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1 Introduction

In repeated games of price competition, strategies that maximize joint profits can be sustained

in equilibrium when firms are sufficiently forward-looking. Typical models of collusion assume

that all firms understand the dynamic strategies of rivals and value future profits. Several

factors are viewed as important for facilitating collusion, including similar size and costs, pre-

dictability of demand, the observability of all rivals prices, and possibility for frequent direct

communication.1

Such conditions point to the fragility of collusion in standard models. In particular, collusive

equilibria are not robust to the presence of short-sighted behavior by rivals. Myopic behavior

by a single firm constrains the set of equilibria in repeated games, typically ruling out collusive

strategies and joint profit maximization.

From this starting point, we consider the implications of pricing algorithms in environments

where rival firms may act naively—i.e., they behave as if they are myopic, memoryless, or non-

strategic. Firms are increasingly adopting algorithms that automate the monitoring of rivals’

prices and generate price updates in response. However, these adoption decisions have not been

uniform across firms. Even among firms that compete in the same market, some firms have a

significant advantage in terms of their ability to observe rivals’ prices and the speed in which

prices can react. Building on empirical work that documents high-speed pricing algorithms in

various markets,2 we consider a model where a single firm’s algorithm allows it to update prices

more quickly than its rivals. The faster firm considers repeated-game dynamics, while its rivals

may not. We then ask: what outcomes can a single, forward-looking firm achieve even when

all of its rivals are naive?

We are motivated by three possibilities for naive behavior by rival firms. First, a naive rival

may be myopic, in that it only considers current-period profits when setting prices. Second, a

naive rival may be memoryless, in that it only conditions its actions on payoff-relevant variables

and not the history of play. Third, firms may be non-strategic, in that they may be unaware that

they are playing a game where rival prices influence their profits. For a motivating example,

consider a firm that sets prices each quarter in order to maximize profits for the quarter, without

considering future periods or conditioning on any information about competitor prices. This

example displays all three of the above properties that we categorize as “naive.” Any one of

these conditions would rule out standard collusive strategies in equilibrium.

In this paper, we show that the adoption of faster pricing by a single competitor expands the

set of equilibrium strategies that allow for higher prices in a repeated game with differentiated
1See, e.g., Scherer (1980), Tirole (1988), or Porter (2005).
2Brown and MacKay (2021) show that the pricing technology for large online retailers varies from once-per-

week updates to updates that occur multiple times per hour. In addition, third party pricing software often highlight
differences in speed. For instance, repricer.com offers a third-party pricing algorithm that prices hourly and a
premium version that “reacts to changes your competitors make in 90 seconds.” The adoption of high-speed pricing
algorithms has also been observed in other settings (e.g., Assad et al., 2022; Aparicio, Metzman and Rigobon, 2021).
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products. First, we show how firm’s faster pricing affects the critical discount factor of its rival

when playing a standard trigger strategy. We establish that a sufficiently fast pricing advantage

can drive the rival’s critical discount factor to zero. In other words, the joint profit maximizing

price levels can be achieved when the slower rival is myopic, when it is incapable of employing

history-dependent strategies, or even when it is blind to presence of the fast firm. Second,

we demonstrate that any pricing advantage enables the faster firm to sustain higher (partially

collusive) prices with a naive rival. Third, we consider coercive trigger strategies that maximize

profits for the faster firm, and we compare these outcomes to the outcomes that maximize joint

profits.

The equilibrium strategies we develop are more robust than those in standard models that

assume simultaneous price-setting behavior. In our model, the faster firm can punish the slower

rival before the slower rival’s next opportunity to adjust prices. In this way, a firm with faster

pricing can unilaterally coerce a slower rival into setting higher prices in the current period

even if the slower rival does not internalize punishment in future periods.3 The results can be

generalized to N -firm oligopolies where a single firm has a pricing advantage and the other

N − 1 firms are naive.4

While we start by examining trigger strategies, the punishment need not be that drastic.

Our analysis of pricing rules that are a linear function of the slower rival’s price demonstrates

that such strategies can lead to collusive prices while potentially raising less antitrust scrutiny

and being robust to the use of simple profit optimization by the slower firm. When the faster

firm chooses the optimal strategy that maximizes its own profits, faster pricing can generate

large asymmetries in prices and profits even if the firms are otherwise symmetric. In some

environments, the fast firm can dictate that the slower firm set prices above the joint profit-

maximizing price, leading to a greater deadweight loss and lower welfare than that obtained

under joint profit maximization.

There is growing concern about collusion in online markets, especially when firms use algo-

rithms (Harrington, 2018). The literature has has largely focused on simultaneous move games,

including a literature on collusion with artificial intelligence (Waltman and Kaymak, 2008; Cal-

vano et al., 2020). It is well known that in simultaneous move games, high frequency pricing

implies a smaller per period discount rate, making collusion easier to sustain when firms have

perfect monitoring (e.g., Abreu, Milgrom and Pearce, 1991). However, asymmetries—typically

in terms of costs or demand—are generally believed to make collusion more difficult to sustain

(Scherer, 1980; Tirole, 1988). A smaller literature has focused on alternating-move games as in

Maskin and Tirole (1988). In particular, Klein (2021) examines collusion with machine learn-

ing algorithms in a sequential game. Finally, the literature on price leadership and collusion has
3Our analysis differs from earlier work by Brown and MacKay (2021) in that we allow the fast firm to take into

account repeated-game considerations when choosing its strategy.
4When the faster firm can observe each of the prices of its rivals, it can specify a punishment to each rival’s

possible deviation that ensures no rival deviates in equilibrium.
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examined the incentives to collude when one firm announces a price and a rival follows (e.g.,

Mouraviev and Rey, 2011). In previous work, Brown and MacKay (2021) examine competitive

(Markov perfect) outcomes when firms may differ in the speed at which they set prices. We

are not aware of research that examines collusion in settings where firms differ in their pricing

frequency.5

The paper proceeds as follows. We introduce the model and present the non-cooperative

Markov perfect equilibrium in Section 2. In Section 3, we provide the conditions under which

collusion is incentive compatible, even in the presence of naive firms. Section 4 introduces

the coercive equilibrium that maximize the profits of the sophisticated firm. In Section 5, we

introduce the idea of learning for the naive firm, and we show how the sophisticated firm

can obtain the collusive or coercive equilibria even with simple linear strategies. Section 6

concludes.

2 Model

2.1 Environment

Two firms, s and f , sell differentiated products in an infinitely repeated continuous-time game.

We normalize the period length to 1. At the start of each period, both firms simultaneously set

prices. Firm s, the slow firm, chooses ps, which persists throughout the period. Firm f , the fast

firm, has higher frequency pricing. The firm initially sets price pf . Within each period, after the

elapsed interval α ∈ [0, 1], the fast firm can observe ps and adjust its price to rf . We call α the

reaction time.

Figure 1 shows the timing of the model. After f sets price rf in the latter part of the

period, s must wait fraction 1 − α to adjust price in response. Thus, the model nests a stan-

dard simultaneous move game when α = 1 and a sequential price-setting game when α = 0.

