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Abstract

Response process data collected from human-computer interactive items contain

rich information about respondents’ behavioral patterns and cognitive processes. Their

irregular formats as well as their large sizes make standard statistical tools difficult to

apply. This paper develops a computationally efficient method for exploratory analysis

of such process data. The new approach segments a lengthy individual process into

a sequence of short subprocesses to achieve complexity reduction, easy clustering and

meaningful interpretation. Each subprocess is considered a subtask. The segmenta-

tion is based on sequential action predictability using a parsimonious predictive model

combined with the Shannon entropy. Simulation studies are conducted to assess perfor-

mance of the new methods. We use the process data from PIAAC 2012 to demonstrate

how exploratory analysis of process data can be done with the new approach.

1 Introduction

Technology advances in educational assessments expand measurable skills beyond conven-

tional ones. For instance, 14 items for Problem Solving in Technology-Riched Environment

(PSTRE) are included in the 2012 Programme for the International Assessment of Adult

Competencies (PIAAC). In these items, test-takers complete real-life tasks in various simu-

lated interactive environments. These interactive items not only facilitate test administration
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but also enrich data available for analyses. Once a test-taker finishes an item, we observe not

only whether or not the tasks are completed successfully but also the entire problem-solving

processes recorded in log files.

Figure 1 is a screenshot of the interface of a released item in PIAAC. The item description

in the left panel instructs respondents to select music files from the spreadsheet in the right

panel for copying to a music player with 20 MB storage. The respondents are required

to select only jazz and rock music with maximum number of files. To complete the task,

one can sort the files in an ascending order of the file sizes by clicking the sort button in

the toolbar and then select the first several files of genre jazz or rock until the total sizes

of selected files (indicated at the bottom of the interface) reach 20 MB. Once finished, the

respondent can move to the next item by clicking the right arrow button at the bottom of the

left panel. The response process is recorded in a log file as a sequence of actions. Under the

above-mentioned strategy, the action sequence is “Start, Toolbar Sort, Sort A 2, Sort OK,

Menu Edit, Menu Help, Menu Data, Toolbar Help, Toolbar Save, Tick 9, Tick 12, Tick 19,

Tick 13, Tick 14, Next”. The subprocess “Toolbar Sort, Sort A 2, Sort OK” is related to

sorting the files. In particular, action “Sort A 2” means to sort the music files in an ascending

order of the values in the second column. After sorting, the respondent learns to select files

and performs “Menu Edit, Menu Help, Menu Data, Toolbar Help, Toolbar Save” to explore

the interface. The final subprocess “Tick 9, Tick 12, Tick 19, Tick 13, Tick 14” is related

to selecting files. This action sequence details a respondent’s problem-solving process and

constitutes one observation of the response processes.

Process data in educational assessment have gained great prominence as they provide a

new venue for investigating and understanding problem-solving behaviors. Tools in natural

language processing such as n-grams have been adapted to distinguishing responses process

belonging to different groups (He and von Davier, 2016; Stadler et al., 2019; Liao et al.,

2019). Automated feature extraction methods have been proposed to facilitate the analysis

of response processes through regression models (Tang et al., 2019, 2020). Qiao and Jiao
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Figure 1: Screenshot of a sample item in PIAAC 2012. Source: https://nces.ed.gov/

surveys/piaac/sample_pstre.asp

(2018) applied various machine learning techniques to process data to investigate strategies

used by students within the same category or across different categories. Chen et al. (2019)

proposed an event history model for predicting response duration and outcome. A common

goal of these works is to study the relationship between response processes and other variables

of interest such as response outcomes, response time, and respondents’ demographics.

Responses processes contain a great amount of variation and noise. This is because sim-

ulated computer environment often allows a great deal of flexibility. The tasks for PSTRE

items are often complicated and require several necessary steps or subtasks to accomplish.

It is natural to decompose the total variation among response processes into within subtask

variation and between subtask variation, borrowing the main idea from the one-way anal-
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ysis of variance. In the PIAAC example of Figure 1, three subtasks are identified: SORT,

EXPLORE and SELECT. Their interpretation and the corresponding subprocesses are sum-

marized in Table 1.

Table 1: Subtasks of the sample item.
Subtask Description Subprocess example
SORT Rearrange spreadsheet by sorting. Start, Toolbar Sort, Sort A 2, Sort OK
EXPLORE Get familiar with interface. Menu Edit, Menu Help, Menu Data,

Toolbar Help, Toolbar Save
SELECT Select files by ticking boxes. Tick 9, Tick 12, Tick 19, Tick 13,

Tick 14, Next

Identifying subtasks in a response process helps us understand problem-solving strategies

and explore its relationship with the test performance and other characteristics. However,

the observed processes are not naturally segmented. Although subtasks and strategies can

be identified by domain experts based on their understanding of the item design and human

cognitive processes, such an approach is time-consuming and not scalable. Moreover, purely

subjective identification often results in confusing and contradictive conclusions.

In this paper, we propose a data-driven procedure to decompose each response process

into several subprocesses, whereby identifying the corresponding subtasks. The procedure

is motivated by observing that actions within a subtask are more predictable than those at

the transition between two subtasks. That is, if an action is highly predictable, then it is

likely to belong to the same subtask as the preceding actions; if an action is not predictable,

then it suggests a transition to a different subtask. This predictability-based segmentation

turns a long and noisy action sequence into a short and simple sequence of problem-solving

subtasks that are easy to visualize and analyze. The order and frequency of subtasks reveal

respondents’ problem-solving strategies and facilitate the discovery of their association with

problem-solving strategies and other characteristics.

The performance of the proposed procedure is examined and compared to a hidden

Markov model (HMM) in both simulation and a case study of the PSTRE items in PIAAC

2012. The dataset contains the response processes from more than forty thousand respon-

4



dents. The lengths of the response processes range from several dozen to a few hundred, de-

pending on the task complexity and individuals’ problem-solving strategies. We demonstrate

in the case study how the results produced by the proposed methods could help understand

problem-solving behaviors. We visualize the subtasks and analyze their association with a

variety of variables such as response outcome and response time. The decomposition can

further be used to guide potential item design and educational interventions.

