Neurophysiology and Pain

Local anesthetics prevent the generation and the conduction of a nerve impulse.

PAIN: “……an unpleasant emotional or sensory experience associated with actual or potential tissue damage or described in terms of such damage”
International Association for the Study of Pain (IASP, 1973)

The Neuron:
- Structural unit of the nervous system which allows CNS to communicate with periphery.
- 2 basic types:
 - Sensory (afferent)
 - Motor (efferent)
The Sensory Neuron

- Nociceptive neurons
 - Dendritic zone
 - Arborization of free nerve endings
 - Axon
 - Cell body

- Dendritic zone is the most distal segment and is composed of free nerve endings which respond to stimulation and provokes a stimulus that is propagated along the axon.

- The cell body of the sensory neuron is not involved in the process of impulse transmission.
 - it does provide metabolic support for the neuron

The Axon

- Long cylinder of neural cytoplasm (axoplasm)
- Surrounded by nerve membrane (axolemma)
 - Phospholipid bilayer
 - Embedded lipoglycoprotein channels & Na+/K+ pumps
- Most (all but the smallest) nerve fibers are covered by an insulating lipid layer of myelin.
- Myelinated nerve fibers are wrapped in layers of lipoprotein myelin sheaths, specialized forms of Schwann cells.
 - Schwann cell sheath
 - Myelinated (Nodes of Ranvier, saltatory conduction) vs. Unmyelinated (several cells wrapped with single sheath)

Physiology of Peripheral Nerves

- Nerves carry impulses from one part of the body to another
- Brief increases in membrane permeability to Na+ cause depolarizations of the membrane or action potentials
- Once initiated, the amplitude and shape of an impulse remain constant

Voltage-gated Ion Channels - Resting State

- Na+ and K+ voltage-gated channels are closed
- Sodium channel
- Potassium channel
- Hydrated Na+ is too big to fit through the closed Na+ channel
- Na+/K+ pumps return the small amount of Na+ that can diffuse in around the closed gates, concentrating Na+ outside the nerve
- K+ is drawn in by negatively charged proteins too big to get out past the membrane and is thus concentrated inside the nerve
- Cl- remains outside the nerve, balancing the negative charge inside.
- RESTING STATE (-70 mV)
- K+ and Cl- are small enough to diffuse freely through the closed Na+ channels.
• In its resting state the nerve membrane is
 – Slightly permeable to Na⁺
 – Freely permeable to K⁺
 – Freely permeable to Cl⁻

• If stimulus causes membrane potential to rise to about -55 mV, voltage-gated Na⁺ channels will open.

Voltage-gated Ion Channels

- Voltage-gated Sodium Channel
- Voltage-gated Potassium Channel

• Na⁺ runs down its concentration and electrical gradients as membrane potential continues to rise all the way to +40 mV.

Voltage-gated Ion Channels

- Slow Depolarization
- Rapid Depolarization

Electrochemistry of Nerve Conduction

- The preceding sequence of events depend on two important factors:
 – Electrolyte concentration in the axoplasm and extracellular fluids
 – Permeability of the nerve membrane to sodium and potassium ions

Refractory period

- **Absolute** refractory period ➔ no way Na⁺ can possibly rush in
- **Relative** refractory period ➔ depolarization can be initiated, but requires a stronger than normal stimulus

- Retrograde movement of the impulse is prevented by the unexcitable refractory segment

Myelinated vs. Nonmyelinated Nerves

- High lipid content = ion (electrical) and pharmacological insulator
- In myelinated axons, ion exchange (and channel density) is confined to discrete areas
- Impulse “jumps”, increasing conduction speed
Saltitory Conduction

- Saltitory conduction usually progresses from one node to the next.
- If a node is blocked and if the current flow at the next node is high enough to reach the firing threshold, the current will skip over the blocked node and continue depolarization.
- A minimum of ~ 8-10mm of nerve must be covered by anesthetic solution to ensure blockade.