Throughout, we will implicitly assume that α represents the subjective reaction time that incor-

porates within-period discounting, and we will generally allow firms to use different short-term

(within-period) and long-term (across-period) discount rates.6

In practice, differences in pricing frequency may provide the faster firm multiple opportuni-
5Our paper also relates to a previous literature examining games in which a single long-run player faces a

succession of repeated short-run players. The classic application is one in which an incumbent faces a new (short-
run) potential entrant in each period, as studied by Milgrom and Roberts (1982) and Kreps and Wilson (1982).
Fudenberg and Levine (1989) and Fudenberg, Kreps and Maskin (1990) provide folk-theorem style analysis for
feasible payoffs for a general class of games with a single long-run player. Our work contributes to this literature by
considering repeated games of price competition and the advantage conferred to a single firm through the adoption
of a pricing algorithm. In our setting, we consider repeated interactions with the same rival and interpret short-run
behavior as arising from naive play.

6It is straightforward to explicitly account for discounting within the period. Consider any α and any instan-
taneous within-period discount rate ρ. Then there exists an objective (non-discounted) reaction time α̃ such that∫ α̃
0 e−ρtdt∫ 1
0 e−ρtdt

= 1−e−ρα̃

1−e−ρ . For a given δ, the mapping of α to α̃ is one-to-one.
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Figure 1: Timing with Differences in Pricing Frequency

Period t Period t+ 1

Firm s

Firm f

α 1− α
Notes: Figure shows timing of pricing when firm f , the fast firm, can react with lag α. Circle markers represent
opportunities to adjust prices. The gray circle represents an opportunity to adjust price that is inconsequential
in the model.

ties to adjust prices in each period.7 However, given the assumptions about our environment,

only the first opportunity to adjust price within the period is consequential. In this way, α can

be interpreted as the lag between s setting price ps and the first opportunity for f to readjust

its price in response. In the case of high-speed pricing algorithms, α is determined by the time

required for software to observe a rival’s price and update price in response.

Demand arrives in continuous time. The time-invariant instantaneous demand function for

firm i is given by Di(pi, p−i). We assume production costs are linear and equal to ci. Thus, firm

i receives instantaneous profits πi = (pi− ci)Di(pi, p−i). The stage game payoff for the fast and

slow firm are then given by

vf ((pf , rf ), ps) = απf (pf , ps) + (1− α)πf (rf , ps)

vs(ps, (pf , rf )) = απs(ps, pf ) + (1− α)πs(ps, rf ).

We make the following assumptions about demand:

Assumption A1. We assume that each Di(p) is continuous and twice differentiable, and that
∂Di(pi,p−i)

∂pi
< 0 and ∂2Di(pi,p−i)

∂p2i
≤ 0. Further, we assume that ∂Di(pi,p−i)

∂p−i
> 0 and ∂2Di(pi,p−i)

∂pi∂p−i
≥ 0.

The first two conditions are to ensure that demand is downward-sloping and that solutions

are well-behaved. The second two conditions ensure that the products are substitutes and that

there weakly increasing differences in prices.

2.2 Noncooperative Markov Perfect Equilibrium

We begin by considering the noncooperative Markov perfect equilibrium. We follow closely

Brown and MacKay (2021), and we consider this equilibrium to be competitive. It suffices
7Consider the differences in pricing frequency among major online retailers in the U.S. analyzed by Brown and

MacKay (2021). A slower retailer updates prices once at the beginning of each week, whereas another retailer
updates the price once each day. At the beginning of the week, the firms set prices simultaneously. Given that the
fast firm can respond to the slow firm’s price the following day, α = 1/7 in this case.
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to characterize the subgame perfect equilibrium (SPE) of the stage game. We use backward

induction to solve for the SPE.

After α of the period has elapsed, f can respond to s’s price and chooses,

r∗f (pf , ps) ∈ argmax
rf

vf ((pf , rf (pf , ps)), ps)

where r∗f solves,

∂πf
∂pf

(r∗f , ps) = (1− α)

[
Df (r∗f , ps) + r∗f

∂Df

∂pf
(r∗f , ps)

]
= 0.

Since r∗f does not depend on pf , let r∗f (ps) = r∗f (pf , ps).

Given that f will choose r∗f (ps) in latter part of the stage game, f and s simultaneously

choose pf and ps. In particular, f chooses,

p∗f (ps) ∈ argmax
pf

vf ((pf , r
∗
f (ps)), ps)

where p∗f solves,
∂vf
∂pf

(p∗f , ps) = α

[
Df (p∗f , ps) + r∗f

∂Df

∂pf
(p∗f , ps)

]
= 0. (1)

This implies p∗f = r∗f in equilibrium.

Turning to the slow firm, s chooses,

p∗s(pf ) ∈ argmax
ps

vs(ps, (pf , r
∗
f (ps)))

where p∗s solves,

∂vs
∂ps

(ps, p
∗
f ) = α

∂πs
∂ps

(ps, p
∗
f )︸ ︷︷ ︸

Bertrand Incentive

+(1− α)

[
∂πs
∂pf

(p∗s, r
∗
f (p∗s))

∂r∗f
∂ps

(p∗s) +
∂πs
∂ps

(p∗s, r
∗
f (p∗s))

]
︸ ︷︷ ︸

Sequential Incentive

= 0 (2)

The first-order condition in equation (2) highlights a key implication when a firm faces a

rival with faster pricing. Since prices are initially set simultaneously, fraction α of the period

creates incentives that are analogous to the standard Bertrand model with simultaneous price

setting. However, the slow firm’s profit in the latter part of the stage game, πs(rf (pf , ps), ps),

is a function of the fast firm’s updated price before the slow firm can react. This implies that

for fraction 1 − α of the stage game, there is a sequential pricing incentive in which the slow

firm acts as the leader. In this part of the stage game, the slow firm internalizes the fast firm’s

reaction function r∗f (ps). The relative speed that the fast firm can adjust prices, α, determines

the weight that the slow firm places on simultaneous versus sequential incentives.
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An SPE, ((pNf , r
N
f ), pNs ), is a solution to the system given by,

pNf = p∗f (pNs ), pNs = p∗s(p
N
f ), rNf = r∗f (p∗s(p

N
f ))

As discussed in Brown and MacKay (2021), when prices are strategic complements and demand

is symmetric, the faster firm has lower prices and higher profits than the slower firm.8 Both

prices are higher than the Bertrand Nash equilibrium of the simultaneous pricing game. In our

context, strategic complementary follows from assumption A1.

2.3 Joint Profit Maximization

The joint-profit maximizing prices satisfy

(pCf , p
C
s ) = arg max

(pf ,ps)

∑
i∈{f,s}

πi(pi, p−i).

For an interior solution, (pCf , p
C
s ) solves,

Di(pi, p−i) + pi ·
∂Di(pi, p−i)

∂pi
+ p−i ·

∂D−i(pi, p−i)

∂pi
= 0, ∀i.

Whenever the set of chosen strategies yields (pCf , p
C
s ), we say that the firms obtained the collu-

sive outcome.

2.4 Example with Linear Demand

Throughout the paper, we use a simple symmetric linear demand system to illustrate key fea-

tures of our model given by

Di(pi, p−i) =
1

2

[
1−

(
1 +

d

2

)
pi +

d

2
p−i

]
(3)

where d ≥ 0 is an inverse measure of product differentiation. This demand system can be

derived from the quasilinear quadratic utility model (Singh and Vives, 1984). The goods do

not compete when d = 0 and are perfect substitutes when d = ∞. Without loss of generality,

marginal costs are normalized to zero.

