Neoplastic Transformation: Mechanisms and Consequences
Viral and Cellular Contributions to Expression of the Transformed State

R. E. Pollack
Dept. of Microbiology, State University of New York
Stony Brook, NY 11794, USA

INTRODUCTION
Our current understanding of growth control is limited by our inability to grow many normal cell types in culture. This inability blocks us from using our probe in vitro in all but the earliest steps of the progression from normal to malignant phenotype. It also blocks us from studying the cell types that most often become cancerous. Nevertheless, we can say now with some assurance that transcription and translation from one copy of an integrated viral gene is sufficient to disrupt the normal growth controls of rodent fibroblasts to such a degree that these fibroblasts become oncogenic. For the oncogenic DNA papovaviruses, virus infection with the gene itself needs integration, transcription, and translation to transform. The product of this gene, nuclear T antigen, is always present in fully transformed cells.

FIBROBLAST GROWTH CONTROL
Cancer can be the consequence of viral perturbation of normal, controlled cell growth. This perturbation may be thought of as a probe, albeit a blunt one, of the various mechanisms by which normal tissues maintain a constant cell mass. Even for the cell type most easily handled in vitro, the fibroblast, growth control is quite complex, and many sorts of oncogenic viruses are capable of generating a spectrum of transformed phenotypes (35). Serum deprivation, extensive cell-cell contact, and anchorage deprivation are each sufficient to trap a normal fibroblast in the G1 phase of the cell cycle.

Manuscript received: 1977, February 28
Serum

In its role in the body, the fibroblast proliferates to fill a wound. While normally all cells but endothelia are kept apart from serum, wounds fill with it. Thus, it is not surprising that fibroblasts need serum to grow in vitro. This serum requirement was thought to be quite high, but recent work has shown that serum can be reduced from 10% to 0.2% if the defined constituents of media are optimized (24). Serum can be replaced entirely by a mixture of polypeptide hormones, including insulin, transferrin, and fibroblast growth factor (16).

Viral transformation, the expression of a single gene, can result in a diminished requirement for serum (38), and therefore presumably for an altered hormone requirement for growth. Intracellular concentrations of cyclic AMP and cyclic GMP also change when cells are serum-transformed, suggesting the possibility that cyclic nucleotide production may be perturbed by the viral gene as well (26).

Density

Normal fibroblasts block in G1 when they are in close contact with each other. A cluster of 4-5 cells seems to be the minimum necessary for this effect (29). Viral gene expression can lead to failure of fibroblasts to recognize each other, as a result of which they pile up in dense foci. Since this is a defect in cell-cell interaction, the external surface of a density-transformed fibroblast must differ from normal, and indeed this can be shown by direct biochemical analysis. The major change in proteins is the loss of a large, external transformation-sensitive (LETS) glycoprotein (17). This protein is exquisitely protease-sensitive, suggesting that the membrane change could be the consequence of local proteolysis. (42). Such proteolysis could occur by the action of a serum protease such as plasmin. Many density-transformants secrete a plasminogen activator (32). Since plasminogen activator is a normal secretion of endothelial cells (7) but not fibroblasts, the viral gene in this case can be inappropriate differentiation as it

Anchorage

Dividing tissue cells are, by and large, held apart from each other or with collagen, and are attached to the substrate, except for mitosis. In culture, cells can spread only in mitosis, and then cells spread again, reestablishing contact.

Normal fibroblasts must be able to attach to the substrate at the end of mitosis, or they do not migrate. The expression of the viral gene relaxes the requirement for attachment, and transformants are presented with a solid substrate at all times except in mitosis, when cells spread again, reestablishing contact.

Cell Shape

Cell shape is the sum of the state of the cytoskeleton of a small number of cytoplasmic components: myosin, filamen, spectrin, tubulin. The shape changes occurring in the cell require a reversible polymerization of actin proteins during each mitosis.

Normally, the fully spread, interphase cell is a highly organized state of proteins such as actin and tubulin, which are visualized by immunofluorescent microscopy (21,23,36,40). Microtubules are also present in the cell. Actin-containing bundles and the cytoskeleton are both gone from anchorage-transformed cells (2,6,11,12,25,30,41). Mitotic movement in culture is accomplished by a combination of cell movement and cell division, and the cell cycle is not altered by transformation.
fibroblast proliferates to fill cells but endothelia are kept apart. Thus, it is not surprising to grow in vitro. This serum is quite high, but recent work has led from 10% to 0.2% if the des are optimized (24). Serum can be re of polypeptide hormones, in, and fibroblast growth factor expression of a single gene, can rement for serum (38), and there hormon requirement for growth. of cyclic AMP and cyclic GMP also transformed, suggesting the possibility production may be perturbed by G1 when they are in close contact of 4-5 cells seems to be the minute (29). Viral gene expression can to recognize each other, as up in dense foci. Since this is action, the external surface of a st must differ from normal, and direct biochemical analysis. The the loss of a large, external TS glycoprotein (17). This pro-sensitive, suggesting that the consequence of local proteolysis. d occur by the action of a serum any density-transformants secrete. Since plasminogen activator is a rial cells (7) but not fibroblasts, 

Expression of the Transformed State

the viral gene in this case can be thought to be inducing an inappropriate differentiation as it transforms the fibroblasts.

