Clinical Decision-Making for Caries Management in Primary Teeth

Abstract: The aim of this review of clinical decision-making for caries management in primary teeth is to integrate current knowledge in the field of cariology into clinically usable concepts and procedures to aid in the diagnosis and therapy of dental caries in primary teeth. The evidence for this paper is derived from other manuscripts of this conference; computer and hand searches of scientific articles; and policy statements of councils or commissions of various health organizations. Current evidence regarding the carious process and caries risk assessment allows the practitioner to transcend traditional surgical management of dental caries in primary teeth. Therapy can focus on patient-specific approaches that include disease monitoring and preventive therapies supplemented by restorative therapies. The type and intensity of these therapies should be determined utilizing data from clinical and radiograph examinations as well as information regarding caries risk status; evidence of therapy outcomes; assessment and reassessment of disease activity; natural history of caries progression in primary teeth; and preferences and expectations of guardians and practitioners. Changes in the management of dental caries will require health organizations and dental schools to educate students, practitioners, and patients in evidence- and risk-based care.

Dr. Tinanoff is Professor and Chair, Department of Pediatric Dentistry, University of Maryland Dental School, and Dr. Douglass is Assistant Professor, Department of Pediatric Dentistry, University of Connecticut Health Center. Direct correspondence to Dr. Norman Tinanoff, Chair, Department of Pediatric Dentistry, Dental School, University of Maryland, Baltimore, Baltimore, MD 21201; 410-706-7970 phone; 410-706-3208 fax; tinanoff@dental.umaryland.edu. The complete version of this paper can be viewed at http://www.nidcr.nih.gov/news/consensus.asp.

Key words: dental caries, evidence-based practice, primary teeth, risk assessment, decision-making

Historically, management of dental caries in primary and permanent teeth has involved clinical and radiographic identification of carious lesions followed by surgical intervention to remove and restore affected enamel and dentin. Only modest changes over the years have occurred in this surgical approach to dental caries treatment. However, sufficient evidence exists to recommend that dental therapy needs to address this disease by fostering remineralization as well as restoring teeth. Appropriate dental care in a child requires an understanding of the carious process that includes the patient’s age, caries risk, prior therapy outcomes, location, and extent of the lesions (Figure 1). In this model, a child who has been identified as being at low risk for dental caries may need few diagnostic procedures and preventive therapies. Conversely, a child who is caries active may require frequent diagnostic procedures and preventive therapies.

Methods

The aim of this review was to integrate current knowledge in the field of cariology into clinically usable procedures to aid in the diagnosis, clinical decision-making, and therapy of dental caries in primary teeth. The scientific literature for this paper is derived from evidence-based reviews from the other manuscripts of this Consensus Development Conference, computer and hand searches of scientific articles, and guidelines and policy statements of councils or commissions of various health organizations that may be related to primary teeth.

Scientific articles related to the primary dentition were searched on MEDLINE, PubMed, and Cochrane from 1966 to 2000. The searches were limited to articles written in English that included human subjects from birth to age twelve years. The searches using the term “dental caries,” limited by the terms “primary,” “deciduous,” or “mixed,” identified 1,039 articles. These articles were reviewed by title and then abstract, resulting in 118 references related to caries diagnosis, progression, prevention, and restorative treatment in primary teeth. Hand searching of reference lists in these articles supplemented the electronic literature searches. Further reduction in the number of papers to be included in this review was done after the manuscripts were read in full.

Factors in Decision-Making

The vast majority of the literature regarding diagnosis and prevention of caries relates to permanent teeth. Although much of this information may be extrapolated to primary teeth, there are important differences between primary and permanent teeth that may affect diagnosis, caries risk, and therapy for primary
teeth. Most importantly, primary teeth have thinner enamel and dentin and broader proximal contacts than permanent teeth,\(^1\) leading to increased caries susceptibility and more rapid progression of caries to the pulp.

