1, 2, 3 θit (26g)

− Cσizit − gt ≥ −Cδi ∀i = 1, 2, 3 κit (26h)

− rit ≥ δi − r
a(j),i
t−1 − (∆i + δi)z

a(j),i
t−1 ∀i = 1, 2, 3 ιit (26i)

at = 0 ∀t = 13, 25, 37, . . . λt (26j)

bt = (Y%−X%)(12Q) ∀t = 13, 25, 37, . . . φt (26k)

at = a
a(j)
t−1 +m

a(j)
t−1 + f

a(j)
t−1 − g

a(j)
t−1 ∀t 6= 13, 25, 37, . . . νt (26l)

bt = b
a(j)
t−1 − f

a(j)
t−1 ∀t 6= 13, 25, 37, . . . ρt (26m)

bt − ft = 0 ∀t = 12, 24, 36, . . . τt (26n)

− zit ≥ −1 ∀i = 1, 2, 3 υt (26o)

eθt ≥ ~Gj
txt + ~gjt ~µt (26p)

at, bt, gt,mt, ft, r
i
t, z

i
t ≥ 0 ∀i = 1, 2, 3 (26q)

θt urs, (26r)

for j = 1, . . . , nt, t = 1, . . . , T − 1, except the constraints with explicitly stated t values. For t = 1,

we do not assign dual variables, and constraints (26o) and the sign restriction on zi1, ∀i = 1, 2, 3 in

(26q) are substituted by

z11 ∈ {0, 1}, (27)

i.e., we do not relax the binary variables in stage 1. For t = T , θT = 0 and there is no con-
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straint (26p). Also notice that µt, ∀t = 2, . . . , T − 1 are dual vectors for all cuts. Comparing the

above formulation with (22) and (23) we have

Gj
txt =−

∑
k∈Dj

t

p
k|j
t+1{

∑
i=1,2,3

ιk,it+1(r
k,i
t+1 + (∆i + δi)zk,it+1)− ρ

k
t+1(b

k
t+1 − fkt+1)

− νkt+1(a
k
t+1 +mk

t+1 + fkt+1 − gkt+1)}, (28)

and

gjt =
∑
k∈Dj

t

p
k|j
t+1{β

k
t+1(X%Q)− γkt+1Q−

∑
i=1,2,3

ηk,it+1∆
i +

∑
i=1,2,3

θk,it+1δ
i

− C
∑

i=1,2,3

κk,it+1δ
i + φkt+1(Y%−X%)(12Q)

−
∑

i=1,2,3

υkt+1 + V − ht+1P + qkt+1P}

+
∑
k∈Dj

t

p
k|j
t+1~µt+1~g

k
t+1, (29)

where gjT−1, ∀j = 1, . . . , nT−1 do not contain the last term in (29).

After constructing the binary and ternary scenario trees, LP-DE and LP-BD are tested and the

corresponding computational results are obtained.

For TS-DE and TS-BD, we first construct the two-stage sample scenario tree in the following

fashion (for both the binary tree and the ternary tree). Figure 7 illustrates a two-stage ternary

sample scenario tree of the four-stage problem instance.

Initialize q1 with the given value, let its probability p11 = 1;

Generate S stage-2 descendant nodes by enumerating possible q values, store the conditional

probabilities as their probabilities;

if Decision horizon T = 2 then

stop;

else

for each stage-2 node s = 1 to S do

for each stage t = 3 to T do

Sample node qst based on the transition probability distribution;

end for

end for
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Figure 7: The four-stage problem instance with a two-stage ternary sample scenario tree

end if

After constructing the sample scenario tree, we test TS-DE and TS-BD. For TS-DE, the deter-

ministic equivalent of the LP relaxation of (17) is as follows.

min c1(m
1
1 + f11 ) + vg11 + V − h1P − qj1(g

1
1 − P ) +

∑
i=1,2,3

uiz1,i1

+
S∑
j=1

pj2

T∑
t=2

{ct(mj
t + f jt ) + vgjt + V − htP − qjt (g

j
t − P )

+
∑

i=1,2,3

uizj,it } (30a)

s.t. (24b)− (24o), (25a)− (25c).