The rest of this article is organized as follows. Section 2 describes the subtask identifi-

cation method. In Section 3, we evaluate the proposed method on simulated data. A case

study of PIAAC 2012 is presented in Section 4. Section 5 contains some concluding remarks.

2 Subtask analysis

In this section, we develop a data-driven method to identify subtasks. The underlying

rationale is that the subtasks are usually simpler and their response processes are more

homogeneous. From a technical viewpoint, short-term action predictions are more accurate

within the same subtask than those at the transition between subtasks. Therefore, we begin

with an action predictive model, followed by the predictability-based segmentation or subtask

identification method.

Through out this paper, let A = {a1, . . . , aM} denote the collection of possible actions for

a problem-solving item, where M is the total number of possible actions for this item. We

use s = (s1, s2, . . . , sT ) to denote a generic response process, where st is the t-th action in the

process and takes its values in A, and T is the sequence length. We use s1:t as an abbreviation

of s1, . . . , st to denote the actions up to time step t. We observe N response processes,

denoted by S = {s(i), i = 1, . . . , N}, where s(i) = (s
(i)
1 , . . . , s

(i)
Ti

) is the i-th observation. The

sequence length varies among different observations.

5



2.1 Action prediction model

To begin with, we describe a predictive model for future actions that forms a basic building

block of the process segmentation method. This means to specify, for each t, the conditional

distribution of st+1 given s1:t, p(st+1 | s1:t). To obtain a parsimonious model, we first com-

press s1:t to a K-dimensional vector θt and then use the multinomial logistic model (MLM;

McCullagh and Nelder, 2018),

ptj = P (st+1 = aj | s1:t) =


exp(βj

>θt+αj)
1+

∑M−1
i=1 exp(βi

>θt+αi)
, j = 1, . . . ,M − 1;

1

1+
∑M−1

i=1 exp(βi
>θt+αi)

, j = M,
(1)

where αj and βj are parameters. The construction of θt, as described below, makes use of an

embedding method (Bengio et al., 2003; Kraft et al., 2016) and a recurrent neural network

(RNN; Bengio et al., 1994).

First, we associate each action aj with a K-dimensional vector ej, which can be viewed

as a continuous representation (embedding) of the categorical aj and are estimated together

with other parameters in the model. The response process s1:T is thereby transformed into a

sequence of vectors, x1, . . . ,xT , where xt is the embedding of st. Let X = (x1, . . . ,xT )> and

E = (e1, . . . , eM)>. The embedding step, expressed by matrix multiplication, is X = SE,

where S is a T ×K binary matrix with (t, j)-th element being 1 if and only if st = aj.

Second, we recursively summarize the information in the embedding sequence x1, . . . ,xt

into θt through an RNN. More specifically, θt is obtained by synthesizing the information

contained in the previous actions θt−1 with the current action embedding xt through a

function f

θt = f(θt−1,xt;γ), (2)

where θ0 is an initial value which may set as a vector of zeros and γ is a vector of parameters.

The functional form of f is determined by a specific RNN structure. Here, we choose the

gated recurrent unit (GRU; Cho et al., 2014) in our action prediction model; see Appendix

6



A for details. Note that γ does not depend on t; therefore, the number of parameters used to

characterize the entire sequence p(st+1 | s1:t), t ≥ 1, does not depend on Tm. To summarize,

we let Rt(X;γ) denote the resulting vector after applying (2) t times to the row vectors in

X and write

θt = Rt(SE;γ).

The parameters in the model described above contain the action embeddings E, parameters

in the RNN γ, and the parameters in the multinomial logistic model αj,βj, j = 1, . . . ,M−1.

Let η denote the vector that collects all parameters. Given a set of observed response

processes S = {s(i), i = 1, . . . , N}, the parameters are estimated by maximizing the log

likelihood function

l(η; s(i)) =

Ti−1∑
t=1

log p(st+1 = s
(i)
t+1 | s1:t = s

(i)
1:t;η) =

Ti−1∑
t=1

M∑
j=1

δj(s
(i)
t+1) log p

(i)
tj . (3)

δj(s) is an indicator function for s ∈ A

δj(s) =

 1, if s = aj;

0, if s 6= aj,
(4)

p
(i)
tj is obtained by replacing θt with θ

(i)
t = Rt(S

(i)E) in (1) and S(i) is the binary matrix

representation of s(i). See Appendix B for details.

2.2 Sequence segmentation and subtask identification

The preceding model provides us, for each t, with a predictive (conditional) probability

density pt = (pt1, . . . , ptM). We do not use this model to actually predict future actions

but rather to assess the intrinsic uncertainty. To this end, we propose to use the Shannon
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entropy (Cover and Thomas, 2006),

h(pt) = −
M∑
j=1

ptj log ptj, (5)

which is used in information theory to quantify the uncertainty of a distribution. For in-

stance, a point mass distribution has entropy equal to zero that is the minimum value,

whereas the maximum entropy is achieved at the uniform distribution.

Figure 2 presents an evolution of entropy process h = (h1, . . . , hT−1) of a response process

as a function of time t. As the figure shows, a response process usually starts at a relatively

high entropy since there is little information available the first action. Then the predictability

of subsequent actions gradually increases and the entropy decreases accordingly as a subtask

begins. As the problem-solving process evolves, entropy rises to a relatively high level again

suggesting that the person has accomplished a subtask and is about to explore the system

for the next subtask. The entropy fluctuates several times until the process reaches an end.

The entropy process h consists of several U-shaped curves, each of which corresponds to a

subtask as marked in Figure 2. We observe that the processes are often very predictable

within the same subtask. On the other hand, when a subtask is accomplished, it is generally

more difficulty to predict the subsequent actions as there are usually several options and

the test taker might take any of them at random. This forms our basic understanding of

a response process. Each U-shaped curve of the entropy process corresponds to a subtask

accomplishment. Our process segmentation algorithm presented in the sequel partitions

a response process through identifying the U-shaped curves in the corresponding entropy

process.