Mode of Action of Local Anesthetics

- Local anesthetic agents may:
 - Alter the basic resting potential of the nerve membrane
 - Alter the threshold potential
 - Decrease the rate of depolarization
 - Prolong the rate of repolarization

Local Anesthetics Work at the Nerve Membrane

2 acceptable theories:

- Membrane Expansion Theory
 - Molecules of LA disturb the membrane structure, expanding certain regions → preventing Na⁺ permeability increase

- Specific Receptor Theory
 - LA’s bind to specific receptors on the Na channel → direct action, once bound to the receptor, Na⁺ permeability is decreased, stopping nerve conduction

Displacement of Ca²⁺ from Na⁺ Channel Receptor Sites

- Binding of a local anesthetic molecule to the receptor site
- Blocking of the Na⁺ channel
- Decreased Na⁺ Conductance
Conduction Block

Depression of the rate of electrical depolarization

Failure to achieve threshold potential

Can’t propagate action potential

Conduction Block

Active forms of Local Anesthetics

- (Most) injectable LAs are tertiary amines
- Injectable LAs are amphipathic (possess both lipophilic an hydrophyllic characteristics)
 - The hydrophilic part is an amino derivative of ethyl alcohol or acetic acid
 - w/o a hydrophilic part, may be a good topical, but can’t be injected (benzocaine)

There are three components to most local anesthetics
- A lipophilic aromatic residue
- And intermediate amide or ester linkage
- A terminal hydrophilic amino group

Lidocaine

<table>
<thead>
<tr>
<th>Aromatic Residue</th>
<th>Intermediate Linkage</th>
<th>Terminal Amino Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃</td>
<td>O</td>
<td>H</td>
</tr>
<tr>
<td>Ar</td>
<td>CH₂</td>
<td>CH₃</td>
</tr>
<tr>
<td>CH₃</td>
<td></td>
<td>C₂H₅</td>
</tr>
<tr>
<td>NH</td>
<td></td>
<td>C₂H₅</td>
</tr>
<tr>
<td>CH₃</td>
<td></td>
<td>C₂H₅</td>
</tr>
</tbody>
</table>

Amide vs. Esters

Amide-linked LAs are relatively resistant to hydrolysis
Ester-linked LAs are hydrolyzed in aqueous solution

Active forms of Local Anesthetics

- LAs are basic compounds, poorly soluble in water and unstable.
- Their pKa values range from 7.5 to 10
- They must be combined with acid to form salts which are soluble in water and comparatively stable

- Acidification of tissue decreases local anesthetic effectiveness
- Inadequate anesthesia results when local anesthetics are injected into infected or inflamed areas.
- The inflammatory process produces acidic products: the pH of normal tissue is 7.4; the pH of an inflamed area is 5 to 6
- Local Anesthetics containing epi or other vasopressors are acidified to inhibit the oxidation of the vasopressor
 - The pH of solutions w/o epi is about 5.5; with epi ~3.3
 - Clinically, the lower pH is more likely to produce a burning sensation on injection as well as a slightly slower onset of action
• Increased pH (alkalinization) of a local anesthetic solution speeds the onset of its action, increases its clinical effectiveness, and makes its injection more comfortable, but it is unstable and precipitates out of alkalinized solution.

Dissociation

• Weak acid/base salts in solution exist simultaneously as:
 • Uncharged molecules or base (RN)
 • Positively charged molecules or cation (RNH⁺)

\[\text{RNH}^+ \rightleftharpoons \text{RN} + \text{H}^+ \]

Dissociation Constant (pKa)

• The relative proportion of ionic forms also depends on the pKa (a measure of a molecule’s affinity for hydrogen ions)
• When the solution’s pH = the anesthetic’s pKa, RNH⁺/RN = 50/50
• The % in either form can be determined from the Henderson-Hasselbalch equation

Henderson-Hasselbalch Equation

\[\text{pH} = \text{pKa} + \log \frac{\text{Base}}{\text{Acid}} \]

\[\log \frac{\text{Base}}{\text{Acid}} = \text{pH} - \text{pKa} \]

Action on Nerve Membranes

• 2 factors involved in the action of local anesthetic
 • Diffusion of the drug through the nerve sheath
 • Binding at the receptor site in the ion channel

• The relative proportion of each ionic form varies with the pH of the solution or surrounding tissues.
• In a low pH environment [high H⁺]:

\[\text{RNH}^+ \rightleftharpoons \text{RN} + \text{H}^+ \]

• In a high pH environment [low H⁺]:

\[\text{RNH}^+ \rightleftharpoons \text{RN} + \text{H}^+ \]
Molecules deposited in tissues outside a nerve RN (lipophilic) diffuses through nerve sheath.