For TS-BD, the stage-2 subproblem sub(j), ∀j = 1, . . . , S given by (13d)-(13f), along with the
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dual variables, has the following formulation.

min
T∑
t=2

{ct(mj
t + f jt ) + vgjt + V − htP − qjt (g

j
t − P )

+
∑

i=1,2,3

uizj,it } Duals (31a)

s.t. mj
t + f jt ≥ X%Q ∀t = 2, . . . , T βt (31b)

−mj
t − f

j
t ≥ −Q ∀t = 2, . . . , T γt (31c)

ajt +mj
t + f jt − g

j
t ≥ 0 ∀t = 2, . . . , T εt (31d)

bjt − f
j
t ≥ 0 ∀t = 2, . . . , T ζt (31e)

− rj,it ≥ −∆i ∀t = 2, . . . , T, i = 1, 2, 3 ηit (31f)

∆izj,it + rj,it ≥ δi ∀t = 2, . . . , T, i = 1, 2, 3 θit (31g)

− Cσizj,it − g
j
t ≥ −Cδi ∀t = 2, . . . , T, i = 1, 2, 3 κit (31h)

− rj,it ≥ δi − r
a(j),i
t−1 − (∆i + δi)z

a(j),i
t−1

∀t = 2, . . . , T, i = 1, 2, 3 ιit (31i)

ajt = 0 ∀t = 13, 25, 37, . . . λt (31j)

bjt = (Y%−X%)(12Q) ∀t = 13, 25, 37, . . . φt (31k)

ajt = a
a(j)
t−1 +m

a(j)
t−1 + f

a(j)
t−1 − g

a(j)
t−1 ∀t 6= 13, 25, 37, . . . νt (31l)

bjt = b
a(j)
t−1 − f

a(j)
t−1 ∀t 6= 13, 25, 37, . . . ρt (31m)

bjt − f
j
t = 0 ∀t = 12, 24, 36, . . . τt (31n)

− zj,it ≥ −1 ∀t = 2, . . . , T, i = 1, 2, 3 υt (31o)

ajt , b
j
t , g

j
t ,m

j
t , f

j
t , r

j,i
t , z

j,i
t ≥ 0 ∀t = 2, . . . , T, i = 1, 2, 3. (31p)

Then we can write the cut given by (16) as

θ ≥
S∑
j=1

pj2

T∑
t=2

{βjt (X%Q)− γjtQ−
∑

i=1,2,3

ηj,it ∆i +
∑

i=1,2,3

θj,it δ
i

− C
∑

i=1,2,3

κj,it δ
i +

∑
i=1,2,3

ιj,it (δi − ra(j),it−1 − (∆i + δi)z
a(j),i
t−1 )

+ φjt (Y%−X%)(12Q) + νjt (a
a(j)
t−1 +m

a(j)
t−1 + f

a(j)
t−1 − g

a(j)
t−1 )

+ ρjt (b
a(j)
t−1 − f

a(j)
t−1 )−

∑
i=1,2,3

υjt + V − htP + qjtP}. (32)
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Notice that some of the dual variables, including λjt , φ
j
t , ν

j
t , ρ

j
t , ∀j = 1, . . . , S, t = 2, . . . , T , only

exist for certain values of t, but we include them in the summation from t = 2 to T in (32) for the

sake of uniformity.

Comparing (16) with (18) and (19) and noticing that a(j) = 1, ∀j = 1, . . . , S, t = 2 and

a(j) = j, ∀j = 1, . . . , S, t = 3, . . . , T , we can write Gx1 and g as

Gx1 = −
S∑
j=1

pj2{
∑

i=1,2,3

ιj,i2 (r1,i1 + (∆i + δi)z1,i1 )− νj2(a11 +m1
1 + f11 − g11)− ρj2(b

1
1 − f11 )}, (33)

and

g =

S∑
j=1

pj2

T∑
t=2

{βjt (X%Q)− γjtQ−
∑

i=1,2,3

ηj,it ∆i +
∑

i=1,2,3

θj,it δ
i

− C
∑

i=1,2,3

κj,it δ
i + φjt (Y%−X%)(12Q)−

∑
i=1,2,3

υjt + V − htP + qjtP}

+

S∑
j=1

pj2

T∑
t=3

{
∑

i=1,2,3

ιj,it (δi − rj,it−1 − (∆i + δi)zj,it−1) + ρjt (b
j
t−1 − f

j
t−1)

+ νjt (a
j
t−1 +mj

t−1 + f jt−1 − g
j
t−1)}. (34)
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Finally the master problem given by (17) is as follows.

min c1(m
1
1 + f11 ) + vg11 + V − h1P − q11(g11 − P ) +

∑
i=1,2,3

uiz1,i1 + θ (35a)

s.t. m1
1 + f11 ≥ X%Q (35b)