Based on the above understanding, we segment a response process in two steps. First,

we identify all local maxima of the corresponding entropy process h that are the potential

endpoints of U-shaped curves. Then, we filter the set of local maxima and keep those that

form a “deep” U-shaped curve. The response process is then decomposed into several “deep”
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Figure 2: An example of a segmented entropy process. The blue dots represent the local
maxima of the entropy process. The U-curves are identified by Algorithm 1 with λ = 0.5.

U-shaped curves. A U-shaped curve is considered to be deep if the entropy change within

the curve is significant relative to the entropy fluturation in the entire sequence. Technically,

a subsequence hi:j of h is called a U-curve if

min{hi, hj} − min
i≤t≤j

ht ≥ λ

(
max

1≤t≤T−1
ht − min

1≤t≤T−1
ht

)
, (6)

where λ ∈ [0, 1] controls the minimum relative depth of a U-shaped curve. When λ = 0,

any subprocess between two consecutive local maxima is a U-curve and the sequence will

be partitioned into a number of short subsequences. When λ = 1 and the global maximum

of h is unique, no subsequence of h is qualified as a U-curve and the entire sequence is

treated as a single subtask. With the above definition, the detailed segmentation procedure

is described in Algorithm 1.

Algorithm 1 (Sequence segmentation algorithm). Given λ, a response process s is seg-

mented as follows.

1. Set h0 = hT =∞ and L = R = ∅. Initialize i = 0, j = T .

2. Compute entropy process h = (h1, . . . , hT−1) based on the predictive model of s =
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(s1, . . . , sT ).

3. Find D, the set of local maxima of h.

4. Filter D according to the following steps to keep the endpoints of U-curves.

For each i ∈ D

(i) Find the smallest i′ ∈ D such that hi:i′ is U-curve. Add i′ to L and set i← i′.

(ii) Repeat (4i) until D is exhausted.

For each j ∈ D

(iii) Find the largest j′ ∈ D such that hj′:j is U-curve. Add j′ to R and set j ← j′.

(iv) Repeat (4iii) until D is exhausted.

5. Output L ∪R as the set of segmentations.

In Step 4, the local maxima set D is filtered from left to right in substeps (4i)–(4ii) and

from right to left in substeps (4iii)–(4iv). When solving a problem, respondents may explore

in a wrong direction or take many actions repetitively before figuring out the next subtask.

In this case, the entropy process remains at a high level for a long period before entering a

new U-curve (Subtask EXPLORE in Figure 2). The bi-directional filtering is used to identify

the high-entropy subsequences between two U-curves as an exploratory task.

Algorithm 1 requires a pre-determined λ as input. If λ is too small, the processes will be

partitioned into small pieces while if λ is too large, the processes will be partitioned coarsely.

In both situations, the subprocesses are likely to be less interpretable. We investigate the

effect of λ on sequence segmentation in Section 3. The results show that segmentation is

robust to the choice of λ as long as it is away from 0 and 1. We recommend to choose λ

between 0.2 and 0.8. One can also try different values of λ and select the one with the most

interpretable results.
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2.3 Subtask clustering

Algorithm 1 segments response processes into subprocesses. It does not, however, reveal how

subprocesses are related to subtasks. In this subsection, we develop a clustering method for

subprocesses and relate each cluster to a subtask. Specifically, we convert each subprocess to

a fixed-dimensional real-valued vector and then apply standard clustering algorithms such

as the k-means clustering (Forgy, 1965; MacQueen, 1967; Arthur and Vassilvitskii, 2007).

Recall that Algorithm 1 segments a response process s into L subprocesses at 0 = t0 <

t1 < . . . < tL = T . We associate the l-th subprocess s(tl−1+1):tl with an action frequency

profile zl = (zl1, . . . , zlM)>. More specifically, the j-th element of zl is the relative frequency

of action aj in the subprocess

zlj =
1

tl − tl−1

tl∑
t=tl−1+1

δj(st), 1 ≤ j ≤M, 1 ≤ l ≤ L, (7)

where δj(·) is the indicator function defined in (4). Note that the action frequency profile

is a probability vector, namely, 0 ≤ zlj ≤ 1, j = 1, . . . ,M and
∑M

j=1 zlj = 1. For example,

the subprocess “Start, Toolbar Sort, Sort A 2, Sort OK” has four actions and each action

appears only once. Assuming that these four actions are indexed as a1, . . . , a4 in A, then

the action frequency profile associated with this subprocess is
(

1
4
, 1

4
, 1

4
, 1

4
, 0, . . . , 0

)
.

For a set of response processes S = {s(i); i = 1, . . . , N}, let z
(i)
l be the action frequency

profile associated with the l-th subprocess of the i-th response process s(i) and Li be the

number of subprocesses for s(i). We group similar subprocesses into Rc clusters by performing

k-means clustering on
{
z

(i)
l ; i = 1, . . . , N, l = 1, . . . , Li

}
with the Hellinger distance. The

Hellinger distance between two M -dimensional probability vectors, p and q, is defined by

dH (p, q) =

√√√√ M∑
j=1

(√
pj −

√
qj
)2
. (8)

The number of clusters Rc is prespecified and in practice, can be validated by cluster in-
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Figure 3: An example of subtask clustering.

terpretations and prior knowledge of item subtasks. In our PIAAC data case study, three

to seven clusters are often adequate to yield sensible results. After clustering, the inter-

pretation of a cluster can be found by examining the overall action frequency profile of the

cluster. Each cluster is then identified as a subtask of the whole problem based on those

interpretations. Figure 3 illustrates the subtask identification procedure with two response

processes s(1) and s(2), where s(1) is the previously mentioned example in the introduc-

tion and s(2) is “Start, Toolbar Help, Menu Edit, Toolbar Help, Menu Data, Toolbar Sort,

Sort D 5, Sort A 2, Sort OK, Tick 9, Tick 19, Tick 14, Tick 12, Tick 13, Tick 6, Untick 6,

Next ”. The second response process differs from the first one in the order of subtasks as

well as actions used within a subtask.