Changes equilibrium Extra cellular re- Equilibration

% in RNH+ form % in RN form

More RN

RN (lipophilic) diffusion through nerve sheath

Repeat

Factors Affecting Local Anesthetic Action

<table>
<thead>
<tr>
<th>Factor</th>
<th>Affected</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pKa</td>
<td>Onset</td>
<td>Lower pKa → More rapid onset of action, more RN molecules present to diffuse through nerve sheath → t½ onset time</td>
</tr>
<tr>
<td>Lipid Solubility</td>
<td>Potency</td>
<td>t½ lipid solubility → t½ potency</td>
</tr>
<tr>
<td>Protein Binding</td>
<td>Duration</td>
<td>t½ protein binding allows anesthetic cations (RNH+) to be more firmly attached to proteins located at receptor site → t½ duration of action</td>
</tr>
<tr>
<td>Nonnervous Tissue Diffusibility</td>
<td>Onset</td>
<td>t½ diffusibility → t½ onset time</td>
</tr>
<tr>
<td>Vasoactivity</td>
<td>Potency and Duration</td>
<td>t½ vasoactivity activity → t½ blood flow to region → rapid removal of anesthetic molecules from injection site → t½ potency and t½ duration</td>
</tr>
</tbody>
</table>

Dissociation Constants (pKa) of Local Anesthetics

<table>
<thead>
<tr>
<th>Agent</th>
<th>pKa</th>
<th>% Base at pH 7.4</th>
<th>~ onset of action (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzocaine</td>
<td>3.5</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>Mepivicaine</td>
<td>7.7</td>
<td>33</td>
<td>2-4</td>
</tr>
<tr>
<td>Lidocaine</td>
<td>7.9</td>
<td>29</td>
<td>2-4</td>
</tr>
<tr>
<td>Articaine</td>
<td>7.8</td>
<td>29</td>
<td>2-4</td>
</tr>
<tr>
<td>Prilocaine</td>
<td>7.9</td>
<td>29</td>
<td>2-4</td>
</tr>
<tr>
<td>Remiprane</td>
<td>8.1</td>
<td>17</td>
<td>2-4</td>
</tr>
<tr>
<td>Bupivicane</td>
<td>8.1</td>
<td>17</td>
<td>2-8</td>
</tr>
<tr>
<td>Cocaine</td>
<td>8.6</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>Propoxycaine</td>
<td>8.9</td>
<td>4</td>
<td>9-14</td>
</tr>
<tr>
<td>Procaine</td>
<td>9.1</td>
<td>2</td>
<td>14-18</td>
</tr>
</tbody>
</table>

Peripheral Nerve Organization

The thicker the perineurium, the slower the rate of local anesthetic diffusion across it. The perineurium is the main barrier to penetration of local anesthetics into a nerve.

Fasciculi located closer to the core of the nerve are “core bundles”

Fasciculi located near the surface of the nerve are “mantle bundles”

May explain the clinical situation of inadequate pulpal anesthesia in the presence of subjective symptoms of adequate soft tissue anesthesia.

Complete conduction block of all nerve fibers requires an adequate volume and an adequate concentration of local anesthetic.

Induction time → the period from deposition of the anesthetic solution to complete conduction blockade

Diffusion → the unhindered migration of molecules or ions through a fluid medium under the influence of the concentration gradient

Penetration → (of an anatomical barrier to diffusion) occurs when a drug passes through a tissue that tends to restrict free molecular movement

Complete conduction block of all nerve fibers requires an adequate volume and an adequate concentration of local anesthetic.
Recovery

- Follows the same diffusion pattern, but in reverse
- LA stops working when...
 - LA redistributed - Concentration gradient favors the movement of LA from inside to outside
- LA excreted through the GI tract and kidneys, after being processed in the liver
- Recovery is slower than induction because the LA is bound to the receptor site and is released more slowly than it is absorbed

Topicals

- To make topical anesthetics more clinically effective a more concentrated form of the drug is commonly used (5% or 10% lidocaine) than for injection (1% or 2% lidocaine)

Infection

Lower pH reduces number of available unionized ions to diffuse across nerve cell membrane.

Methods of Local Anesthesia

- Mechanical Trauma
- Low Temperature
- Anoxia
- Chemical Irritants
- Neurolytic Agents
 - Alcohol and Phenol
- Local Anesthetics
 - Transient and Completely reversible
Properties of LA

- Non-irritating
- No permanent alteration of nerve structure
- Toxicity should be low
- Effective if injected or topical
- Time of onset short
- Duration of action should be adequate to complete work, but not need extended recovery.