

Overview:

- Motivation: Localizing actions in untrimmed long videos, such as those in surveillance, can save tremendous time and costs.
- **Problem definition:** given an untrimmed video, "when does each specific action instance start and end, and which action class does it belong to?"

Framework of Segment-CNN:

- Generate candidate segments via multi-scale sliding window (16, 32, 64, 128, 256, 512 frames with 75% overlap in time)
- Segment-based CNNs:
- Network architecture: C3D [Tran et al.]
- Training: Proposal \rightarrow Classification \rightarrow
- maximum suppression

Training details of Segment-CNN:

Proposal network:

Classification network:

Localization network:

Temporal Action Localization in Untrimmed Videos via Multi-stage CNNs **Zheng Shou**, Dongang Wang, Shih-Fu Chang Columbia University

Two categories (background and being action) Identify candidate segments that may contain actions

Train N+1 multi-class classification model using Softmax Loss: $1 \sim ((l_{1}))$

$$\mathcal{L}_{\text{softmax}} = \frac{1}{N} \sum_{n} \left(-\log \left(P_n^{(k_n)} \right) \right)$$

Serve as initialization for the localization network

Motivation: NMS might remove segment of small score but of large overlap with ground truth.

Experimental setup:

> Evaluation metrics:

- What is a correct action instance prediction: correct category prediction + IoU with ground truth instance larger than the evaluation threshold (set to 0.5 unless specified)
- Redundant detections are not allowed

> THUMOS14 temporal action detection task:

- 20 sports categories

Contact: zheng.shou@columbia.edu

• Solution: explicitly consider temporal overlap in the loss function $\mathcal{L} = \mathcal{L}_{\text{softmax}} + \lambda \cdot \mathcal{L}_{\text{overlap}}$

$$\frac{1}{N}\sum_{n} \left(\frac{1}{2} \cdot \left(\frac{\left(P_n^{(k_n)}\right)^2}{\left(v_n\right)^{\alpha}} - 1 \right) \cdot \left[k_n > 0\right] \right)$$

• The overlap loss term rewards segment with higher temporal overlap with the ground truth

Regard as retrieval problem and evaluate mAP

Training data: 2,755 trimmed videos from UCF101 + 1,010 untrimmed YouTube videos of 3,007 instances Test data: 213 untrimmed videos of 3,358 action instances

Code available: https://github.com/zhengshou/scnn

Experimental results on THUMOS14:

Comparison with state-of-the-art systems:

- •

IoU threshold in evaluation

Karaman et al.

Wang et al.

Oneata et al.

Segment-CNN

Efficiency analysis:

Impact of individual networks:

- •
- Classification: •
- Localization:

Here we perform top-K

segments with maximum

selection on the final

confidence scores

prediction results to select K

IEEE 2016 Conference on **Computer Vision and Pattern** Recognition

CVPR2016

Mainly use FV encoding of iDTF and frame-level CNN features Some work leveraged video-level classifiers trained on multiple features

ation	0.1	0.2	0.3	0.4	0.5
	1.5	0.9	0.5	0.3	0.2
	19.2	17.8	14.6	12.1	8.5
	39.8	36.2	28.8	21.8	15.0
	47.7	43.5	36.3	28.7	19.0

Speed: GTX980. ~1s per batch. ~0.5s to process 1s video.

Storage: less than 1 GB. do not need to cache intermediate features.

Proposal: S-CNN (19.0%) VS S-CNN w/o proposal (17.1%)