Let G = {g1, . . . , gR} be the set of identified subtasks/clusters. For the item described

in the introduction, G = {EXPLORE, SELECT, SORT}. Our task identification procedure

associates each action st in a response process s with a subtask vt ∈ G. We therefore obtain a

new process v̂ = {v̂1, . . . , v̂T}. Since actions in the same subprocess of s come from the same

subtask, we can remove all consecutively repeated v̂t from v̂ to obtain another sequence q̂.
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We call v̂ the state sequence and q̂ the subtask sequence. In the example illustrated by Figure

3, the subtask sequence of s(1) is “SORT, EXPLORE, SELECT” and the subtask sequence

of s(2) is “EXPLORE, SORT, SELECT”. The subtask sequence is often much shorter than

the original response process and have less but more informative variations. These subtask

sequences are helpful for visualizing and analyzing respondents’ problem-solving strategies.

We will illustrate it through a real data analysis.

We conclude the section with a summary of the proposed subtask identification procedure

(SIP) in Procedure 1 below.

Procedure 1 (Subtask identification procedure). SIP consists of the following three steps.

1. (Prediction step) Fit an action predictive model and obtain the predictive distributions.

2. (Segmentation step) Partition the response process into multiple subprocesses based on

the corresponding entropy process according to Algorithm 1.

3. (Labeling step) Cluster the subprocesses according to their action frequency defined in

(7) and label the clusters as subtasks.

3 Simulations

3.1 Data generation

We simulate response processes of a problem-solving item with four subtasks (R = 4) and

26 possible actions (M = 26). The problem-solving subtasks are denoted by upper case

letters A, B, C, D, i.e. subtask set G = {A,B,C,D}; the actions are denoted by lower

case letters, i.e. action set A = {a, b, . . . , z}. To obtain a simulated response process, we

first generate a subtask sequence q = (q1, . . . , qL), where ql ∈ G, and then generate, for each

l, an action sequence s̃l as a subprocess in subtask ql. The full simulated response process

is then obtained by concatenating the L action sequences, namely, s = (s̃1, . . . , s̃L). Both
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the subtask sequence q and the subprocesses s̃l, l = 1, . . . , L, are generated from Markov

models; see Appendix C for details.

3.2 Experiment settings

We generate 100 datasets, each of which contains N = 5000 response processes according to

the data generation procedure. For each dataset, N action sequences are randomly parti-

tioned into training (70%), validation (15%) and test (15%) sets. We train the RNN model

for 50 epochs with validation-based early stopping. The latent dimension K is set to be 20

and the learning rate of RmsProp optimizer is 10−3. Nine values of λ, 0.1, 0.2, . . . , 0.9, are

used in the segmentation step to examine the sensitivity of subtask segmentation results to

λ. For each λ value, the segmentation algorithm is applied to all the processes in the dataset.

In the labeling step, the number of clusters is set to the true number of subtasks R = 4. The

samples in the training and validation sets are used to perform the k-means clustering. The

segmented subprocesses in the test set are then assigned to the cluster whose centroid is the

closest to the action frequency profile of the subprocess in terms of the Hellinger distance.

As a comparison, we also fit a hidden Markov model (HMM; Baum and Petrie, 1966). The

estimated hidden states produced by HMM are treated as the estimated subtask sequence

in this case. The number of hidden states in HMM is also set to be the true number of

subtasks.

3.3 Evaluation Criteria

The evaluation criteria described below are used for both the simulated and real data anal-

ysis. For notational simplicity, the superscript of the response process is omitted when

there is no ambiguity. Let v and v̂ be the true and the estimated state sequences, re-

spectively. We use T = {t : vt+1 6= vt, t < T} to denote the set of times immediately be-

fore a transition. Similarly, we write T̂ = {t : v̂t+1 6= v̂t, t < T}. Hence, T ∩ T̂ repre-

sents the set of correctly estimated subtask transitions. We define Precision and Recall
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for subtask in Table 2. Note that they are different from the precision and recall for

action prediction. To further take into account the direction of the transitions, we use

T+ = {t : vt+1 6= vt, v̂t+1 6= v̂t, v̂t+1 = vt+1, t < T} to denote the set of times where both the

transition time and the label of the next subtask are correct. The precision and recall cor-

responding to T+ are denoted by Precision+ and Recall+, respectively. The perfect match

(overlap) between v and v̂ is denoted by Overlap, and we write V = {t : vt = v̂t}. The exact

mathematical definitions (formulas) are given in Table 2.

Table 2: Five measures for comparing the estimated and the true state sequences.
Measures Formulas

Precision
∑

i∈Ω |T (i) ∩ T̂ (i)|/
∑

i∈Ω |T̂ (i)|
Recall

∑
i∈Ω |T (i) ∩ T̂ (i)|/

∑
i∈Ω |T (i)|

Precision+
∑

i∈Ω |T
(i)

+ |/
∑

i∈Ω |T̂ (i)|
Recall+

∑
i∈Ω |T

(i)
+ |/

∑
i∈Ω |T (i)|

Overlap
∑

i∈Ω |V(i)|/
∑

i∈Ω Ti

3.4 Results

Figure 4 summarizes the results for subtask identification. The five measures of subtask

estimation accuracy defined in Table 2 are plotted against the values of λ in the left panel of

the figure. When λ is small, Precision and Precision+ are relatively low since the processes

are overly segmented and unnecessary partitions are produced; when λ is too large (greater

than 0.8), Recall and Recall+ decrease since the action sequences are under segmented and

many subtasks are not captured. The performance is robust to the choice of λ when its value

stays away from 0 and 1. The right panel of Figure 4 displays boxplots of the five measures

for the estimated state sequences obtained from HMM on the 100 datasets. The Precision,

Precision+, Recall+, and Overlap are all below 0.6. The Recall has a median around 0.5

and a wide spread. It is clear that the proposed SIP performs substantially better, noting

that the vertical axes of the two panels are on the same scale.
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Figure 4: Accuracy on subtask identification. Left: Mean accuracy of SIP under five mea-
sures and threshold values from 0.1 to 0.9. The standard errors are shown by error bands.
Right: Accuracy of HMM under five measures.

