Theories for generation of Ab diversity:

Explain: diversity \((10^8)\), variable/constant regions/isotypes

- germ-line theory
- somatic-variation theory
- Dryer Bennet two-gene model
- verification of Dryer Bennet two-gene model

Multigene organization of Ig genes

- light chains: V, J and C
- heavy chain: V, D, J, C
In bone marrow:

1. Lymphoid cell
 - Expression of B220
 - Pro-B cell
 - Heavy-chain gene rearrangement
 - Immature B cell
 - Change in RNA processing
 - Mature B cell
 - Antigen stimulation
 - Activated B cell
 - Class switching and differentiation
 - Plasma cells
 - Mostly secreted Ig of various isotypes
 - Memory B cells
 - Ig expressed
 - None
 - \(\mu\) Heavy chain + surrogate light chain
 - mIgM
 - mIgM + mIgD
 - Mostly mIg of various isotypes
Visualizing Concepts

(a) λ-chain DNA

L V_λ 1 J_λ 2 C_λ 2 J_λ 4 C_λ 4 L V_λ 1 J_λ 3 C_λ 3 J_λ 1 C_λ 1

5' 70 kb 1.2 kb 2.0 kb 1.3 kb Pseudogene 19 kb 1.4 kb 1.7 kb 1.3 kb 3'

(b) κ-chain DNA

L V_κ 1 L V_κ 2 L V_κ n

5' 23 kb 2.5 kb 3'

n = 300

(c) Heavy-chain DNA

L V_H 1 L V_H n D_H 1 D_H 13 J_H 1 J_H 4 C_μ C_δ C_γ 3 C_γ 1 C_γ 2b C_γ 2a C_ε C_τ

5' 4.5 kb 55 kb 39 kb 21 kb 15 kb 14 kb 12 kb 3'

n = 300-1000
Variable-region gene rearrangements

- exon-intron structure

- site-specific DNA rearrangements only occur in lymphocytes

 single light-chain variable region; single heavy-chain variable region (immunocompetent)

 antigenically committed

Light-chain rearrangements:

\[\lambda: V\lambda_1 \text{ can join with } J\lambda_1 \text{ or } J\lambda_3; \ V\lambda_2 \text{ can join with } J\lambda_2 \]

\[\kappa: \text{ many more possibilities} \]

Heavy-chain rearrangements:

- 2 separate joining events
 DH to JH; DH-JH to VH to make VH-DH-JH (variable region)

- both IgM and IgD may be produced by the same B cell

Mechanism of gene rearrangements

Recombination signal sequences (RSS)—flank V, D, J gene segments

\[\text{V-RSS}------\text{RSS-D-RSS}------\text{RSS-J} \]

RSS: conserved palindromic heptamer—12 or 23—nanamer seq.

\[\text{V-RSS}------\text{RSS-D-RSS}------\text{RSS-J} \]

2-turn 1-turn 1-turn 2-turn

-one-turn/two-turn joining rule ensures correct recombination
(a) Nucleotide sequence of RSSs

CACAGTG 23 bp ACAAACAC
GTGTCAC 23 bp TGTTTTTGG

Heptamer Nonamer

Two-turn RSS

GGTTTTTGT 12 bp CACTGTG
CCAACACAC 12 bp GTGACAC

Nonamer Heptamer

One-turn RSS

(b) Location of RSSs in germ-line immunoglobulin DNA

λ-chain DNA

5' L V_λ ... J_λ C_λ 3'

κ-chain DNA

5' L V_κ ... J_κ C_κ 3'

Heavy-chain DNA

5' L V_H ... D_H J_H C_H 3'
Enzymatic joining of gene segments (VDJ recombinase)

- recombination occurs at junctions of RSSs and coding seq.
- recombination forms a coding joint and a signal joint
- transcriptional orientation of gene segments
 same \rightarrow deletion; opposite \rightarrow inversion
- recombination activating genes (RAG-1 and 2) lymphocyte specific
- terminal deoxynucleotidyl transferase (TdT)
- steps
- diversity in coding joints-CDR3 region
- identification of RAG genes
- defects in gene rearrangements
- productive and non-productive rearrangements
 joining flexibility \rightarrow out-of-frame fusions
 other allele gets rearranged
- allelic exclusion
 rearranged genes expressed from only one chromosome
 expression of rearranged heavy and light-chain inhibit further rearrangement of the respective chains
- μ transgene expression (rearranged) in mice inhibits rearrangement in mice
(a) Deletional joining

1. Recognition of RSSs by RAG-1/2 and synapsis

2. Single-strand DNA cleavage by RAG-1/2

3. Hairpin formation and double-strand DNA break by RAG-1/2

4. Random cleavage of hairpin by endonuclease generating P-nucleotides

5. Optional addition to H-chain segments of N-nucleotides by TdT

6. Repair and ligation of coding and signal sequences to form joints by DSBR enzymes

(b) Inversional joining

1. Recognition of RSSs by RAG-1/2 and synapsis

2. Single-strand DNA cleavage by RAG-1/2

3. Hairpin formation and double-strand DNA break by RAG-1/2

4. Random cleavage of hairpin by endonuclease generating P-nucleotides

5. Optional addition to H-chain segments of N-nucleotides by TdT

6. Repair and ligation of coding and signal sequences to form joints by DSBR enzymes

△ = One-turn RSS
▽ = Two-turn RSS
Productive rearrangements:

