Acidity of Phenols

most characteristic property of phenols is their acidity
Compare

\[\text{苯酚: } K_a = 10^{-10} \]

\[\text{乙醇: } K_a = 10^{-16} \]
Delocalized negative charge in phenoxide ion

\[\text{Phenoxide ion} \]

\[\text{Delocalized negative charge} \]
Delocalized negative charge in phenoxide ion
Delocalized negative charge in phenoxide ion
Phenols are converted to phenoxide ions in aqueous base.

Stronger acid:

\[
\text{Phenol} + \text{HO}^- \rightarrow \text{Phenoxide ion} + \text{H}_2\text{O}
\]

Weaker acid:
24.5 Substituent Effects on the Acidity of Phenols
Electron-releasing groups have little or no effect

$K_a: \quad 1 \times 10^{-10}$

5×10^{-11}

6×10^{-11}
Electron-withdrawing groups increase acidity

Electron-withdrawing groups increase acidity

\[\text{OH} \]
\[\text{Cl} \]
\[\text{NO}_2 \]

\[K_a: \ 1 \times 10^{-10} \]
\[4 \times 10^{-9} \]
\[7 \times 10^{-8} \]
Effect of electron-withdrawing groups is most pronounced at ortho and para positions.

$$K_a: \quad 6 \times 10^{-8} \quad 4 \times 10^{-9} \quad 7 \times 10^{-8}$$
Effect of strong electron-withdrawing groups is cumulative

\[
\begin{align*}
\text{OH} & \quad \text{OH} & \quad \text{OH} \\
\text{NO}_2 & \quad \text{NO}_2 & \quad \text{O}_2\text{N} \\
\text{Ka} & : \quad 7 \times 10^{-8} & \quad 1 \times 10^{-4} & \quad 4 \times 10^{-1}
\end{align*}
\]
Resonance Depiction