Anchorage

Dividing tissue cells are, by and large, always in contact with each other or with collagen, and are spread out at all times except for mitosis. In culture as well, the normal cell becomes round only in mitosis, and then the two round daughter cells spread again, reestablishing an anchored configuration.

Normal fibroblasts must be able to anchor on a solid substrate at the end of mitosis, or they do not proceed through G1. Expression of the viral gene relaxes this specific requirement without at the same time preventing anchorage. Anchorage-transformants presented with a solid substrate will spread on it at all times except in mitosis, but need not do so in order to divide. Thus, in vitro, this cell-shape change is part of a normal growth control.

Cell Shape

Cell shape is the sum of the states of homo- and co-polymerization of a small number of cytoplasmic proteins, including actin, myosin, filaments, spectrin, tubulin, and intermediate filaments. The shape changes occurring in the division cycle of a fibroblast require a reversible polymerization-depolymerization of these proteins during each mitosis.

Normally, the fully spread, interphase fibroblast shows the most highly organized states of polymerization, in which proteins such as actin are organized in bundles large enough to be visualized by immunofluorescent light microscopy (14,20, 21,23,36,40). Microtubules are also abundant in such cells. Actin-containing bundles and the cytoplasmic microtubules are both gone from anchorage transformed fibroblasts, even well-spread ones (2,6,11,12,25,30,41). Thus, viral gene products are in some way capable of disrupting the ability of a cell to assemble its cytoarchitectural proteins in their most ordered
state. Proteases, especially plasmin, offer a possible mechanism here. Anchorage-transformed fibroblasts secrete plasminogen activator, and plasmin can specifically remove actin bundles from normal fibroblasts (31).

Tumorigenicity
Not all of the many changes in growth control that a viral gene causes need be directly related to the acquisition of the ability to grow as a tumor upon injection into a susceptible host. For the specific system of SV40-transformed rodent cells tested in athymic nude mice, a syndrome of phenotypic changes is most tightly correlated with tumorigenicity (37). This syndrome consists of loss of cytoarchitectural order, loss of anchorage requirement, and production of plasminogen activator. As expected, the syndrome is temperature-sensitive in cells transformed by virus mutants that are temperature-sensitive for transforming genes (11,30). This syndrome is one of necessity, not sufficiency, for tumorigenicity. Therefore, it is not surprising that viral mutants are capable of generating partial transformants which express the syndrome but are not tumorigenic. Nevertheless, these correlations do restrict the possible roles for the viral gene product to a set of cellular changes small enough to be studied extensively.

DIRECTIONS FOR FUTURE RESEARCH
Complete Mechanism of Viral Gene Action in Transformation
Expression of the A gene of SV40 seems to be necessary for the syndrome described above. We need to know which cellular molecules the A gene product interacts with to generate the syndrome. Cellular DNA is likely to be one immediate candidate: T antigen may be an inducer of host DNA synthesis, for it is needed for initiation of viral DNA replication. That is, the T antigen might force a cell from G₁ to S. A minimal hypothesis for the mechanism of this transformation would then be that the syndrome might be the consequence of the cell's traversal through the rest of the cycle, under its own regulation. To show this, close analyses of the ce...
ly plasmin, offer a possible mechanism for the formation of fibroblasts secreting plasminogen—can specifically remove actin bundles.

In growth control, that a viral gene injected into a susceptible host. SV40-transformed rodent cells tested in one of the most interesting observations is the degree of antigenicity (37). This syndrome is temperature-dependent in the complement of plasminogen activator. As a temperature-sensitive in cells, the role of the temperature-sensitive for the syndrome is one of necessity, stability. Therefore, it is not sure if the syndrome is found in the tumorigenicity of such cells. Do restrict the possible roles of a set of cellular changes small.

VCH
Gene Action in Transformation
SV40 seems to be necessary for the need to know which cellular interaction is to generate the likely to be one immediate candidate of host DNA synthesis, for it is al DNA replication. That is, the from G1 to S. A minimal hypothesis transformation would then be that the place of the cell's traversal of the cell cycle, under its own regulation. To

Expression of the Transformed State

show this, close analyses of the cell cycles of normal and SV40-transformed cells are necessary, and such analyses can best be done with the latest generation of cell sorters (19). Alternatively, the A gene product may interact structurally with cell membranes of any other cellular constituent, so the localization of all forms of SV40 T antigen within the cell remains a critical problem.

