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Related work

• How do conventional methods address temporal localization?

Temporal Action Localization in Untrimmed Videos via Multi-stage CNNs.                                                          

Zheng Shou, Dongang Wang, and Shih-Fu Chang. In CVPR’16.
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Motivation

• Can we achieve more precise localization?
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Motivation

• How can we achieve more precise localization?
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Solution

• How can we use C3D to perform per-frame labeling?
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Learning Spatiotemporal Features with 3D Convolutional Networks

Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. In ICCV’15.
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Solution

• How can we use C3D to perform per-frame labeling?
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Solution

• How can we use C3D to perform per-frame labeling?
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Solution

• How can we use C3D to perform per-frame labeling?
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Solution

• How can we Downsample in S and Upsample in T?
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Network Architecture

• Data dim (#channels, temporal length, height, width)

• Input video of length L. K action classes + background class

• Loss Function: Frame-wise Softmax Loss
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Visualization Example

• How to refine temporal boundary?
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Visualization Example
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Visualization Example

• How to refine temporal boundary?
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Visualization Example

• How to refine temporal boundary?
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Visualization Example

• How to refine temporal boundary?
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Experiments

• Quantitative evaluation on THUMOS’14:

– Training data:

• 3K trimmed short videos from UCF101

• 200 untrimmed long videos from YouTube. 3K action instances

– Test data: 200 untrimmed long videos. 3K action instances

– Statistics:

• Around 15 instances per video

• Time duration of instances are diverse (from  <1s to >20s)

THUMOS challenge: Action recognition with a large number of classes. http://crcv.ucf.edu/THUMOS14/.                          

Y.-G. Jiang, J. Liu, A. R. Zamir, G. Toderici, I. Laptev, M. Shah, and R. Sukthankar.
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Q1: Per-frame Labeling

• Task: Predict label for every frame

• Evaluation: for each class, compute AP over all frames. Then compute mAP 
over 20 action classes.
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Q2: Temporal Action Localization

• Task: Predict a set of segments with label and start/end time

• Evaluation: mean Average Precision over 20 actions on THUMOS’14:
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Q2: Temporal Action Localization

• Task: Predict a set of segments with label and start/end time

• mean Average Precision over 200 activities on AcitivityNet challenge 2016:

Results on the validation set

Results on the test set
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Q3: Efficiency

• Storage:

– CDC is end-to-end. No need to cache intermediate features

– A typical CDC network requires around 1GB storage

• Speed:

– On Titan X GPU of 12GB memory, CDC runs at around 500 Frames Per 
Second
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Visualization examples

[ Visualization examples credit to Y. Wang ]
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Conclusions

• Frame-level detection:

– Precise localization in untrimmed video

• Conv-De-Conv: (simultaneously) 

– Down-sample in Space (semantic abstraction)

– Up-sample in Time (precise localization)

• Extensive experiments:

– Per-frame labeling

– Temporal localization

– Efficiency (1GB storage and 500FPS speed)



Thank you! Please come to our poster at #36

Paper: https://arxiv.org/abs/1703.01515

Project: http://www.ee.columbia.edu/ln/dvmm/researchProjects/cdc

Code: https://bitbucket.org/columbiadvmm/cdc

https://arxiv.org/abs/1703.01515
http://www.ee.columbia.edu/ln/dvmm/researchProjects/cdc
https://bitbucket.org/columbiadvmm/cdc
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