A unique feature regarding caries management of primary teeth is that a child's age is an important factor with regard to caries initiation and progression. The age at which a child becomes colonized with the cariogenic bacterial group, mutans streptococci, is a critical factor for caries risk.\(^2,3\) These bacteria are believed to be particularly caries-conducive because of their ability to adhere to tooth surfaces, to produce copious amounts of acid, and to survive and continue metabolism at low pH conditions.\(^4\) Permanent colonization of a child's oral cavity with mutans streptococci can occur only after tooth eruption because these bacteria require a nonshedding surface for attachment.\(^5\) Such colonization is generally the result of transmission of these organisms from the child's primary caregiver, usually the mother.\(^6\)
Those teeth first exposed to a cariogenic environment generally will be the first to show signs of disease. Consequently, children at high risk for early childhood caries may develop lesions on their maxillary anterior teeth soon after eruption. If these children continue to be at high risk, they may develop fissure caries of the primary molars and later molar proximal caries. Children with moderate caries risk may initiate caries at a later age, normally fissure caries and possibly molar proximal caries. In general, caries on maxillary anterior primary teeth and on the molar proximal surfaces suggest high caries activity.

At the individual lesion level, caries progression and appropriate therapy are dependent on the site of the lesion, level of risk, and disease activity, as well as age. Buccal-lingual smooth surface lesions, even if cavitated, may be readily amenable to preventive regimens, while cavitated fissure or cavitated proximal lesions may need restorative therapy to limit progression. Caries activity can be assessed by observing the speed of progression of existing lesions or the incidence of new lesions.

Five articles were located that examined caries progression of proximal lesions in primary teeth (Table 1). Even though four are confounded by the presence of preventive regimes, results are similar among studies with 73 percent to 81 percent of lesions remaining in enamel after twelve months. In the fifth study, proximal lesion progression through primary tooth enamel in high-risk subjects not receiving fluoride took approximately eighteen months. In low-risk children receiving regular topical fluoride therapy, progression took forty months. These collective findings suggest that detection of enamel proximal lesions on bitewing radiographs may not warrant immediate surgical intervention for all children. Many of these lesions will remain in enamel for at least twelve months, giving time for implementation and evaluation of preventive interventions without jeopardizing the integrity of the tooth.

tin caries originating in fissures with a sensitivity of 0.93 and a specificity of 0.89.

Three articles were located that examined the validity of radiographic proximal caries diagnosis in primary teeth. The majority of enamel lesions detected on radiographs are not cavitated and are not detectable clinically, and in conflict with traditional understanding, many radiographically detected outer dentin lesions in primary teeth also may not be cavitated (Table 2).

Newer and more sensitive methods of clinical caries diagnosis appear promising, yet at this time there is little evidence of the validity and reliability of these new approaches from human clinical trials. Contrary to new technologies, practicing dentists can obtain feedback on false positive and false negative diagnoses when they instrument a tooth. If a surgical intervention is justified on questionable lesions in a child, the tooth most likely to be carious may be opened and the diagnosis confirmed. This technique can determine whether interventions on other teeth are needed.

In addition to determining whether a tooth is cavitated or not, caries diagnosis should attempt to estimate the more critical issue—whether a lesion is progressing or arrested. Currently, longitudinal evaluation of lesion progression at periodic recall visits is the best method to determine lesion activity and progression. Along with other information, such as the likelihood of a patient returning for periodic recalls and depth of a lesion, an active carious lesion may require preventive and restorative therapy, whereas nonactive or arrested lesions may require no therapy. Such patient- and tooth-specific evaluations of caries diagnosis and progression will require changes from current practice since longitudinal information has been reported to not change dentists' decision-making process.

Caries Risk Assessment in Primary Teeth

The goal of caries risk assessment in dentistry is to deliver preventive and restorative care specific to an individual patient. An obstacle in current caries risk assessment is that few studies have attempted to determine how the application of risk indicators in dental practice affects dental health outcomes. Presently, the best caries risk indicator is previous carious experience; yet, there is not one predictor or combination of predictors that have achieved high combinations of both positive and negative predictive values.

