Reading:
 Chapter 6: Introduction, 6.1→6.6 (this is the same assignment from last week)
 Chapter 4: Introduction, 4.1→4.7
 Chapter 7: 7.10, 7.11, 7.12

Text Problems:
 Chapter 6: 3, 6, 7, 8, 10, 11, 12, 21, 31, 32, 33, 34, 36, 37, 40, 41, 42 (these are the same problems assigned last week)
 Chapter 4: 3→18, 26, 31, 37, 38, 39
 Chapter 7: 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31

Announcements and useful information:
1. The current problem set (#8) deals with cyclohexane conformational analysis. You will have to work with your models as you complete these problems. The key to success here is making the connection between the way objects are represented on a flat page and what they really look like in 3-dimensional space.

2. We will complete our discussion of cyclohexane conformational analysis on the Tuesday after the break. Then, over the following three lectures, we will incorporate material from Ch. 4 on alkenes in discussing elimination reactions (E1 and E2) from Ch. 7. Use the text for background reading and problems; we will tie everything together in the lectures.

3. We are on the cusp of a shift from a structure-based to a reaction-based emphasis in the course. There will be a rapid increase in the number of different reactions, and students often begin to have real trouble at this point. It is not that the material is intrinsically difficult, but that it requires a highly consistent, methodical, and attentive approach.

4. I suggest that for each new reaction you make a note card. On the front of the card, put the name of the reaction (e.g., “SN2 Reaction”) and a brief description that includes important features of the reaction (“Substitution reaction in which nucleophile attacks from the rear, displacing the leaving group in a single step, with inversion of configuration”). On the back of the card, draw a couple examples of the reaction. Review your card file regularly, working both forward and backwards, so that you can identify the reaction type from the example or generate an example for each reaction type.