The MPE of the stage game given this demand system is presented in Appendix A. For

α ∈ (0, 1), then pB < pNf < pNs < pC where pB is the Bertrand price (under simultaneous price

setting).
8Brown and MacKay (2021) refer to this as the pricing frequency equilibrium.
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3 Collusive Prices

We consider the unilateral adoption of dynamic strategies by the faster firm that yield outcomes

equivalent to those obtained by standard models of collusion. Full collusion prices are the prices

that maximize joint profits, whereas partial collusion prices are those that are elevated above the

Bertrand-Nash equilibria but not to the level of full collusion. In contrast to standard models of

collusion, we show that full collusion prices may be obtained using a one-sided trigger strategy

even when the slower firms are naive.

3.1 Full Collusion

We characterize a dynamic trigger strategy that the fast firm can employ so that it is incentive

compatible for the slow firm to choose collusive prices in every period. As with standard models

of tacit and explicit collusion, we require that the slow firm maximizes the present discounted

value of profits given the faster firm’s strategy. We defer a discussion of the fast firm’s incentives

until the end of this section.

We assume that the fast firm chooses a strategy that determines prices pf,t and rf,t based

on the the history of previous prices. Specifically, the fast firm employs a modified grim trigger

strategy. The fast firm initially chooses price pCf , the joint profit maximizing price. As long

as the slow rival also chooses the joint profit maximizing price, pCs , the fast firm chooses pCf
at the subsequent opportunity. If the rival defects and sets any other price p′s, the fast firm

chooses a within-period punishment price rPf (p′s). Importantly, the punishment occurs after lag

α within the period, based on the advantage of the faster firm. Starting with the beginning of

the subsequent period, the fast firm chooses pPf at every pricing opportunity.

We follow convention and assume that the punishment prices are chosen based on non-

cooperative play. Specifically, we assume that the within-period punishment is given by rPf (p′s) =

r∗f (p′s) and that pPf = pNf following the SPE of the stage game.

We initially assume the slow firm is informed about the strategy of its rival. This is an

important assumption that we relax in Section 5. Given the discount factor δs for the slow firm,

the present discounted value of colluding for the slow firm is given by

∞∑
t=0

δtsvs,t(p
C
s , (p

C
f , p

C
f )) =

1

1− δs
πs,t(p

C
s , p

C
f )

The slow firm compares discounted profits of complying versus deviating. Define the defec-
tion and defection reaction prices as,

pDs ∈ argmax
ps

{
απs(ps, p

C
f ) + (1− α)πs(ps, r

∗
f (ps))

}
,

rDRf = r∗f (pDs ).
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The defection price is the price that maximizes the slow firm’s stage game profit given that

f sets the collusive price at the beginning of the stage game and best responds when updating

its price within the stage game. The defection reaction is the best response by f in the latter

part of the stage game after s defects.

We impose additional assumptions on the solutions of the stage game that will allow analysis

of the repeated game.

Assumption A2. The following profit relations hold,

1. πs(pNs , p
N
f ) < πs(p

C
s , p

C
f ),

2. πs(pCs , p
C
f ) < πs(p

C
s , p

D
f ),

3. πs(pDs , p
DR
f ) < πs(p

C
s , p

C
f ).

These assumptions eliminate trivial outcomes of the game. In particular, they guarantee that,

for the slow firm, collusion yields higher profits than the SPE in the stage game, there is short-

run incentive to defect when colluding, and that the fast firm can punish defection within the

stage game.

Given the trigger strategy of the fast firm, the collusive price pCs is incentive compatible for

the slow firm if

1

1− δs
πs(p

C
s , p

C
f ) ≥ απs(pDs , pCf ) + (1− α)πs(p

D
s , p

DR
f ) +

δs
1− δs

πs(p
N
s , p

N
f ). (4)

We define the critical discount factor as the minimum firm-specific discount factor above which

collusive prices are incentive compatible. The critical discount factor for the slow firm can then

be expressed as

δ̄s(α) =
απs(p

D
s , p

C
f ) + (1− α)πs(p

D
s , p

DR
f )− πs(pCs , pCf )

απs(pDs , p
C
f ) + (1− α)πs(pDs , p

DR
f )− πs(pNs , pNf )

. (5)

When δs > δ̄s(α), it is not profitable for the slow firm to deviate from pCs . When α = 1, the

critical discount factor for standard collusion with simultaneous pricing is obtained.

Providing a firm with a faster pricing has three effects that shift the critical discount factor

relative to simultaneous pricing. First, the benefit from deviating shrinks, as the slow firm

receives the deviation profits for only a portion (α) of the period. Further, pDs will tend to be

a less aggressive deviation with smaller α, as the slow firm puts more weight on the within-

period punishment profits πs(pDs , p
DR
f ). Both of these forces reduce the benefits of a deviation

and lower the critical discount factor. On the other hand, noncooperative profits πs(pNs , p
N
f )

may be higher with a smaller value of α (Brown and MacKay, 2021). This limits the ability of

the faster firm to punish.
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Overall, the presence of a pricing advantage lowers the critical discount rate for the slower

firm. In particular, for an arbitrary discount rate of the slower firm, there exists a pricing

advantage that make collusion incentive compatible. We now state this formally:

Proposition 1. For any δs ∈ [0, 1), there exists a threshold ᾱ > 0 such that, for any α < ᾱ,
collusive prices are incentive compatible for the slower firm, i.e., δs ≥ δ̄s(ᾱ). The critical reaction
time ᾱ is given by

ᾱ =
δs(πs(p

D
s , p

DR
f )− πs(pNs , pNf )) + πs(p

C
s , p

C
f )− πs(pDs , pDRf )

δs(πs(pDs , p
DR
f )− πs(pDs , pCf )) + πs(pDs , p

C
f )− πs(pDs , pDRf )

. (6)

Proof. See Appendix.

Thus, any strategy that results in the slower firm playing pCs in every period is incentive-

compatible for the slow firm. Example strategies include grim-trigger strategies or, in the case

when δs = 0, naive strategies that seek to maximize static profits. Further, as long as deviation

provides any benefit to the slow firm (πs(pDs , p
C
f ) > πs(p

C
s , p

C
f )), the fast firm requires a speed

advantage to maintain collusive prices. The incentive compatibility of collusive prices with a

zero discount factor is a key result of our model, and we discuss it below.

3.2 Considering Naive Rivals

We now discuss in more detail the behavior of the slower rival. We interpret the case in which

δs = 0 as a scenario in which the rival is naive. This case can be rationalized by different

assumptions lead the slower firm to act as if it is maximizing its static period profits. We

identify three behavioral assumptions that generate this naive behavior:

1. Myopic: The slow firm only values current-period profits.9

2. Memoryless: The slow firm is not able to condition its actions on the history of past play.

More specifically, we make the Markovian assumption that the firm is only able to condi-

tion its actions on payoff-relevant variables.

3. Non-strategic: The slow firm may be unaware that it is playing a dynamic game with rival

firms. For example, it may (falsely) believe that it is maximizing the profit function π̄s(ps)

that does not depend on the strategic variable pf .

In the latter two cases, the slower firm’s solution to the repeated game is equivalent to the

myopic solution, even though the slow firm values future profits. Thus, all three assumptions

give rise to behavior that can be captured by the case when δs = 0.
9Such “short-termism” may arise due to, e.g., misalignment between managerial incentives and shareholders.
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Figure 2: Critical Discount Factor and Reaction Times

(a) Critical Discount Factor
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(b) Critical Reaction Time when δs = 0
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Notes: Panel (a) shows the slow firm’s critical discount factor that sustains collusive prices as a function of
the reaction time, α, for different values of the (inverse) differentiation parameter d under linear demand
given by Equation 3. Panel (b) shows the cutoff for the reaction time, ᾱ, such that full collusive prices can be
sustained when the slow firm is myopic (i.e., δ̄s = 0). The firms simultaneously set prices at the beginning of
the period and then the fast firm can react with lag α.