4 Case Study

In this section, we present a case study of the process data from PIAAC 2012. We investigate

the performance of SIP on PIAAC 2012 and demonstrate how the results can be exploited to

study respondents’ problem-solving strategies and their relationship with other variables. In

Section 4.2, we examine the accuracy of subtask identification. We show in Section 4.3 that

the segmentation helps visualize respondents’ problem-solving strategies. The relationship

between problem-solving strategy and efficiency is analyzed in Section 4.4. The threshold λ

in SIP is set to 0.3 for all the items.

4.1 Data description

The dataset contains log files involving 14 PSTRE items in PIAAC 2012. There are 40, 230

respondents from 17 countries. Each respondent answered all or a subset of the 14 items.
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The required tasks in the items are diverse, ranging from email classification, spread sheet

handling, web browsing to scheduling, etc. The number of possible actions varies from 27

to 1536 across items. Those response processes with fewer than ten actions are excluded as

short processes are usually the result of inattentive responses that provide little information

of respondents’ problem-solving behaviors. The dataset also includes the final response

outcomes for more than 97% of the response processes. For some items, the original response

outcomes are polytomous. We simplify them to dichotomous outcomes by labeling the fully

correct responses as 1 and 0 otherwise. Some basic statistics of the preprocessed data are

listed in Table 3 for each item, where N is the number of respondents, M denotes the

number of possible actions and T̄ stands for the average process length. “Correct %” is

the percentage of correct responses among all recorded response outcomes. Although our

method can be applied to all items, only three items, U23, U01b and U19a, are selected to

demonstrate the performance of the proposed subtask identification procedure and how the

subtask sequences can help understand respondents’ problem-solving behaviors.

Table 3: Descriptive statistics of 14 PIAAC problem-solving items.

ID Description N M T̄ Correct %
U01a Party Invitations - Can/Cannot Come 20930 66 21.2 72.8
U01b Party Invitations - Accommodations 20859 60 32.0 63.6
U02 Meeting Rooms 17404 102 36.7 19.8
U03a CD Tally 8798 67 15.5 84.1
U04a Class Attendance 16498 1536 60.0 21.7
U06a Sprained Ankle - Site Evaluation Table 8034 30 13.9 28.6
U06b Sprained Ankle - Reliable/Trustworthy Site 17307 27 19.8 57.2
U07 Digital Photography Book Purchase 16172 41 24.2 71.2
U11b Locate E-mail - File 3 E-mails 17085 140 33.5 31.9
U16 Reply All 20704 896 39.4 74.1
U19a Club Membership - Member ID 19796 197 21.2 84.8
U19b Club Membership - Eligibility for Club President 16821 562 28.8 68.1
U21 Tickets 6430 149 22.2 45.1
U23 Lamp Return 18730 177 27.6 50.6

Note: N = number of respondents; M = number of possible actions; T̄ = average process
length; Correct % = percentage of correct responses. Data has been cleaned by merging
consecutive and removing redundant actions. Processes with fewer than 10 actions are
excluded.
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4.2 Identification accuracy

For each item discussed in the case study, we randomly partition the response processes into

training (70%), validation (15%), and test (15%) sets, denoted by Strain, Svalid, and Stest,

respectively. The RNN-based action prediction model is trained for 50 epochs on Strain. To

avoid overfitting, we monitor the log likelihood l (η;Svalid) and take a validation-based early

stopping. The latent dimension K is 20 and the learning rate is 10−3.

We use item U23 as an example to demonstrate the accuracy of subtask identification.

For this item, respondents were asked to request an exchange for a desk lamp purchased

online because of a wrong color. To complete the task, respondents need to finished several

subtasks involving email and web browsing. In the subtask clustering step, the number of

clusters is set to seven (Rc = 7). After clustering, the interpretation of each cluster may be

ascertained by examining the high frequency actions in the cluster. Two of the clusters are

related to clicking different links on the web page that are irrelevant to the required task.

Therefore, they are merged into a single subtask EXPLORE LINK. Each of the remaining

clusters is identified as a single subtask. The six resulting subtasks and their interpretations

are listed in Table 4.

Table 4: Problem-solving subtasks in item U23.
Subtask Proportion* Interpretation

EXPLORE MAIL 27.3% View and handling emails.
EXPLORE LINK 22.9% Exploration of links and boxes.

SUBMIT 16.9% Submit form and proceed to the next item.
OBTAIN CODE 14.0% Click button to obtain authorization code.
ENTER CODE 9.6% Enter correct authorization code.

FILL FORM 9.3% Fill the reason and/or objective in return form.

*Proportion = the aggregated number of actions within each subtask, divided by the total
number of actions.

Evaluating the accuracy of subtasks identified by SIP requires the ground truth of the

state sequences v for at least a subset of the response processes. To obtain such reference

sequences, we randomly sample 100 response from Stest, denoted by S̃test, and manually

label them according to the six identified subtasks. These resulting state sequences and the
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corresponding subtask sequence are treated as the truth and we compare the estimated ones

with them for evaluation.

