1. Electrodics

Cell

Pipette

Ag, AgCl electrodes

\[e^- + AgCl \rightarrow Cl^- + Ag \]

\[Cl^- + Ag \rightarrow AgCl + e^- \]

2. A lipid vesicle

- A lipid membrane is an electrical insulator
- A bilayer surrounded by ionic media is like a capacitor.
- When a battery is connected to a capacitor, it gets charged!

\[C = \frac{Q}{V} \]

- A biological membrane has a specific capacitance of \(1 \mu F/cm^2 \)

- 100 mV across a membrane (1 cm^2) will charge the membrane with

\[Q = CV = 10^{-6} F \times 0.1 V = 10^{-7} C \]

- How many ions does 10^{-7} C correspond to? To answer this, we need to know about the "Faraday" constant!
As it was established by Faraday, the movement of \(\approx 96,500 \) Coulomb of electricity (1 Ampere = 1 Coulomb/s) moves 1 Mole of any charged substance.

\[
\text{Moles} = \frac{\text{Coulombs}}{\approx 96,500}
\]

Thus, \(\frac{10^{-7} \text{ C}}{1.96,500} \approx 10^{-12} \text{ moles} \)

Given Avogadro's number of \(6 \times 10^{23} \frac{\text{molecules}}{\text{mol}} \)

\(10^{-12} \text{ moles} \Rightarrow 10^{-12} \times 6 \times 10^{23} = 6 \times 10^{11} \text{ molecules} \)

- No, a cell membrane (1 cm²) charged to 100 mV accumulates \(6 \times 10^{11} \text{ molecules/cm}^2 \)

3.- Where do batteries come from?

- From ionic gradients and ion channels!