The first two cases are distinguished from the third case in that the slow firm may be fully

aware of the actions of the fast rival and be able to predict its actions. In these cases, the

slow firm is limited in terms of how far forward or backward it looks in time when deciding its

actions.

In the third case, the slow firm is unaware that it is playing a game with strategic rivals. The

slow firm may be modeled as simply trying to maximize profits as a function of a single input

(its own price). Consider, for example, a firm that sets prices at the beginning of the week,

observes profits at the end of the week, and attempts to learn which price yields the highest

profits. The firm specifies its profit function as πs(ps). In truth, the profit function depends

also on the price of the faster firm, i.e., πs(ps, pf ), but the slow firm is not aware of this. The

faster firm can vary pf throughout the week to manipulate the slow firm into learning that the

optimal ps is a particular target price, for example, the fully collusive price.

Standard models of collusion do not hold up in equilibrium if any the above three conditions

are satisfied. All firms (1) must have positive valuations of future periods, (2) must be able to

condition on the history of play, and (3) must be aware of the strategies of rival firms.

By contrast, Proposition 1 shows that a fast firm can induce a slow firm to play collusive

prices even when the slow firm is naive, i.e., δs = 0. When α is small enough, the potential

reaction by the fast firm within a current period is enough to incentivize the slow firm to

maintain the collusive price. Thus, a pricing advantage enables “easy” collusion in ways that

are robust to a broader set of behavioral assumptions about rival firms.
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In Figure 2, we illustrate how a pricing advantage can incentivize a naive rival by solving

for the critical discount factor using our example model with linear demand. Panel (a) plots the

slow firm’s critical discount factor as a function of α for three different levels of differentiation.

For simultaneous pricing (α = 1), greater differentiation (lower d) yields lower critical discount

factors, implying collusion is easier to sustain. Regardless of the level of differentiation, faster

relative pricing (lower α) leads to lower critical discount factors. Notably, for all three values

of differentiation shown, the critical discount factor can be driven to zero with a short enough

reaction time. For example, when d = 1, any α < 0.5 yields a critical discount factor of 0.

Panel (b) in Figure 2 plots the critical reaction time necessary to incentivize collusive prices for

a naive rival as a function of the differentiation parameter, d.

3.3 Partial Collusion

Above, we consider the conditions under which is it possible for a single firm with a pricing

advantage to support prices equivalent to full collusion. Even when joint profit maximization is

not possible, a firm with a pricing advantage can employ a trigger strategy to support supracom-

petitive price levels. For partial collusion, we consider prices that are elevated proportionally

above the noncooperative prices for both firm.

In particular, any reaction time less strictly than 1 provides an opportunity for the faster

firm to increase prices above the MPE, even with naive rivals.

Proposition 2. For any reaction time α ∈ [0, 1), there exists a trigger strategy for the fast firm
that yields prices between the joint profit maximizing prices and the Bertrand-Nash prices, pi =

θpCi + (1− θ)pBi for i ∈ s, f and some θ ∈ (0, 1], for which ps is incentive compatible for the slow
firm when it is naive (δs = 0).
Proof. See Appendix.

The price and profits that can be sustained using a trigger strategy with a myopic rival

are shown in Figure 3. In our numerical example, demand and marginal costs are symmetric,

which yields symmetric prices. When α = 1, the standard Bertrand-Nash prices are obtained.

The profit-maximizing prices are plotted in panel (a). As α declines, these prices increase up

until the point that a critical discount factor ᾱ is obtained. For α < ᾱ, the faster firm is able to

support full collusion.

We discuss how these results may be generalized to an N -firm oligopoly in Appendix B.

3.4 Equilibrium

The above highlights that a pricing speed advantage can provide a fast firm with strategies

that incentivize naive (myopic, memoryless, or non-strategic) rivals to set collusive prices. We
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Figure 3: Maximum Symmetric Price and Profits by Reaction Time
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Notes: Figure shows the symmetric prices and profits that can be sustained for different levels of product dif-
ferentiation d under linear demand given by Equation 3. The firms simultaneously set prices at the beginning
of the period and then the fast firm can react with lag α.

have not yet addressed whether such strategies would be played in equilibrium, as we have not

addressed the incentives for the fast firm.

Formally, in our model, the incentive of the fast firm is similar to standard collusion. Con-

sider the history of prices of the fast firm at a period τ , hf,τ = {pf,1, rf,1, ..., pf,t, rf,t, ..., pf,τ , rf,τ}.
We assume that the slow firm employs a grim trigger strategy following

ps(hf,τ ) =

pCs , if pf,t, rf,t = pCf ∀t < τ

pNs , otherwise.

Thus, after a deviation by the fast firm, we assume that the slow firm chooses the noncoopera-

tive MPE price. This yields the prices πf (pNf , p
N
s ) after collusion has broken down.

The critical discount factor for the fast firm can be expressed as

δ̄f =
πf (pDf , p

C
s )− πf (pCf , p

C
s )

πf (pDf , p
C
s )− πf (pNf , p

N
s )

(7)

where pDf ∈ argmaxpf
{
πf (pf , p

C
s )
}

. Since pDf , pCf and pCs are not a function of α, these terms

are the same as under standard collusion (α = 1). However, the profits πf (pNf , p
N
s ) depend

on α, which may cause the critical discount factor for the fast firm to be higher than under

simultaneous pricing.

Assume that δs > δ̄s and δf > δ̄f . Then a subgame perfect Nash equilibrium is obtained

when the fast firm employs the trigger strategy described in Section 3.1 and the slow firm

12



employs the above grim trigger strategy. This SPE yields the collusive prices.

There are two reasons why we have deferred the description of equilibrium to the end of

this section. First, our view is that the equilibrium constructed above may place unnecessarily

strong restrictions on the beliefs and behavior of the faster firm. The standard SPE conditions

assume that each firm optimizes taking as given the strategies of its rivals. Considering the

sophistication of the faster firm, we think it might be reasonable for it to internalize potential

strategic reactions of its rivals, rather than taking them as fixed. For example, the fast firm may

believe that its rivals choose to be naive precisely because they are earning collusive profits, but

they may invest to become more sophisticated if they anticipate that the naive play would not

be in their favor. Then, faced with a choice between, e.g., the MPE characterized in Brown and

MacKay (2021) and the collusive outcome, we think it is reasonable that the fast firm may pick

the collusive outcome if it yields higher profits.

Second, in the presence of naive rivals, there are alternative trigger strategies that can yield

higher profits for the fast firm. We characterize these “coercive” strategies in the next section.

However, as above, there may be features of the environment “outside of the model” that

provide the fast firm incentives to maintain the joint-profit maximizing prices. For example, the

fast firm may be compensated through transfers or through reciprocal behavior by its rivals in

other (non-modeled) markets. In addition, one can consider environments where the slower

rivals consider adopting higher-frequency pricing to match the technology of the fast firm. The

fast firm may prefer to maintain the collusive prices to discourage its rivals from adopting the

faster pricing. Such incentives may be more relevant in settings where collusive prices can be

unilaterally initiated by a single firm.

4 Coercion with Faster Pricing

We now consider the adoption of trigger strategies by the faster firm that maximize its own

profits. In contrast to collusion, coercive prices yield greater profits for the faster firm and

lower profits for its rivals. We focus on the case where slower rivals are naive. If the slower

firm can also take into account future periods, the scope for punishment is greater, which allows

for a greater increase in profit for the faster firm.