1. Glu Asp Ala Thr Arg
 GAGGATGCGGACTAGG

2. Glu Asp Gly Thr Arg
 GAGGATGGGGACTAGG

3. Glu Asp Trp Thr Arg
 GAGGATTTGGGACTAGG

Nonproductive rearrangements:

4. Glu Asp Ala Asp Stop
 GAGGATGCGGGACTAGG

5. Glu Val Asp Stop
 GAGGTGGGACTAGG
\[\mu \text{ heavy chain inhibits rearrangement of } \mu \text{ allele } \#2 \text{ and induces } \kappa \text{ rearrangement} \]

\[\mu + \kappa \text{ chains inhibit rearrangement of } \kappa \text{ allele } \#2 \text{ and } \lambda \text{ rearrangement} \]

Progenitor B cell

\[D_H J_H \]

Productive allele \#1

\[V_H D_H J_H \]

Productive allele \#2

Nonproductive allele \#1

Nonproductive allele \#2

Cell death

\[\mu + \kappa \text{ chains inhibit } \lambda \text{ rearrangement} \]

\[\mu + \lambda \text{ chains inhibit rearrangement of } \lambda \text{ allele } \#2 \]

Nonproductive allele \#1

Nonproductive allele \#2

Cell death
Generation of antibody diversity

1) multiple gene segments

2) combinatorial joining; heavy-chain=1.6 X 10^6

3) junctional flexibility of coding regions (out-of-frame too)

4) P-nucleotide addition
 - cleavage of hairpin by endonucleases

 short single-stranded region at end of coding sequence ↓

 addition of nucleotides by repair enzymes-palindromes (P)

5) N-region nucleotide addition
 - addition of nucleotides by TdT at coding joints
 - upto 15; CDR3

6) somatic hypermutation
 - rearranged variable regions can change further
 - million fold higher than normal mutation rate (substitutions)
 - Abs with highest affinity for Ag will get selected

 → affinity maturation

 - increased mutations after 2° and 3° exposure to Ag

7) association of heavy and light-chains
 - random associations alone = 1.9 X 10^9 combinations
 - other mechanisms included=10^{11}
<table>
<thead>
<tr>
<th>Pre-B cell lines</th>
<th>Coding joints (V_{k21} J_{k1})</th>
<th>Signal joints (RSS/RSS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell line 1</td>
<td>5'-GGATCC GGACGTT-3'</td>
<td>5'-CACAGTG-3'</td>
</tr>
<tr>
<td>Cell line 2</td>
<td>5'-GGATC TGACGTT-3'</td>
<td>5'-CACAGTG-3'</td>
</tr>
<tr>
<td>Cell line 3</td>
<td>5'-GGATCCGT GGACGTT-3'</td>
<td>5'-CACAGTG-3'</td>
</tr>
<tr>
<td>Cell line 4</td>
<td>5'-GGATCCGT GGACGTT-3'</td>
<td>5'-CACAGTG-3'</td>
</tr>
</tbody>
</table>

(a) P-nucleotide addition

Hairpin

\[
\begin{array}{ccc}
D & TC & 7 \\
A & AT & J \\
\end{array}
\]

Cleavage of hairpin 7 generates P-nucleotides

\[
\begin{array}{ccc}
D & TC & 7 \\
A & AT & J \\
\end{array}
\]

Repair enzymes add complementary nucleotides

\[
\begin{array}{ccc}
D & TC & 7 \\
A & AT & J \\
\end{array}
\]

(b) N-nucleotide addition

Hairpin

\[
\begin{array}{ccc}
D & TC & 7 \\
A & AT & J \\
\end{array}
\]

Cleavage of hairpin 7 generates P-nucleotides

\[
\begin{array}{ccc}
D & TC & 7 \\
A & AT & J \\
\end{array}
\]

TdT adds N-nucleotides

\[
\begin{array}{ccc}
D & TC & 7 \\
A & AT & J \\
\end{array}
\]

Repair enzymes add complementary nucleotides
<table>
<thead>
<tr>
<th>Hybridoma clone subclass</th>
<th>Heavy-chain V regions</th>
<th>Light-chain V regions</th>
<th>$K_d \times 10^{-7} M$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CDR1</td>
<td>CDR2</td>
<td>CDR3 (D)</td>
</tr>
<tr>
<td>Day 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ_3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tertiary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ_1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Class (isotype) switching

-- switch sites → located close to CH gene segments

-- TH cytokines induce switching to specific isotypes
e.g. IL-4 allows switching from Cμ to Cy1 or Cε

Expression of Ig genes

-- primary mRNA cleaved at polyadenylation site

-- examples of differential processing of mRNA

1) Expression of membrane or secreted Ig

 ↓

differential use of 2 polyadenylation sites

2) Expression of IgM and IgD

-- assembly of Igs

Regulation of Ig transcription

-- promoters/enhancers/silencers

-- effect of rearrangement on transcription

-- inhibition of Ig-expression on T cells

 3' κ-chain enhancer may be responsible for inhibition of Ig-expression in T cells
(a) H-chain primary transcript

5' \(\mu_1 \) \(\mu_2 \) \(\mu_3 \) \(\mu_4 \) S M1 M2 3' Poly-A site 1 Poly-A site 2

(b) Polyadenylation of primary transcript at site 2 \(\rightarrow \mu_m \)

5' L VDJ J S M1 M2 \((A)_n \)

(c) Polyadenylation of primary transcript at site 4 \(\rightarrow \delta_m \)

5' L VDJ J \(\delta_1 \) \(\delta_2 \) \(\delta_3 \) S M1 M2 \((A)_n \)