−m1
1 − f11 ≥ −Q (35c)

a11 +m1
1 + f11 − g11 ≥ 0 (35d)

b11 − f11 ≥ 0 (35e)

− r1,i1 ≥ −∆i ∀i = 1, 2, 3 (35f)

∆iz1,i1 + r1,i1 ≥ δ
i ∀i = 1, 2, 3 (35g)

− Cσiz1,i1 − g
1
1 ≥ −Cδi ∀i = 1, 2, 3 (35h)

a11 = 0 (35i)

b11 = (Y%−X%)(12Q) (35j)

eθ ≥ ~Gx1 + ~g (35k)

a11, b
1
1, g

1
1,m

1
1, f

1
1 , r

1,i
1 ≥ 0 ∀i = 1, 2, 3 (35l)

z1,i1 ∈ {0, 1} ∀i = 1, 2, 3 (35m)

θ urs. (35n)

In our computational tests, we test TS-DE and TS-BD on ten independently generated sam-

ple scenario trees for each problem instance (we construct only one sample scenario tree for the

two-stage problem instance since the Monte Carlo sampling starts from the third stage), and we

compute the mean value of each evaluation factor for comparisons. The overall TS-DE and TS-BD

computational tests are displayed as follows.

for each problem instance (T, S) do

if T = 2 then

Construct one sample scenario tree;

else

Construct ten sample scenario trees independently;

end if

for each sample scenario tree do

Perform TS-DE and TS-BD, get computational results;

end for
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Compute mean value of each evaluation factor;

end for

We implement and test our solution methods on a desktop computer with an Intel Core 2 Duo

2.8 GHz processor and 3 GB of RAM. The programs are coded in Visual Studio 2008 developing

environment and the problems are solved with CPLEX, version 12.1, from IBM ILOG.

Abbreviation Formulation and Solution Method

MIP-DE Original SMIP problem, solved as a determinis-

tic equivalent.

LP-DE LP relaxation of the original SMIP problem,

solved as a deterministic equivalent.

TS-DE Two-stage simulation model of the LP relax-

ation, solved as a deterministic equivalent.

LP-BD LP relaxation of the original SMIP problem,

solved with Benders decomposition method.

TS-BD Two-stage simulation model of the LP re-

laxation, solved with Benders decomposition

method.

Table 6: Abbreviation for various solution methods

Table 7 displays the scenario tree statistics for the fifteen problem instances, along with their

objective values as the original SMIP problem, the LP relaxation, and the two-stage simulation

method. For MIP, the largest problem instance with a ternary scenario tree it can solve within 60

seconds is the seven-stage problem. The objective values obtained from LP are smaller than those

from MIP for most of the problem instances, which is natural since we are solving minimization

problems. The objective values of TS are more or less (very close) around those of LP, which is the

consequence of the sample scenario tree construction using Monte Carlo sampling.

In Table 8 we compare the solution times for each method. The solution times increase expo-

nentially with the tree size for all methods tested. The solution times for MIP-DE increase most

rapidly due to the increasing complexity of large scale MIP problems. The value in parentheses for

MIP-DE gives the optimality gap at 60 seconds. LP-BD’s solution times increase faster than LP-

DE’s, which is the consequence of using the multistage L-shaped algorithm in such computational

settings. In each iteration the L-shaped decomposition method makes a forward traversal (solving
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Scenario tree statistics (num.) Objective value ($)

Stages State/stage Scenarios Nodes MIP LP TS

2 2 2 3 -70,600 -70,600 -70,600

2 3 3 4 -65,300 -65,300 -65,300

3 2 4 7 -95,460 -103,300 -103,140

3 3 9 13 -88,340 -96,280 -96,660

4 2 8 15 -109,536 -131,779 -131,763

4 3 27 40 -100,918 -123,396 -123,713

5 2 16 31 -142,681 -158,565 -158,328

5 3 81 121 -133,825 -149,104 -147,508

6 2 32 63 -141,464 -182,551 -182,987

6 3 243 364 -131,224 -172,266 -171,851

7 2 64 127 -172,566 -205,166 -205,867

7 3 729 1,093 -163,374 -194,200 -192,917.6

8 2 128 255 -186,431 -227,716 -225,611.8

8 3 2187 3,280 – -216,190 -214,419.2

9 2 256 511 -209,457 -250,193 -249,922.8

Table 7: Objective values for each method
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each subproblem) and a backward traversal (generating cuts), and in each traversal all subprob-

lems, at each node of the scenario tree, are solved once, which significantly lengthens the solution

times. Two dashes in the column of LP-BD indicate that these problem instances run out of the

RAM when tested with our desktop computer, since the consumption of memory using Benders

decomposition methods increases exponentially with the tree size. We find that TS-DE and TS-BD

have the lowest mean solution times for most of the problem instances, and their solution times

have no obvious trend of increasing, this is because the sample scenario tree size increases linearly

when the number of stages or states per stage grows. Therefore TS can provide good estimations

of the objective value within shortest solution times.