To verify the interpretation of the identified subtasks from our procedure, we compare

the action frequency profile for the estimated and true state sequences. These profiles are

exhibited in Figure 5, where the left and right panels correspond to the estimated and true

action frequency profiles, respectively. Each column represents a probability vector that sums

to one. Two observations can be made from the figure. First, the identified subtasks can be

well-distinguished by their action frequency profiles. The high frequency actions under each

subtask are closely related to the subtask accomplishment. Second, the action frequency

profiles in the left and right panels are similar, suggesting that the proposed procedure can

reasonably identify the problem-solving subtasks.
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Figure 5: Action frequency profiles for the estimated and true state sequences of U23. Actions
that appear fewer than 2% of the total action occurrences are omitted in the plot.
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Figure 6 shows the subtask identification result for a typical process in S̃test. The solid

lines are the entropy process derived from the fitted RNN model in the one-step-ahead

prediction. In the top panel, the dashed lines stand for the segmentation locations identified

by the SIP. The identified subtask of each subprocess is marked below the horizontal axis. In

the bottom panel, the dashed lines and the labeled subtasks are obtained from the true state

sequence. For this process, SIP correctly identified most of the subtasks in terms of both

the transition location and category. The only exception is that the third identified subtask

has a longer subprocess than the reference and is incorrectly labeled as EXPLORE MAIL.
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Figure 6: Subtask identification result of a typical response process from U23. Top: Problem
solving subtasks identified by SIP. Bottom: Manually labeled problem-solving subtasks.

We evaluate the accuracy of subtask identification on S̃test by the five criteria defined

in Table 2 and the results are summarized in Table 5. We also include the results from a

HMM in the table for comparison. The estimated hidden states are treated as the estimated

state sequence for HMM. It is clear from Table 5 that SIP produces more balanced Precision
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and Recall, which measure the accuracy of estimated subtask locations. It also gives more

balanced Precision+ and Recall+, which take into account both the transition location

and direction. In contrast, HMM has higher Recall and Recall+, but lower Precision and

Precision+. It tends to divide a process into shorter and less interpretable subprocesses.

The estimated state sequence from SIP also has a higher Overlap than that from HMM.

Table 5: Evaluation of subtask results.
Precision Recall Precision+ Recall+ Overlap

SIP 0.335 0.327 0.251 0.246 0.659
HMM 0.200 0.859 0.072 0.309 0.330

4.3 Subtask visualization

The detailed action information in response processes makes process data an important

source for studying problem-solving behaviors. At the same time, the excessive length of

the sequences and the high variability in the sequence elements make it difficult to visualize

the detailed processes to intuitively understand the problem-solving process. With SIP, a

response process is simplified into a much shorter and less variable subtask sequence while

keeping the primary problem-solving steps. By visualizing these subtask sequences, the

similarities and differences among responses can be detected easily.

We use item U01b to demonstrate how to visualize subtask sequences. In U01b, re-

spondents were asked to organize email responses to a party invitation in an email client.

New folders should be created to keep track of the attendants’ accommodation needs. We

identified three problem-solving subtasks (listed in Table 6) from the response processes.

Table 6: Problem-solving subtasks in item U01b
Subtask Proportion Interpretation

CREATE NEW FOLDER 23.5% Create a new folder to classify emails.
VIEW TOOLBAR MOVE 28.5% View email, use toolbar to move it.

VIEW DRAG DROP 48% View email, drag and drop the icon to a folder.

We divide the respondents of U01b into two groups according to their final response
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outcomes and visualize the subtask sequences for each group in Figure 7 as follows. The

three subtasks are represented by three distinct colors in the figure. A subtask sequence

q̂ of length L is displayed as a horizontal line segment with L units in length. Each unit

corresponds to a subtask in the sequence and is colored accordingly. The line segments are

then sorted and stacked vertically in the dictionary order of the subtask sequences. Figure

7 presents all subtask sequences with length no greater than seven, representing more than

95% of the respondents of U01b. There are about 12,000 respondents in the correct group

and about 7,000 respondents in the incorrect group. By visualizing their subtask sequences,

the difference in the problem-solving processes between the groups becomes obvious: most

of respondents in the incorrect group did not create new folders, which is an essential step

for successfully completing the task.

1 3 5 7
Subtasks

0

2000

4000

6000

8000

10000

12000

Re
sp

on
de

nt
s

Correct

1 3 5 7
Subtasks

0

1000

2000

3000

4000

5000

6000

7000

Re
sp

on
de

nt
s

Incorrect

CREATE_NEW_FOLDER
VIEW_DRAG_DROP
VIEW_TOOLBAR_MOVE

Figure 7: Visualization of the subtask sequences of item U01b.
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4.4 Problem-solving strategies

In this section, we use the subtask sequences of item U19a obtained from the SIP to explore

the relationship between problem-solving strategies and the final outcome as well as the

response time. In item U19a, respondents are asked to find out the ID number of a bike club

member from a given spreadsheet and then email it to the secretary. Using SIP, we identify

five problem-solving subtasks as listed in Table 7. We find two strategies after visualizing

the subtask sequences. In the first one, the ID number is obtained by searching the name of

the club member in the spreadsheet. In the second one, respondents first sort the members

in spreadsheet according to their names and then look up the given name to obtain the

ID number. If the subtask sequence contains SEARCH but not SORT, then it indicates

one strategy, whereas if it contains SORT but not SEARCH, then it indicates the other

strategy. In addition, subtask sequences of some respondents contain both SEARCH and

SORT, indicating a mixing of the two strategies.

Table 7: Problem-solving subtasks in item U19a.
Subtask Proportion Interpretation

EXPLORE 18.9% Make exploratory actions on email and spreadsheet environments.
SEARCH 13.4% Use searching tools to find ID number.

SORT 22.9% Use sorting tools to find ID number.
WRITE EMAIL 17.1% Write an email that includes the number founded.
SEND EMAIL 27.7% Send email to secretary and continue to the next item.

The overall percentage of correct responses in U19a is 84.8%. We find that respondents

can get the correct answer more easily with the SEARCH strategy than the SORT strategy.

There are 3,865 respondents who used searching tools only and 91.6% of them solved the

problem correctly. Among the 9,812 respondents who used sorting tools only, the proportion

of correct responses is 83.1%.