4.1 Coercive Strategies

As in the previous section, we assume that the faster firm chooses a strategy that determines

prices pf,t and rf,t based on the history of previous prices. Specifically, the faster firm chooses

a modified grim trigger strategy sf to maximize its net present value of profits, subject to two

constraints. First, we maintain that slower firm’s short-run incentive-compatibility constraint

is met and, second, that the fast firm punishes deviations with noncooperative best-responses.
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Formally, given the history of prices of the slow rival hs,τ = {ps,1, ..., ps,t, ...ps,τ}, the strategy sf
is determined by:

pf (hs,τ ) =

pTf , if ps,t = pTs ∀t < τ

pNf , otherwise.

rf (hs,τ ) =


pTf , if ps,t = pTs ∀t ≤ τ

r∗f (ps), if ps,t = pTs ∀t < τ and ps,τ 6= pTs

pNf , otherwise.

s.t. (i) pTf = argmax
pTf

∞∑
t=0

δtfπf (pTf , p
∗
s(sf ))

(ii) p∗s(sf ) ∈ argmax
ps|sf

vs(ps, (pf , rf ))

(iii) p∗s(sf ) = pTs

where (pTf , p
T
s ) is the target set of prices for the fast firm. Note that the conditions do not

depend on the discount factor of the slower firm, as it maximizes the current period profits vs.

The trigger strategy of the faster firm sf resembles the grim-trigger strategy in the previous

section, where the fast firm responds to any deviation by the slower firm within the period

with the best-response r∗f , and then plays the noncooperative price pNf at every subsequent

opportunity.

Conditional on the strategy of the fast firm, the slow firm’s short-run incentive compatibility

constraint can be expressed as

πs(p
T
s , p

T
f ) ≥ απs(p′s, pTf ) + (1− α)πs(p

′
s, r
∗
f (p′s)) ∀ p′s. (8)

Denote the optimal deviation for the slow firm, conditional on pTf and r∗f as p̂Ds and the deviation

reaction prices as p̂DRf . The fast firm chooses own price and rival’s target price to maximize own

profit such that the slow firm is indifferent between deviating and complying, i.e., such that

equation (8) strictly binds. Note that the target prices (pTf , p
T
s ) depend on the reaction time α

of the fast firm. When α = 1 (simultaneous price setting), the fast firm cannot coerce the slow

firm from setting prices higher than the Bertrand-Nash equilibrium.

Proposition 3. For any pricing speed advantage α ∈ [0, 1), there exists a coercive trigger strat-
egy that yields higher price and greater profits for the faster firm than those obtained in (non-
cooperative) Markov perfect equilibrium, even when the rival firm is naive. Profits for the fast firm
are weakly greater than in the collusive equilibrium.
Proof. See Appendix.
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Note that Proposition 2 indicates that partial collusion (symmetric elevated prices) is incentive-

compatible for naive rivals under identical conditions. Thus, in general, coercive strategies yield

profits that are (weakly) greater for the fast firm than those received from partial or, when fea-

sible, full collusion.

4.2 Characterizing the Optimal Coercive Strategy

We now solve for the optimal coercive trigger strategy of the fast firm. Given the punishment

price and the optimal reaction by the slow firm, we can express the fast firm’s constrained

optimization problem as

max
pTs ,p

T
f ,λ
πf (pTf , p

T
s )

+ λ
(
πs(p

T
s , p

T
f )− απs(pDs , pTf )− (1− α)πs(p̂

D
s , p̂

DR
f )

)
where λ is the Lagrange multiplier on the incentive compatibility constraint. This yields the

first-order conditions:

[pTs ] 0 =π2
f (pTf , p

T
s ) + λπ1

s(p
T
s , p

T
f ) (9)

[pTf ] 0 =π1
f (pTf , p

T
s ) + λ

(
π2
s(p

T
s , p

T
f )− απ2

s(p̂
D
s , p

T
f )
)

(10)

[λ] 0 =πs(p
T
s , p

T
f )− απs(p̂Ds , pTf )− (1− α)πs(p̂

D
s , p̂

DR
f ) (11)

where we use superscripts to denote partial derivatives with respect to each argument. From

the first relation, we obtain λ = −π2
f (pTf ,p

T
s )

π1
s(pTs ,p

T
f )

. Thus, the optimal pTf solves

π1
f (pTf , p

T
s )−

π2
f (pTf , p

T
s )

π1
s(p

T
s , p

T
f )

(
π2
s(p

T
s , p

T
f )− απ2

s(p̂
D
s , p

T
f )
)

= 0 (12)

where pTs is pinned down as a function of pTf from equation (11) and p̂Ds is an implicit function

of pTs based on static profit maximization by the slower firm.

To illustrate, Figure 4 plots the prices (panel (a)) and profits (panel (b)) when the fast firm

employs its optimal coercive trigger strategy as a function of its reaction time, α. The equilibria

are generated from the linear demand system with a differentiation parameter of d = 1. The

slow firm is assumed to be naive (δs = 0). The solid blue line represents the slow firm, and the

dashed blue line represents the fast firm. For comparison, we also plot the feasible full/partial

collusion prices and profits (black line) and the prices and profits for Bertrand competition

(yellow dotted line).

With a fast enough reaction α / 0.7, the fast firm is able to incentive its slower rival to set

a higher price. The fast firm can undercut this price and earn higher profits. If the reaction
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Figure 4: Prices and Profits with Coercive Trigger Strategies
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Notes: Panel (a) shows prices and panel (b) shows profits under Bertrand competition with simultaneous
pricing, coercion in which the faster firm uses a trigger strategy to maximizes its own profits, and full/partial
collusion with symmetric prices. The firms simultaneously set prices at the beginning of the period and then
the fast firm can adjust price with reaction time α. Assumes d = 1 under linear demand given by Equation 3.

time is short enough α / 0.2, the fast firm can coerce its slower rival into setting prices above

the fully collusive price. Interestingly, if fast firm’s timing advantage is small 0.7 / α < 1, it

is optimal for the fast firm to target a higher price than the slow firm and to use its threat of

punishment to prevent the slow firm from lowering its price further.

Panel (b) shows that the optimal coercive strategy always yields profits for the fast firm that

are weakly greater than the full/partial collusion profits. When 0.7 / α < 1, the slower firm

earns greater profits than the fast firm, and the joint profits are greater than the feasible partial

collusion profits (yet, as one would expect, less than the full collusion profits). This shows that

our definition of partial collusion, which has symmetric price increases across all firms, does

not necessarily maximize joint profits when δs = 0.

These equilibria illustrates the power of higher-frequency pricing. A single firm with supe-

rior pricing technology can unilaterally adopt a dynamic strategy that elevates prices above the

competitive Bertrand equilibria. The faster firm obtain profits higher than the collusive profits

without any coordination from its rival.10

4.3 Coercion in Equilibrium

Thus far, we have characterized the optimal modified trigger strategy for the fast firm subject

to the incentive compatibility constraints of the slow firm. To support coercive strategies in

equilibrium, the fast firm must have some incentive or constraint that prevents it from choosing
10See Appendix B for how these results may be extended to an N -firm oligopoly.
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the short-run best response to the chosen price of the slow firm, pTs .

First, the slow firm may employ a tigger strategy following

ps(hf,τ ) =

pTs , if pf,t, rf,t = pTf ∀t < τ

pNs , otherwise.

Thus, after a deviation by the fast firm, we assume that the slow firm chooses the noncoopera-

tive MPE price. This yields the prices πf (pNf , p
N
s ) after collusion has broken down.

