Basics of Algorithm Analysis

- We measure running time as a function of n, the size of the input (in bytes assuming a reasonable encoding).
- We work in the RAM model of computation. All “reasonable” operations take “1” unit of time. (e.g. +, *, -, /, array access, pointer following, writing a value, one byte of I/O...)

What is the running time of an algorithm

- Best case (seldom used)
- Average case (used if we understand the average)
- Worst case (used most often)

We measure as a function of n, and ignore low order terms.

- $5n^3 + n - 6$ becomes n^3
- $8n \log n - 60n$ becomes $n \log n$
- $2^n + 3n^4$ becomes 2^n
Asymptotic notation

big-O

\[O(g(n)) = \{ f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that} \]
\[0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \}. \]

Alternatively, we say

\[f(n) = O(g(n)) \text{ if there exist positive constants } c \text{ and } n_0 \text{ such that} \]
\[0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \}

Informally, \(f(n) = O(g(n)) \) means that \(f(n) \) is asymptotically less than or equal to \(g(n) \).

big-Ω

\[\Omega(g(n)) = \{ f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that} \]
\[0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0 \}. \]

Alternatively, we say

\[f(n) = \Omega(g(n)) \text{ if there exist positive constants } c \text{ and } n_0 \text{ such that} \]
\[0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0 \}

Informally, \(f(n) = \Omega(g(n)) \) means that \(f(n) \) is asymptotically greater than or equal to \(g(n) \).
big-Θ

\[f(n) = \Theta(g(n)) \text{ if and only if } f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n)). \]

Informally, \(f(n) = \Theta(g(n)) \) means that \(f(n) \) is asymptotically equal to \(g(n) \).

INFORMAL summary

- \(f(n) = O(g(n)) \) roughly means \(f(n) \leq g(n) \)
- \(f(n) = \Omega(g(n)) \) roughly means \(f(n) \geq g(n) \)
- \(f(n) = \Theta(g(n)) \) roughly means \(f(n) = g(n) \)
- \(f(n) = o(g(n)) \) roughly means \(f(n) < g(n) \)
- \(f(n) = w(g(n)) \) roughly means \(f(n) > g(n) \)

We use these to classify algorithms into classes, e.g. \(n, n^2, n \log n, 2^n \).

See chart for justification
3 useful formulas

Arithmetic series

\[
\sum_{i=1}^{n} i = \frac{n(n + 1)}{2}
\]

Geometric series

\[
\sum_{i=0}^{\infty} a^i = \frac{1}{1 - a} \quad \text{for} \ 0 < a < 1
\]

Harmonic series

\[
\sum_{i=1}^{n} \frac{1}{i} = \ln n + O(1) = \Theta(\ln n)
\]
Algorithmic Correctness

- Very important, but we won’t typically prove correctness from first principles.
- We will use loop invariants
- We will use other problem specific methods
Master Theorem

Master Theorem for Recurrences Let $a \geq 1$ and $b > 1$ be constants, let $f(n)$ be a function, and let $T(n)$ be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n),$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then $T(n)$ can be bounded asymptotically as follows.

1. If $f(n) = O(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.

2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.

3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \leq cf(n)$ for some constant $c < 1$ and all sufficiently large n, then $T(n) = \Theta(f(n))$.