To compare the problem-solving efficiency of the two strategies, we plot the histograms

of the logarithm of the response time for the two groups in the top panel of Figure 9. It

shows that respondents in the SEARCH group tend to use less time to finish the item than

those in the SORT group. To further look into the age effect, we display the joint kernel

23



density estimates of respondents’ age and response time for the two groups in the lower

two plots of Figure 9. The marginal densities for age and response time are also shown by

curves on the top and right side of each plot. For a given age, the log response time in the

SORT group tends to be longer than that in the SEARCH group. We also observe that

the marginal distribution of age for the SORT group has a heavier tail than that for the

SEARCH group, indicating that elder respondents are more inclined to perform SORT than

the younger ones. In addition, the correlation between age and log response time is 0.277 for

the SEARCH group and 0.329 for the SORT group. The positive correlations suggest that

the elder generally spent more time when applying the same strategy.
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4.5 Process information decomposition

Subtask sequences reflect respondents’ high-level problem-solving strategies and thus carry

more information than the traditional item responses. However, they also lose some in-

formation compared to the original response processes since detailed actions within each

subtask are ignored. Information in a response process can be decomposed into two parts,

information in the subtask sequence and information within each problem-solving subtask.
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Figure 9: Density plots on response time of item U19a under two strategies.

To illustrate the decomposition, we use item U19a as an example and conduct an exper-

iment to predict the final outcome, literacy score, numeracy score and the age of respondent

from the information in the response processes. For each target variable, a generalized linear

model

g(E(Y )) = β0 + β>x

is considered, where Y denotes the target resposne variable, g is the link function, and x

is a feature vector of the response processes of U19a. We use a logit link g(p) = log( p
1−p)

for the model of the binary outcome and the identity link g(x) = x for the models of other

target variables. To compare the information in the subtask sequence and within subtasks,

four different choices of the feature vector x are considered.

(i) The feature vector x consists of only the binary outcomes of U19a. We call it the

baseline model.

(ii) Subtask transition features are included in x in addition to the binary outcome. A

subtask feature is a binary indicator of whether a transition occurs in the estimated

subtask sequence q̂.
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(iii) Unigram and bigram features for each subtask in G are included in x in addition to

the features used in choice (ii). In particular, we only consider those unigrams and

bigrams whose frequencies are higher than 0.1%. If subtask i exists in q̂, then the

feature corresponding to a unigram/bigram is 1 if the unigram/bigram appears in the

subprocesses with state i and 0 otherwise. If subtask i does not appear in q̂, we set all

unigram and bigram features corresponding to the subtask to zero.

(iv) Unigram and bigram features for the response process are used in x in addition to

the binary outcomes. The feature corresponding to a unigram/bigram is 1 if the uni-

gram/bigram appears in the response process and 0 otherwise. Same as in choice (iii),

only unigrams and bigrams whose frequencies are higher than 0.1% are considered.

When the target variable is the binary outcome, we do not consider choice (i) and remove

the binary outcome from the features in choices (ii)-(iv). To investigate the information

contained in a specific subtask i, we only consider respondents whose subtask sequences

contain i and extract unigram/bigram features from the corresponding subprocesses in the

same way as choice (iii).

The model is fitted on Strain ∪ Svalid for each choice of feature vector and the prediction

performance is evaluated on Stest. The evaluation criterion is the area under the ROC curve

(AUC) for binary outcome and the out-of-sample R2 (OSR2) for other variables. To avoid

overfitting, L2 penalties are placed on the coefficients for both the logistic and the linear

model. The penalty parameter is determined by five-fold cross-validation.

The prediction results are presented in Figure 10. A few observations can be made

from the figure. First, the subtask sequence contains more information about respondents’

literacy, numeracy scores and age than the binary final outcome as the OSR2s corresponding

to the subtask sequence are significantly higher than that of the baseline model. Second,

the amount of extra information provided by the detailed actions within subtasks depends

on the variable of interest. For the binary final outcome, the subtask sequence carries only

slightly less information than the original response process while for other variables, including
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detailed actions within subtasks can significantly improve the prediction performance. Third,

subtasks differ in the amount of information they can provide on a given variable of interest.

Subtask SORT is most informative for predicting literacy and numeracy score, while subtask

WRITE EMAIL produces the highest OSR2 for predicting age.
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Figure 10: Out-of-sample R2 under four different choices of features and the features from
different subtasks of item U19a. The labels Baseline, Transitions, Transition+Subtasks
and Process correspond to choice (i), (ii), (iii) and (iv) respectively. Other labels in grey
correspond to the identified subtasks of U19a.

This information decomposition provides a structure of the response process and a map

of dependence between the response process and other characteristics. For example, if one
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wants to have an item that accurately reflects respondents’ age, then including more email

handling subtasks should be considered. The decomposition can also suggest real time

intervention strategies. If a respondent cannot not enter the subtask closely related to the

final outcome after a long period of exploration or does not perform well in such subtasks,

a hint may be provided to help the student stay on the right track.

5 Concluding remarks

Process data have been a recent focus in the psychometrics literature, due to the increased

use of problem solving items in large scale testing as well as the recognition of potential

value in educational assessment. Exploration of process data has been hindered by the lack

of effective statistical and psychometric tools. In this paper, we develop a new approach

to conducting exploratory analysis of process data. The new approach, using the concept

of action predictability, transforms long and noisy response processes into shorter and more

interpretable subtask processes. Our case study using PIAAC 2012 shows that the sub-

task sequences can be used to visualize and identify respondents’ problem-solving strategies.

We also used the case study to show how the subtask sequences can be used to explore

relationship between response processes and other variables of interest.

The proposed approach allows a great deal of flexibility which entails possible refinement

and improvement. Although we use an RNN-based model for the action prediction, other

machine learning algorithms with a built-in sequential structure may serve as alternatives.

In additional to the action sequence, process data also contain the sequence of action times.