The critical discount factor for the fast firm can be expressed as

δ̂f =
πf (p̂Df , p

T
s )− πf (pTf , p

T
s )

πf (p̂Df , p
T
s )− πf (pNf , p

N
s )

(13)

where p̂Df ∈ argmaxpf
{
πf (pf , p

T
s )
}

. If δf > δ̂f , then the two trigger strategies desribed above

characterize a subgame perfect equilibrium yielding coercive prices. Note that, in general,

δ̂f 6= δ̄f , so coercion may be sustained with lower or higher discount rates for the faster firm

than collusion.

Another behavioral assumption that would maintain coercion in equilibrium is an environ-

ment in which the naive firm learns over time about its profit function. If the fast firm deviates

from the price pTf with no deviation by the slow rival, the slow rival’s incentive compatibility

constraint is no longer satisfied. The slow firm may be able to learn this over time and adjust

its behavior. In the limit, a repeated process of deviations by the fast firm and adjustments by

the slow firm would converge to the noncooperative equilibrium. Thus, one interpretation of

the trigger strategy for the slow firm described above is that it approximates this tâtonnement

process. To the extent that the fast firm internalizes the effect that its deviations has on future

behavior by the slow firm, the fast firm has an incentive to maintain its prices at pTf .

In the next section, we investigate learning in more detail.

5 Incorporating Learning

In the above analysis, we show how a faster firm may unilaterally implements supracompeti-

tive prices when the slow firm understands (explicitly or implicitly) the potential punishment

strategy and resulting profits. We now consider the case in which the slow firm is potentially

uninformed about the strategy used by the fast firm or its own profit function. Instead, the

firm learns over time using an optimization algorithm. We ask whether the fast firm can induce

higher prices without announcing a strategy.
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5.1 Simple Learning and Linear Strategies

We consider an environment in which the slower rival is unaware of the faster rival’s (punish-

ment) strategy. We assume that the slower rival follows a simple learning approach with the

following properties: The rival begins with a best guess of its optimal price (p̂s). In any period,

it plays p̂s with positive probability or some other price on [p, p], where p is the maximum price

it considers. The slow firm uses the history of chosen prices and realized profits to predict a

new optimal price, and it updates its best guess to that price. Examples of possible learning

strategies include (i) choosing the price that yielded the highest profit in any single period in

the past, (ii) using a more general reinforcement-learning method such as Q-learning, or (iii)

using Newton’s method to predict the point that optimizes profits. The slow firm does not

take into account the actions or strategies of the faster rival, nor does it form beliefs about the

economic environment. These learning properties are standard for experimental A/B testing

approaches used in practice.11

In contrast to the previous sections, we assume here that the fast firm adopts a linear pun-

ishment strategy instead of a discontinuous trigger strategy. In particular, for a target price pair

(p†s, p
†
f ), the faster firm chooses pf = p†f at the beginning of the period and then updates its

price according to the linear pricing rule:

rf =

p
†
f − γ(p†s − ps) if p†f − γ(p†s − ps) ≥ 0

0 otherwise
(14)

Thus, the punishment depends on how far from the target price the slow firm deviates, and the

degree of punishment is captured by γ.

We focus on linear strategies because the linearity helps ensure that experimentation by

the slower firm will converge to desired price of the faster firm, for many different learning

approaches of the rival firm (e.g., using Newton’s method). In practice, pricing strategies that

are linear in rivals price are common.

Throughout, we assume that the fast firm plays the long-run equilibrium strategy, i.e., the

firm does not adjust its strategy to manipulate the rate of learning of the slower firm. For

expositional clarity, we assume marginal costs are equal to zero in this section.

5.2 Joint Profit Maximization with Simple Learning

We now solve for the linear strategy that yields the fully collusive prices (p†s, p
†
f ) = (pCs , p

C
f ). We

maintain the (conservative) assumption that the slow firm maximizes static profits.
11These properties also follow closely the simple “asynchronous” learning assumptions of Asker, Fershtman and

Pakes (2021).
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The optimal price for the slow firm is

max
ps

αpsDs(ps, p
C
f ) + (1− α)psDs(ps, p

C
f − γ(pCs − ps)) (15)

yielding the first-order condition

α
[
Ds(ps, p

C
f ) + psD

1
s(ps, p

C
f )
]

+

(1−α)
[
Ds(ps, p

C
f − γ(pCs − ps)) + psγD

2
s(ps, p

C
f − γ(pCs − ps)) + psγD

1
s(ps, p

C
f − γ(pCs − ps))

]
= 0.

The slow firm sets the collusive price, pCs , when

γC = − 1

1− α
Ds(p

C
s , p

C
f ) + pCs D

1
s(p

C
s , p

C
f )

pCs D
2
s(p

C
s , p

C
f )

(16)

Thus, the fast firm may employ a linear strategy to induce the collusive prices, and the slope

of the punishment γC depends on its pricing advantage, α. When α is smaller (faster pricing

technology), γC is smaller and the punishment need not be as drastic.

The fast firm may face a constraint on the aggressiveness of its punishment strategy, i.e., an

upper bound on γ (γ). One reason for this constraint is that a firm may believe that punishment

that is too severe may raise suspicions from antitrust and competition authorities. Another

reason is that a steeper slope (larger γ) can make learning more challenging for the rival firm,

as it yields larger regions for which rf = 0, where there is no (local) punishment and hence no

incentive for the slow firm to marginally increase price.

The presence on of an upper bound on γ limits the ability of the firm to impose collusion

with linear strategies. Specifically, an upper bound γ yields a critical pricing advantage α′. The

faster firm must have sufficiently fast pricing α ≤ α′ in order to support collusion with linear

strategies. The critical pricing speed is characterized as:

α′ = 1 +
1

γ

Ds(p
C
s , p

C
f ) + pCs D

1
s(p

C
s , p

C
f )

pCs D
2
s(p

C
s , p

C
f )

(17)

To see how the bounds restrict the required pricing speed, consider the linear demand

system characterized by equation (3). For this demand system,
Ds(pCs ,p

C
f )+pCs D

1
s(pCs ,p

C
f )

pCs D
2
s(pCs ,p

C
f )

= −1,

so that γC = 1
1−α . Consider a restriction γ = 1, so that the reaction by the fast firm may

not be more aggressive than a price-matching strategy. This yields a critical α′ = 0, with a

unique solution α = 0 and γC = 1. In other words, price matching can sustain the collusive

equilibrium when the fast firm can instantaneously respond to the price change by the slower

rival. For α > 0, the fast firm requires a more aggressive reaction than price matching for the

particular demand system.

We summarize how a faster firm can obtain collusive prices even in the presence of a naive
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rival with a proposition, which we prove for our example linear demand system:

Proposition 4. For the the linear demand system characterized by equation (3), if firm f sets
initial price pf = pCf at the beginning of the period and then uses pricing strategy rf = pCf −
γC(pCs − ps) that reacts to firm s after period α, where γC < γ and α < α′, firm s will set the
collusive price. Moreover, if firm s is uninformed and uses an optimization routine that maximizes
static profits, when the routine considers prices ps ≥ max{0, γ

C−1
γC

pCs } it will converge to the
collusive price because the firm’s per-period profits are concave in ps.
Proof. See Appendix.