For other transforming viruses, the possibility is open for any order of viral gene regulation of the host cell cycle. The appropriate selection systems are now available to determine whether any viral gene exists to complement the presumed minimal function of the SV40 gene, that is, to direct the passage of a cell from S through G2 to the next G1. Such genes would be expected to yield products that would interact directly with host molecules involved in cell shape maintenance, since cell shape changes are most dramatic in the period around mitosis.

Host Mutagenesis

The bacteria viruses mu and PI mutate their host genomes in the process of promiscuous integration. Is there a host-mutagenic component to viral transformation? The frequency of a double-recessive mutation in a mammalian cell is the square of the frequency of a single recessive mutation, suggesting that classical genetics operate in cultured cells (9). At least one tumor virus, SV40, integrates promiscuously in host chromosomes (3). Many mutagenic chemicals can transform cells in vitro, and almost all environmental carcinogens are bacterial mutagens (1,5). This suggests that it is time to determine whether a tumor virus is mutagenic for a recessive loss of gene function in an assay for changes in a totally gratuitous gene.

New Cell Types in Culture

The syndrome of transformation described above has been worked out only for fibroblastic cells. More than 90% of human tumors arise from nonfibroblastic cells. Some of these cells have
in the absence of the compound? Is tumor-secreted TAF tumor-specific, or is it identical to the factor(s) necessary for maintenance of capillary density in normal tissues? All these questions demand the courage to go beyond the limitations of single-cell-type cultures.

Acknowledgement. The work from my laboratory described here was supported by the National Science Foundation, Grant BMS7509912 and the National Institutes of Health, Grant CA1817601. The excellent technical assistance of Sue Conlon is gratefully acknowledged.

REFERENCES


(10) Desmond, W.; Wolberg, S. mouse mammary cell lines in culture. Cell 9: 79

(11) Edelman, G., and Yahara, changes in surface modul transformed by mutants c Nat. Acad. Sci. 73: 204


(13) Folkman, J. 1975. Tumor point in tumor grow 96-100.

(14) Fuller, G.; Brinkley, B. Immunofluorescence of mi fic antibody against tuk nature 259: 132-134.

(15) Hackett, A.; Smith, H.; Rees, W.; Riggs, J.; and geneic cell lines from tular transformation: the im proteins. Cell 1: 147-


(17) Illmensee, K. and Mintz mal differentiation of cloned by injection into Sci. 73: 549-553.

(18) Klevicz, R.; Keniston, temporal structure of S


(20) Lazarides, E., and Webe The specific visualization muscle cells. Proc. Na


(22) Lazarides, E., and Burr Immunofluorescent local protein in non-muscle c
Is tumor-secreted TAF tumor-specific factor(s) necessary for maintenance of single-cell populations? All these questions have not yet been answered by the laboratory described here at the Medical Foundation, Grant BMS7509912 and, Grant CA1817601. The excellent collaboration of single-cell population studies is gratefully acknowledged.


(36) Shulanski, M.; Chacko, S. zation to intermediate f endothelial cells and antibodies prepared against Nat. Acad. Sci.: in press.


(38) Smith, H.; Scher, C.; ar of cell division in medi by SV40. Virology 44:

(39) Smith, H.S.; Owens, R.B. W.A.; and Johnston, J.O. cells in tissue culture. derived from osteogenic 219-234.

(40) Wang, K.; Ash, J.; and of new high-molecular weigh muscle and non-muscle 4483-4486.

(41) Wickus, G.; Gruenstein, 1975. Decrease in mem blasts after transforal Proc. Nat. Acad. Sci. 7:

(42) Zetter, B.; Chen, L.; as of protease treatment of and cell surface protein fibroblasts. Cell 7:


Cell Biology, Molecular Biology, Biochemistry, Genetics, Immunology, Epidemiology, Cancer Research.

Life Sciences Research Reports (ISSN 0340–8132)
Vol. 7

Neoplastic Transformation: Mechanisms and Consequences

Report of the Dahlem Workshop on Neoplastic Transformation
Berlin 1977, May 9–13
Editor: Hilary Koprowski, The Wistar Institute of Anatomy and Biology, Philadelphia.

In this review volume leading scientists assess current knowledge and draw attention to gaps in the understanding of the processes by which normal cells become tumors.

<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor phenotype and progression, R. E. Poliack: Viral and cellular contributions to expressions of the trans-</td>
</tr>
</tbody>
</table>

November 1977; approx. 320 pages; $ 19.50 / DM 48.60
Berlin: Dahlem Konferenzen. ISBN 3-8200-1209-5

Dahlem Konferenzen