Problem Set #2
Solutions

1) Molecular orbitals for each of the species are generated by overlap of 1s orbitals:

\[\sigma^* \]

\[1s \quad - \quad - \quad 1s \]

2 atomic orbitals give two M.O.'s \((\sigma \text{ and } \sigma^*)\)

\[\text{H}_2^+ \text{ contains one electron:} \]

\[\sigma^* \]

\[\sigma \]

Bond order = \(\frac{1-0}{2} = \frac{1}{2} \)

There is "half a bond" (i.e. a one-electron bond)
He_2^+ contains three electrons
+ σ^*
\[\text{B.O.} = \frac{2-1}{2} = \frac{1}{2} \]
+ σ

He_2 contains four electrons
+ σ^*
\[\text{B.O.} = \frac{2-2}{2} = 0 \]
+ σ

We don't expect He_2 to hold together! No net bonding.

2. Bond formed by sp^3-sp^3 overlap

Each carbon sp^3-hybridized

σ^*

--- Extra node ---

σ

C_{sp^3}

Yes, cyl. sym.

$\Rightarrow \sigma$-type
3. Selected views of ethane, propane, and \(n \)-butane. Use models to inspect.

- Ethane (Staggered)

- Propane (eclipsed)

- \(n \)-butane (anti)

- \(n \)-butane (gauche)
4. \[H \, 1s^1 \]

\[F \, 1s^2 \, 2s^2 \, 2p_x^2 \, 2p_y^2 \, 2p_z^1 \]

Let's form H-F bond by overlapping \(H_{1s} \) and \(F_{2p_z} \).

\[\text{EXTRA NODE} \]

\[\text{ANTI-BONDING} \]

\[\text{NODE} \]

\[F_{2p_z} \]

\[H_{1s} \]

\[\text{BONDING} \]

\[\text{NODE} \]

\(\sigma \)-type means:

look down inter-nuclear axis, see cylindrically symmetric

\[\rightarrow \text{We might be more sophisticated and use } sp^3 \text{-hybrid orbitals for } F, \text{ but the above treatment is a good first guess.} \]
5. **Step 1**

\[\begin{align*}
\text{Add 104 Kcal/mole} \\
\text{Add 104 Kcal/mole} \\
\text{ENDOTHERMIC}
\end{align*} \]

\[\begin{align*}
\text{H} & \quad \text{H} \\
\quad & \quad \rightarrow \\
\text{H} & + \quad \text{H}
\end{align*} \]

Step 2

\[\begin{align*}
\text{Add energy,} \\
\text{but how much?} \\
\text{Need BDE for one of bonds} \\
\text{in C=O}
\end{align*} \]

\[\begin{align*}
\text{BDE} & = (175 - 87) \text{ Kcal/mole} \\
\text{BDE} & \quad \text{for C=O} \\
\text{BDE} & \quad \text{for C-O}
\end{align*} \]

\[\begin{align*}
& = 88 \text{ Kcal/mole} \\
\text{ENDOTHERMIC}
\end{align*} \]
Step 3:

\[
\begin{align*}
&\text{(97 + 110) Kcal/mole} \\
&\text{Forming two bonds. Energy is released}
\end{align*}
\]

\[\Delta H = -207 \text{ Kcal/mole}\]

Exothermic

Overall

\[\Delta H = (+104 + 88 - 207) \text{ Kcal/mole} \]

\[= -15 \text{ Kcal/mole}\]

Exothermic overall.

Acetaldehyde

\[\text{ethanol}\]

\[\text{This is a "hydrogenation" reaction.}\]