How to incorporate the action time stamps into the modeling and consequently the analysis

should be of interest. We refer to (Wang et al., 2019; De Boeck and Jeon, 2019; Lee et al.,

2019; Zhang and Wang, 2018) for recent works on analysis of response times in process data.
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A Structure of GRU

Let σ denote the sigmoid function, i.e. σ(x) = 1
1+e−x and ‘?’ denote element-wise multipli-

cation between vectors. The new hidden state θj+1, as shown by (12), is a weighted sum of

previous hidden state θj and a candidate ψj, while κj and rj is known as the update gate

and reset gate respectively (Cho et al., 2014).
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κj = σ(U1θj + V1xj), (9)

rj = σ(U2θj + V2xj), (10)

ψj = tanh (U3(rj ? θj) + V3xj) , (11)

θj+1 = (1− κj) ? θj + κj ?ψj, (12)

B Action Prediction Model Parameter Estimation

The parameters in the action prediction model described in Section 2.1 can be estimated by

maximizing the log-likelihood function of η defined in (3). It is equivalent to minimizing the

negative likelihood function L(η;S) = −l(η;S). The estimator η̂ = argminη L (η;S) does

not have a closed form. We adopt the stochastic gradient descent (SGD) algorithm (Robbins

and Monro, 1951) to approximate η̂ iteratively. In the SGD algorithm, η is initialized with

some arbitrary value η(0). Let η(g) denote the parameter value after g iterations, g = 1, 2, . . ..

In iteration g, we randomly sample ig from {1, . . . , N} and update η according to

η(g) = η(g−1) + ξg∇l
(
η(g−1); s(ig)

)
, (13)

where ξg is the step size of the update and ∇l
(
η; s(i)

)
denote the gradient of l(η; s(i)).

Traditionally, the step size ξg is often a predetermined decaying sequence. Several data-

driven methods such as AdaGrad (Duchi et al., 2011) and RmsProp (Tieleman and Hinton,

2012) have been proposed recently. These methods compute ξg from η(1), . . . ,η(g−1) and

often leads to faster convergence in practice. We use RmsProp in synthetic and real data

analysis.

Theoretically, the SGD algorithm should be run until the convergence of η, that is, until

the change of η between two consecutive iterations is below some threshold. However, as
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models involving neural network are often overparameterized, running the algorithm until

convergence is often time-consuming and very likely leads to overfitting. To avoid these

issues, we terminate the algorithm according to an early stopping rule. To apply this rule,

the set of observed processes S is randomly split into a training and a validation set, denoted

by Strain and Svalid, respectively. We perform the SGD algorithm on the training set for a

large enough number of iterations while monitoring the performance of the estimated model

on the validation set. More specifically, in each iteration, s(ig) is sampled from Strain to

update η. Every several iterations, we evaluated L(η;Svalid) at the current value of η. The

set of parameter values with the lowest L(η;Svalid) is output as η̂. With this approach, we

essentially terminates the algorithm before the model overfits.

The above algorithm is performed for a chosen K. To select an appropriate embedding

dimension K, one can obtain η̂ for a range of K. The K corresponding to the smallest

validation loss L(η̂;Svalid) is selected.

C Data generation models in simulation study

C.1 Subtask sequence generation

To generate the subtask sequence q, we first uniformly sample the length of the subtask

sequence L from {3, 4, 5, 6}. Given L, q = (q1, . . . , qL) is generated from a Markov model

with randomly generated starting distribution and state transition matrix. More specifically,

we create a vector u = (ui)i∈G and an R × R matrix U = (uij)i,j∈G by sampling their

elements from a uniform distribution on [0, 1]. The starting distribution π = (πi)i∈G and the

probability transition matrix P = (pij)i,j∈G are then computed by

πi = ui

/∑
j∈G

uj, pij =


0, j = i;

uij

/ ∑
k∈G,k 6=i

uik, j 6= i.
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The first element q1 is generated according to π. The remaining elements are generated

iteratively based on the transition matrix.

C.2 Subprocess generation

For each subtask g ∈ G, we uniformly sample without replacement from A a sequence of six

special actions a(g) =
(
a

(g)
1 , . . . , a

(g)
6

)
, which serves as the standard solution to the subtask

corresponding to subtask g. The actions not included in a(g) are considered irrelevant for

solving the subtask. Given the subtask label ql = g, we generate the l-th action subsequence

s̃ from a Markov model with the starting distribution π(g) =
(
π

(g)
i

)
i∈A

and the probability

transition matrix P (g) =
(
p

(g)
ij

)
i,j∈A

specified below. Let A(g) be a set of the actions in the

standard solution a(g) except for the last one a
(g)
6 . We generate actions in the subsequence

until a
(g)
6 appears. First, we generate a vector u(g) =

(
u

(g)
i

)
i∈A

and an M × M matrix

U (g) =
(
u

(g)
ij

)
i,j∈A

with elements independently generated from a uniform distribution on

[0, 1]. Then we generate a modified matrix Ũ (g) =
(
ũ

(g)
ij

)
i,j∈A

from U (g) to assign higher

weights on A(g) and the standard solution a(g). Let ψ be a random function on A such that

ψ
(
a

(g)
i

)
= a

(g)
i+1 for a

(g)
i ∈ A(g) and ψ(a) is independently and uniformly sampled from A(g)

for a ∈ A \ A(g). By setting

π
(g)
i = u

(g)
i

/∑
j∈A

u
(g)
j , ũ

(g)
ij =

 100, j = ψ (i) ;

u
(g)
ij , j 6= ψ (i) ,

p
(g)
ij = ũ

(g)
ij

/∑
k∈A

ũ
(g)
ik ,

we get the starting distribution π(g) and the probability transition matrix P (g) for generating

action subsequences under subtask g. Hence, for each row indexed by action i, element in

column ψ(i) of P (g) is a special action and also the most likely action in the next step. In

particular, when i is a special action in A(g), ψ(i) is the next special action in the standard

solution a(g).
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