While the linear pricing rule provides a less severe punishment than a trigger strategy, it

is still possible to sustain collusive prices. Unlike the trigger strategy analyzed in Section 3.1,

a slow firm setting any price ps ∈ [max{0, γ
C−1
γC

pCs }, pCs ) will be able to increase profits by

marginally increasing price. Moreover, the fact that the slow firm’s minimization problem is

convex implies that the firm need not be informed about the strategy of their rival or demand

since naive optimization will always converge to the collusive prices.

5.3 Coercive Linear Strategies with Simple Learning

With a naive rival with a simple learning strategy, the fast firm may instead choose to pursue a

coercive strategy that maximizes its own profits. We again consider linear strategies to encour-

age convergence by the slower firm. The fast firm attempts to induce the target price vector

(p†s, p
†
f ) = (pTs , p

T
f ).

To constrain the slope of the reaction by the faster firm, we assume that the linear slope of

the pricing rule passes through the point (0, 0). Linear strategies of this form have the property

that the faster firm’s price changes in response to any non-negative price chosen by the slower

firm. Using the pricing rule rf = pTf − γT (p†s − ps), this implies γT =
pTf
pTs

.

In each period, the fast firm chooses its initial price pf and target price for slow firm to

maximize its own profit, such that the slow firm is maximizing static profit

max
pf ,pTs

[
αpfDf (pf , ps) + (1− α)

pfps
pTs

Df (
pfps
pTs

, ps)

]
s.t. ps = arg max

p′s

[
αp′sDs(p

′
s, pf ) + (1− α)p′sDs(p

′
s,
pfp
′
s

pTs
)

] (18)

The slow firm’s first-order condition is given by

α
[
Ds(ps, pf ) + psD

1
s(ps, pf )

]
+(1−α)

[
Ds(ps,

pfps
pTs

) + ps
pf
pTs
D2
s(ps,

pfps
pTs

) + psD
1
s(ps,

pfps
pTs

)

]
= 0

(19)

The fast firm’s pricing rule can be written in terms of the implicit function p∗s(pf ) that solves

20



Figure 5: Coercive Strategies with Linear Punishment
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0 0.2 0.4 0.6 0.8 1
Relative Pricing Lag (,)

0.4

0.42

0.44

0.46

0.48

0.5

P
ri
ce

Bertrand Competition

Coercion (Slow Firm)

Coercion (Fast Firm)

Standard Collusion

(b) Profits
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Notes: Panel (a) shows prices and Panel (b) shows profits under Bertrand competition with simultaneous
pricing, joint profit maximization (standard collusion), and coercion in which the faster firm uses a linear
punishment rule. In the coercion case, the firms simultaneously set prices at the beginning of the period and
then the fast firm can react with lag α. Assumes d = 1 under linear demand given by Equation 3.

this first-order condition. The pricing-rule implies that

rf =
pfp
∗
s(pf )

pTs
. (20)

In equilibrium, the fast firm sets the same price throughout the period so pf = rf . Let p∗f (pTs )

be the fast firm price as a function of the target that solves pTs = p∗s(pf ) for pf .

The fast firm then solves the following problem:

max
pTs

p∗f (pTs )Df (p∗f (pTs ), pTs ). (21)

The solution is given by the first-order condition

p∗f (pTs )

(
∂p∗f (pTs )

∂pTs
D1
f (p∗f (pTs ), pTs ) +D2

f (p∗f (pTs ), pTs )

)
+
∂p∗f (pTs )

∂pTs
Df (p∗f (pTs ), pTs ) = 0 (22)

This first-order condition provides the fast-firm optimal price for the slow firm, pTs . The

optimal price for the fast firm is then pTf = p∗f (pTs ). The solution reflect the fact that the fast

firm chooses the target price for the slow firm knowing that the slow firm will maximize profit.

We plot an example solution for the example with linear demand (d = 1) in Figure 5. Panel

(a) displays prices for different values of α. The fast firm prices are in the solid blue line. They

are consistently higher than the Bertrand prices, and they increase with faster pricing (lower

α). The fast firm prices are lower than the slow firm’s when α < 0.8. These patterns are similar
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to the non-linear coercive strategies from the previous section (Figure 4). However, given the

linear restriction on punishment, the fast firm cannot coerce its slow rival to set prices higher

than the collusive price, indicating that the linearity of the strategies does limit the degree to

which prices increase.

Panel (b) of Figure 5 displays the profits. Profits for the fast firm are declining in α, but

profits for the slow firm are non-monotonic. With a fast enough reaction time, the fast firm can

make higher profits than (its share of) the full collusion profits, even with the linear restriction.

For a low enough α, the slow firm makes lower profits than in the Bertrand equilibrium.12

Proposition 5. For the the linear demand system characterized by equation (3), coercive linear
strategy profits are increasing in pricing speed for the fast firm. There exists cutoff ᾱ′′ such that for
α < ᾱ′′, profits for the fast firm are higher than under standard collusion.
Proof. See Appendix.

6 Conclusion

Asymmetries in pricing technology expand the set of equilibrium strategies that yield supra-

competitive profits. A firm with faster pricing may incentivize a slower firm to set prices that

maximize joint profits even when the slower firm is myopic, memoryless, or non-strategic. Thus,

a firm with a pricing advantage can unilaterally—without the cooperation of its rivals—obtain

identical outcomes to those obtained from collusion.

Firms with faster pricing may not want to induce the collusive outcome. We characterize

the set of coercive strategies that use punishment to maximize the faster firm’s profits. This

provides a different equilibrium, with prices that typically differ across firms, that can be worse

for consumers than collusion.

Overall, our results suggest a broader scope for firms to strategically increase prices. Sophis-

ticated firms may be able to manipulate their rivals into setting prices above the competitive

levels even when characteristics of the market would rule out traditional collusive strategies,

such as short-termism or large differences in prices among similar firms. There is an opportu-

nity for future research to examine the extent to which pricing strategies and algorithms used

in practice may raise prices based on the features we identify here.

12This arises because we allow the fast firm to punish with a price of 0.
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Appendix

A Equilibrium of the Stage Game with Linear Demand

With linear demand given by Equation 3, solving FOC (1) and FOC (2) yields the SPE of the

stage game. Prices are

pNs =
6d+ 8

d((α+ 2)d+ 16) + 16
(A-1)

pNf =
αd2 + 5d2 + 20d+ 16

(d+ 2) (αd2 + 2d2 + 16d+ 16)
(A-2)

for the slow and fast firm, respectively. Profits are then

πNs =
(3d+ 4)2(d(αd+ d+ 8) + 8)

2(d+ 2)(d((α+ 2)d+ 16) + 16)2
(A-3)

πNf =
(d((α+ 5)d+ 20) + 16)2

4(d+ 2)(d((α+ 2)d+ 16) + 16)2
. (A-4)

The above nests the Bertrand equilibrium when α = 1. This equilibrium can be compared

to the joint-profit maximizing profits given by πCi = 1
8 which results when prices are pCi = 1

2 for

i = f, s.

B Extension to N -Firm Oligopoly

Throughout the paper, we consider the case where a fast firm faces a single, slower rival. It is

straightforward to extend the results to a more general setting in which a single fast firm faces

N − 1 naive slower rivals that all have the same pricing frequency. Thus, the reaction time α

characterizes the reaction time that the faster firm has relative to each of the slower firms.

To extend the results, note that the profit function for any focal slow firm i can be written

as

πs(pi, pf , {sa}) (A-5)

where {sa} is the set of strategies of all other slower rivals. Under the assumption that the

slower rivals are naive, all of the slower firm pricing decisions will be made independently

holding fixed the strategies of rivals.