In young children, the risk indicator—previous caries experience—is not particularly useful since it is
Table 1. Evidence for the rate of progression of proximal caries in primary teeth

<table>
<thead>
<tr>
<th>Year</th>
<th>Author</th>
<th>Country</th>
<th>Provenience sampling method</th>
<th>N</th>
<th>Study weeks</th>
<th>Age at start</th>
<th>Control group treatment</th>
<th>Treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978</td>
<td>Murray & Majd</td>
<td>England</td>
<td>School children participating in a fluoride varnish study</td>
<td>201</td>
<td>retrospective study</td>
<td>2 yrs</td>
<td>Contralateral side but results combined</td>
<td>Fluoride varnish</td>
<td>Carious lesions only DX with BW at study beginning: 54% dx by BW only after 12 mths 30% dx by BW only after 24 mths New carious lesions diagnosed at first year exam: 79% dx by BW only 51% dx by BW only after 12 mths 4% of inner enamel lesions still in enamel at 12 mths</td>
</tr>
<tr>
<td>1981</td>
<td>Craig et al.</td>
<td>Australia</td>
<td>Preference given to younger children with little or no previous dental care</td>
<td>94 yrs at start</td>
<td>54 yrs at finish</td>
<td>2 yrs</td>
<td>5-8 yrs</td>
<td>None</td>
<td>40%AgF and then 10%SnF2 to carious lesions reapplied only if caries progressed. First primary molar proximals: 81% still in enamel at 12 mths 81% still in enamel at 24 mths Second primary molar proximals: 72% still in enamel at 12 mths 69% still in enamel at 24 mths</td>
</tr>
<tr>
<td>1984</td>
<td>Shwartz et al.</td>
<td>Sweden and US</td>
<td>Swedish: low F US; low F, low SES</td>
<td>217</td>
<td>retrospective study</td>
<td>NR</td>
<td>Swedish: 10-11 yrs at end of study US: 4-17 yrs at end of study</td>
<td>None</td>
<td>Swedish: Bi-weekly F rinse US: None</td>
</tr>
<tr>
<td>1992</td>
<td>Solanki & Sheiham</td>
<td>Sweden</td>
<td>Randomly selected pts from Murray & Majd study</td>
<td>60</td>
<td>retrospective study</td>
<td>2 yrs</td>
<td>5 yrs</td>
<td>Contralateral side but results combined</td>
<td>Fluoride varnish</td>
</tr>
<tr>
<td>1992</td>
<td>Payton et al.</td>
<td>Sweden</td>
<td>Subjects from a sugar study</td>
<td>488</td>
<td>retrospective study</td>
<td>2 yrs</td>
<td>3-4 yrs</td>
<td>Control and test groups combined</td>
<td>Test group had sucrose replaced with invert sugar. Every other child in test and control had fluoride varnish.</td>
</tr>
</tbody>
</table>

Important to determine caries risk before disease is manifest. Low birthweight of a child has been suggested as a caries risk indicator for primary teeth, either because it is associated with enamel hypoplasia and other enamel defects or indirectly because it is a marker for low socioeconomic situations. Other caries risk indicators that have shown promise in preschool children are: the age that a child becomes colonized with cariogenic flora; the child's mutans streptococci levels; baseline caries scores; presence of visible plaque on the maxillary anterior teeth; and sociodemographic factors, such as education and income of parents. Even though systemic and topical fluoride exposure, tooth brushing behavior, bottle use, and diet currently have not been shown to be good caries risk indicators for primary teeth, collection of such data may be valuable for development of a child's prevention program.

Besides determining caries risk at screening or initiation of therapy, ongoing reassessment of a child's caries risk at recall visits allows for better appraisal of caries activity and refinement of decisions. If at a recall visit, existing lesions have not progressed and new lesions are not detected, caries activity may be considered to have decreased. If there are increased numbers of new lesions detected, or there are changes in the oral environment (for example, appliance therapy, increase in mutans streptococci levels, increased frequency of sucrose consumption), risk status may have increased.