Table 9 presents the solution times for LP-BD to reach different relative optimality gaps. We

may find that performing LP-BD to reach a 5% relative optimality gap can save solution times

significantly when the scenario tree size increases, and a 5% relative optimality gap gives good

estimation of the objective values in our problem instances.

Table 10 displays the number of iterations when LP-BD and TS-BD terminates (The number

of iterations for TS-BD is the mean value of the ten sample scenario trees). It shows similar results

as the tables for solution times. We may also find that it is better to run LP-BD to reach a 5%

relative optimality gap, since it significantly saves the number of iterations to reach the gap and

5% is good enough for our problem instances.

6 Conclusions

We have developed a multistage SMIP model for optimizing the gas contract and scheduling the

maintenance inspections for a gas-fueled thermal plant in a hydro dominated power system. The

model jointly takes into consideration the specifications of the power supply obligation, the gas

supply contract with take-or-pay and make-up clauses, the potential profit of trading in the spot

electricity market, and the maintenance scheduling problem. The problem involves decision mak-

ing under uncertainty because any decision made in one stage has impact in the future stages

considering the evolution of the stochastic parameters. We explore several solution methods for

the multistage SMIP problem and conduct computational tests. From the computational results

we find that the two-stage simulation method using Monte Carlo sampling can provide a good

estimation of the objective value in linear times. However, we should solve the LP relaxation, ei-

ther by solving its deterministic equivalent directly or by applying decomposition methods such as

the L-shaped method, to obtain the optimal policy (optimal solutions for each stage and each sce-
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Scenario tree statistics (num.) LP-BD (sec.)

Stages State/stage Scenarios Nodes 10% 5% 1% 0%

2 2 2 3 0.172 0.266 0.297 0.265

2 3 3 4 0.188 0.188 0.297 0.203

3 2 4 7 0.281 0.516 0.422 0.421

3 3 9 13 0.297 0.359 0.625 0.485

4 2 8 15 0.438 0.547 0.625 0.984

4 3 27 40 0.609 0.719 1.156 1.344

5 2 16 31 0.812 0.875 1.375 2.047

5 3 81 121 1.719 1.688 2.781 4.437

6 2 32 63 1.235 1.828 2.532 4.859

6 3 243 364 5.469 7.844 11.234 24.765

7 2 64 127 2.75 3.422 5.344 13.516

7 3 729 1093 – – – –

8 2 128 255 6.375 7.734 10.547 27.578

8 3 2187 3280 – – – –

9 2 256 511 15.172 20.812 25 75.578

Table 9: Solution times for LP-BD to reach relative optimality gaps of 10%, 5%, 1%, and 0%
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Benders decomposition

Scenario tree statistics (num.) LP-BD TS-BD

Stages State/stage Scenarios Nodes 10% 5% 1% 0% 0%

2 2 2 3 1 1 3 3 3

2 3 3 4 1 1 1 1 3

3 2 4 7 3 4 6 6 5

3 3 9 13 2 3 5 6 2

4 2 8 15 4 5 7 12 5

4 3 27 40 3 4 8 10 2

5 2 16 31 6 6 11 17 5

5 3 81 121 4 4 8 14 2

6 2 32 63 5 8 12 23 4

6 3 243 364 4 7 11 26 2

7 2 64 127 7 9 15 33 5

7 3 729 1093 – – – – 2

8 2 128 255 7 9 13 33 5

8 3 2187 3280 – – – – 2

9 2 256 511 9 13 16 42 3

Table 10: Number of iterations for LP-BD (to reach relative optimality gaps of 10%, 5%, 1%, and

0%) and TS-BD (to reach 0% relative optimality gap)
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nario). By testing the Benders decomposition methods to reach different relative optimality gaps,

we find 5% is good since it most effectively saves the solution time and the number of iterations

while resulting in small deviation from optimality. Although our research is based on a specific

background, i.e., for a gas-fueled thermal plant in a hydro dominated power system, the model we

formulated and the solution methods we developed can be applied to other problem specifications

with similar characteristics.
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