For a given price vector, we can define π̃i(pi, pf ) = πs(pi, pf , {sa}) for each slow firm, con-

struct the relevant incentive compatibility conditions, and the firm-specific critical reaction time

ᾱi. The critical reaction time needed to support a target price vector for the market is given by
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min{ᾱi}. Thus, the fast firm must have a short enough reaction time in order to incentivize the

naive rival that has the most to gain from a deviation. When this is satisfied, the fast firm can

construct a trigger strategy that supports collusive prices by specifying an idiosyncratic reaction

to individual deviations from each rival.

C Proofs

C.1 Proof of Proposition 1

The reaction time threshold for sustaining collusion when the slow firm has discount factor δs
is given when Equation (4) strictly binds, implying

ᾱ =
1

1−δs (πs(p
C
s , p

C
f ) + δsπs(p

N
s , p

N
f ))− πs(pDs , pDRf )

πs(pDs , p
C
f )− πs(pDs , pDRf )

. (A-6)

From assumption A2, πs(pCs , p
C
f ) > πs(p

D
s , p

DR
f ). Therefore, for any δs ∈ [0, 1), 1

1−δs (πs(p
C
s , p

C
f )+

δsπs(p
N
s , p

N
f )) − πs(p

D
s , p

N
f ) > 0. Similarly, the denominator is positive by assumption A2,

πs(p
D
s , p

C
f ) > πs(p

D
s , p

DR
f ). Therefore, ᾱ > 0 and any α < ᾱ can sustain collusion through a

unilateral trigger strategy, even when the rival firm is myopic.

C.2 Proof of Proposition 2

We wish to show there there exist prices pSi = θpCi + (1− θ)pBi i ∈ s, f such that

πs(p
S
s , p

S
f ) > απs(p

D
s , p

S
f ) + (1− α)πs(p

D
s , p

DR) (A-7)

Because pSi is defined on the line segment between pBi and pCi , we can represent dpSs = βdpSf
for the appropriate β > 0.13 Evaluating derivatives with respect to pSi at pSi = pBi yields

π1
s(p

B
s , p

B
f ) + βπ2

s(p
B
s , p

B
f ) > α

(
dpDs
dpS

π1
s(p

B
s , p

B
f ) + βπ2

s(p
B
s , p

B
f )

)
+ (1− α)

(
dpDs
dpS

π1
s(p

B
s , p

B
f )

)
.

(A-8)

where pDs = pBs and pDRf = pBf when pS = pB. Since π1
s(p

B, pB) = 0 and β > 0, we obtain

(1− α)π2
s(p

B, pB) > 0 (A-9)

which holds by assumption A2 (products are substitutes) for any α ∈ [0, 1).

13When demand is symmetric, β = 1.
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C.3 Proof of Proposition 3

We proceed with a proof by contradiction. Suppose that, for some α < 1, the optimal set

of prices is equal to MPE prices, i.e., (pTs , p
T
f ) = (pNs , p

N
f ). The MPE is characterized by

π1
f (pTf , p

T
s ) = 0, since the fast firm is best-responding to the price of the slower firm.

Likewise, p̂Ds = pTs in MPE, since the slow firm is choosing the optimal deviation subject to

the within-period response by the faster firm. Because α < 1 and π2
s(·, ·) > 0 (from assumption

A1), we obtain π2
s(p

T
s , p

T
f )− απ2

s(p̂
D
s , p

T
f ) > 0.

When α < 1, π1
s(p

N
s , p

N
f ) < 0. From assumption A2, we also have that π2

f (pTf , p
T
s ) > 0, which

yields −π2
f (pTs ,p

T
f )

π1
s(pTs ,p

T
f )
> 0. Thus, for any α < 1, the left hand side of equation (12) is positive when

evaluated at (pNs , p
N
f ), and there exists a higher price pTf > pNf that yields greater profits for the

faster firm. Because of strategic complementarity, pTs > pNs as well.

C.4 Proof of Proposition 4

When the fast firm uses pricing rule rf = pCf −γ(pCs −ps) and demand is given by equation (3),

the slow firm solves

max
ps

[
α
ps
2

(
1−

(
1 +

d

2

)
ps +

dpC

2

)
+ (1− α)

ps
2

(
1−

(
1 +

d

2

)
ps +

dpC − dγ(pC − ps)
2

)]
.

(A-10)

This implies the slow firm sets price

p∗s =
(α− 1)γd+ d+ 4

4((α− 1)γd+ d+ 2)
. (A-11)

Consistent with equation (16), the slow firms sets the collusive price, p∗s = pC , when the slope

of the punishment is γC = 1
1−α . Therefore, given upper bound γ̄, it must be that α ≤ α′ where

α′ = γ̄−1
γ̄ . Substituting 1

1−α for the slope of the punishment, the slow firm’s profit is

πs =
1

2
ps(1− ps). (A-12)

This is defined for ps ≥ max{0, γ
C−1
γC

pCs } since the fast firm’s pricing rule returns a nonnegative

price when ps ≥ γC−1
γC

pCs . For ps ≥ max{0, γ
C−1
γC

pCs }, the slow firm’s profit function is strictly

concave in ps so the minimization problem is convex and naive optimization will converge to

the collusive price (pCs = 1
2 for the specified demand system).
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C.5 Proof of Proposition 5

Using our linear demand system from equation (3), the slow firm’s problem is given by

max
ps

[
α
ps
2

(
1−

(
1 +

d

2

)
ps +

dpf
2

)
+ (1− α)

ps
2

(
1−

(
1 +

d

2

)
ps +

pfps
2pTs

)]

=⇒ ps =
pf (αdpf + 2)

2d((α− 1)pf + pTs ) + 4pTs
.

Substituting this back into the pricing rule we have

rf =
pf (αdpf + 2)

2d((α− 1)pf + pTs ) + 4pTs
.

If fast firm sets initial price pf = pf , the pricing rule must also return pf at the equilibrium so

pf =
pf (αdpf + 2)

2d((α− 1)pf + pTs ) + 4pTs

=⇒ pf =
−2dpTs − 4pTs + 2

αd− 2d
,

and the pricing rule is then

rf =
2− 2(d+ 2)pTs

(α− 2)d
.

Putting this all together, the fast firm chooses the target price pTs to hold the slow firm to in

order to maximize profit

max
pTs

(
α

1

2

−2dpTs − 4pTs + 2

αd− 2d

(
1−

(
1 +

d

2

)
−2dpTs − 4pTs + 2

αd− 2d
+
dpTs

2

)
+

(1− α)
1

2

−2dpTs − 4pTs + 2

αd− 2d

(
1−

(
1 +

d

2

)
−2dpTs − 4pTs + 2

αd− 2d
+
dpTs

2

))
.

Solving this yields the target price for the slow firm:

pTs =
(6− α)d2 + 4(6− α)d− 16

2(d+ 2) (αd2 + 8d+ 8)
.

We can now solve for the fast firm’s optimal target price

pTf =
3d+ 4

d(αd+ 8) + 8
.
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The profit for the slow firm is(
(6− α)d2 + 4(6− α)d− 16

) (
5αd2 + 4(α+ 4)d+ 16

)
16(d+ 2) (αd2 + 8d+ 8)2 ,

and the profit for the fast firm is

(3d+ 4)2

8(d+ 2) (αd2 + 8d+ 8)
.

Note that the above is decreasing in α. The fast firm’s profit from this strategy will be higher

then under standard collusion for α < ᾱ′′ where

ᾱ′′ =
d2

d3 + 2d2
,

which is decreasing in d. QED.
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