The responsible parent(s), with the advice of the dental professional, is the one who must make decisions for dental therapy. In many cases, as a result of their past experiences, the parent assumes that only surgical techniques can treat dental caries. The dental professional is obliged to inform the parent about alternative therapies based on scientific evidence, risk.
Table 2. Evidence for the validity of caries diagnostic methods in proximal and occlusal caries of primary teeth

<table>
<thead>
<tr>
<th>Year</th>
<th>Author</th>
<th>Country</th>
<th>Population/ Sampling method</th>
<th>N</th>
<th>Age</th>
<th>Caries Diagnostic Criteria</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>Kerley & Holt</td>
<td>England</td>
<td>Teeth extracted under GA with questionable or minimal caries</td>
<td>100</td>
<td>second primary molars</td>
<td>NR</td>
<td>BW, in vitro clinical dx and histology</td>
</tr>
<tr>
<td>1992</td>
<td>Pitts & Rimmer</td>
<td>Scotland</td>
<td>Private office pts</td>
<td>211</td>
<td>pts with 756 proximal surfaces with 590 lesions</td>
<td>5-15 yrs</td>
<td>BW and tooth separation</td>
</tr>
<tr>
<td>1996</td>
<td>De Araujo et al.</td>
<td>Brazil</td>
<td>University clinic pts</td>
<td>20</td>
<td>pts with 520 proximal surfaces with 72 lesions</td>
<td>3-10 yrs</td>
<td>BW and tooth separation</td>
</tr>
<tr>
<td>1996</td>
<td>Nielsen et al.</td>
<td>Denmark</td>
<td>Exfoliated or extracted teeth</td>
<td>72</td>
<td>proximal surfaces with 43 lesions</td>
<td>NR</td>
<td>BW and in vitro clinical dx</td>
</tr>
</tbody>
</table>

assessment, expected outcomes, and cost. Enabling the patients to be active participants in choosing preventive and restorative therapies should produce better parent and patient compliance.

Besides the obligation of thorough informed consent for therapy decisions, a dental professional may by training, capability, or preferences favor certain therapeutic approaches. Such preferences also need to be considered in therapy decisions because provider preferences will affect outcomes. These preferences should change over time as a result of scientific progress and the practitioners' continued learning and self-evaluation of outcomes.

Preventive Therapies

Fluoride

Daily systemic/topical fluoride exposure through optimizing the fluoride content of water supplies has historically been shown to be efficacious in reducing dental caries, with reductions in the range of 40-50 percent for primary teeth.\(^{39}\) The expansion of water fluoridation as well as the widespread consumption of processed beverages and foods prepared with fluoridated water by individuals in nonfluoridated areas has produced a "diffusion effect" in which the benefits of fluoride extend beyond the geographically fluoridated areas, thus reducing differences in caries rates between fluoridated and nonfluoridated communities.\(^{36}\)

If the fluoride content of water is suboptimal or unknown, the drinking water can be analyzed for fluoride content, and systemic fluoride supplementation can be recommended considering water fluoride content and the child's age.\(^{37,38}\) Data from more than twenty clinical trials show caries reduction in primary teeth of 30-80 percent from fluoride supplements, provided they are started near birth and continued for five or more years.\(^{40}\) However, there is a growing body of literature showing that children, whether living in a fluoridated or nonfluoridated area, ingest sufficient quantities of fluoride from dentifrice, beverages, and foods\(^{41}\) and there is a strong association of dental fluorosis in the permanent teeth with fluoride supplement use.\(^{42,47}\) Perhaps fluoride supplements should be prescribed only to children from nonfluoridated communities who are identified as being at moderate or high caries risk\(^{48}\) and whose parents understand the risks and benefits of fluoride supplements.

The most widely used method of applying fluoride topically is by means of dentifrice. Daily/twice daily fluoride exposure through the controlled use of fluoridated dentifrice is now considered a major approach to the reduction of dental caries.\(^{48}\) To prevent fluorosis from the swallowing of toothpaste,\(^{49}\) children's brushing should be supervised with only a "pea-sized" amount dispensed onto the brush.\(^{36,48}\) Reduced fluoride concentrations of toothpastes also have been suggested as a
method of reducing fluorosis, but there is evidence for lower efficacy when the fluoride content of the toothpastes is reduced.43

Professional topical fluoride therapies, home fluoride mouth rinses, and concentrated tray/brush-on therapies have had a long history of use to prevent dental caries.34 However, few contemporary studies have been conducted that examine the effect of professional topical and home fluoride protocols on caries reduction in primary teeth. Recently, fluoride varnishes, which are safe and easy to apply in young children, have gained popularity. Yet, their efficacy is not entirely clear. Among those studies carried out in the primary dentition, only three have shown statistically significant reductions of caries in the order of 30-44 percent, 31,35-36 while three other studies showed nonstatistically significant reductions of less than 10 percent.32,33,34 Except for recommending regular use of fluoridated dentifrices, professionally applied and home-use fluoride products should be recommended based on a child's caries risk.

Antimicrobial Agents

There is limited data regarding the use of antimicrobials to reduce mutans streptococci and dental caries in the permanent dentition.37 There are even fewer clinical trials in primary teeth.38,39 An interesting alternative approach, however, is the report of using chlorhexidine to suppress mutans streptococci levels in mothers, with the aim of delaying the transmission of mutans streptococci and caries to their children. The results of such a method found that infants of mothers who used chlorhexidine had a lower colonization of mutans streptococci than controls (11 percent versus 45 percent respectively), and lower prevalence of caries (6 percent versus 43 percent).38,40

Dental Sealants

Eight studies were identified that examined the retention of dental sealants in primary teeth. These studies show retention rates between 69 and 88 percent after one year with a one-time application.65-66 These results suggest that retention in primary teeth may be superior to permanent teeth, possibly because most primary teeth are fully erupted at the time of sealant placement, whereas many permanent teeth are partially erupted when sealant application is usually performed.

However, there is insufficient evidence to determine the efficacy and cost-effectiveness of sealant placement on primary teeth. Although it might be reasonable to assume that such information could be extrapolated from permanent teeth, the pattern of caries in primary teeth is different. Primary molars are more susceptible to proximal lesions than permanent molars, making the sealant procedure in these cases of little consequence.63,64,66,70 Similar to permanent teeth, it is likely that caries risk assessment methods will need to be employed to make this preventive procedure cost-effective.71

Diet

The role of sugar in promoting the dental caries process has been derived from numerous epidemiological, laboratory, and clinical studies. In preschool children, high frequency sugar consumption,72 including its consumption by means of baby bottles or sippy cups, has been implicated in early childhood caries. Epidemiological studies, however, show that sugar consumption is a risk indicator only in children who do not have regular exposure to fluoride.73 Yet for those individuals at high risk for caries, prevention of excess sugar consumption and controlling of high-frequency sugar consumption appear to be reasonable components of a caries prevention program. Yet, there is presently no evidence demonstrating the effectiveness of dietary counseling on caries reduction in children.

In addition to controlling frequent sugar consumption, chewing gums with sugar substitutes such as saccharin, aspartame, sorbitol, mannitol, or xylitol should reduce caries risk by stimulating salivary flow and decreasing mutans streptococci colonization. The outcomes of several clinical studies show that chewing xylitol-containing gums reduces caries and mutans streptococci levels.74

Oral Hygiene

Poor oral hygiene is widely believed to be a contributor to caries activity. Thus, tooth brushing, flossing, and professional tooth cleaning have long been considered basic components of programs aimed at preventing dental caries. Yet, literature reviews on this topic have not found a relationship between dental plaque scores and dental caries prevalence, or between brushing with nonfluoridated toothpaste and dental caries prevalence.75 In young children, however, early visible plaque on the labial surfaces of the maxillary incisors is strongly associated with caries development.72 Furthermore, dental caries reductions have been noted in children who receive high-frequency professional prophylaxis combined with some form of fluoride therapy76 or frequent tooth brushing with fluoridated dentifrice.77 The specific contribution of the tooth-cleaning procedure as part of these regimens remains unknown. Regu-
lar tooth brushing, nevertheless, should be encouraged, at least as a delivery system for the fluoride dentifrice. 39

Caries Risk and Preventive Therapies

Decisions for preventive therapies in primary teeth should be directed by an understanding of risk indicators for the child. Very often, there is little discrimination among the intensity and type of preventive therapies prescribed to diverse groups or individuals. Risk-based therapy assumes that there will be little benefit of preventive therapies for those children who are at low risk for dental caries. Conversely, children at high risk require intense prevention to primarily prevent caries initiation and secondarily to arrest caries progression (Table 3). Yet, at this time, there are no prospective studies that examine the success of applying different intensities of preventive programs to children stratified by caries risk.

Restorative Therapy

Currently, the practice of dentistry primarily utilizes a surgical model of care. Restoration of teeth due to the caries still occupies substantial curriculum time in dental schools and clinical time in dental practices. The collective manuscripts of this conference, however, suggest that dental care should be grounded in preventive services and supplemented by restorative therapy when indicated. Restorative therapy is a nonreversible procedure that makes a tooth susceptible to fracture and additional decay. 39 This is particularly an issue in children, as longevity of restorations is less in the primary dentition than in the permanent dentition, and less in younger than in older children. 39 However, restorative therapy is necessary to eliminate cavitations when dental plaque removal from the tooth is difficult, when there is a high level of caries not reversed by preventive therapies, or when monitored white spots and small lesions show progression to cavitation. Additionally, restorations of teeth are essential where there is need to restore tooth integrity to prevent space loss or disease progression into the dental pulp.

Children at low risk may not need any restorative therapy. Children at moderate risk may require restoration of progressing and cavitated lesions, while white spot and enamel proximal lesions should be treated by preventive techniques and monitored for progression. Children at high risk, however, may require earlier restorative intervention of enamel proximal lesions, as well as intervention of progressing and cavitated lesions.

Table 3. Possible diagnostic procedures, preventive, and restorative therapy in primary teeth based on a child’s caries risk assessment and age

<table>
<thead>
<tr>
<th>Caries Risk Indicators</th>
<th>Low Risk</th>
<th>Moderate Risk</th>
<th>High Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dmfs < 1/4 child’s age</td>
<td>1 or more lesions in 1 year</td>
<td>dmfs > child’s age</td>
</tr>
<tr>
<td></td>
<td>no new lesions in 1 year</td>
<td>infrequent white spot lesions</td>
<td>2 or more lesions in 1 year</td>
</tr>
<tr>
<td></td>
<td>no white spot lesions</td>
<td>moderate lesions of mutants strep.</td>
<td>numerous white spot lesions</td>
</tr>
<tr>
<td></td>
<td>low SES</td>
<td>middle SES</td>
<td>high SES</td>
</tr>
<tr>
<td></td>
<td>initial mutants strep.</td>
<td>examination interval 0-12 months</td>
<td>examination interval 3-6 months</td>
</tr>
<tr>
<td></td>
<td>radiograph interval</td>
<td>radiograph interval 12 months</td>
<td>radiograph interval 5-12 months</td>
</tr>
<tr>
<td></td>
<td>evaluation</td>
<td>initial mutants strep. evaluation</td>
<td>mutants strep. testing to monitor compliance diet analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnostic Procedures</td>
<td>examination interval 12-18 months</td>
<td>examination interval 0-12 months</td>
<td>examination interval 3-6 months</td>
</tr>
<tr>
<td></td>
<td>radiograph interval 12-24 months</td>
<td>radiograph interval 12 months</td>
<td>radiograph interval 5-12 months</td>
</tr>
<tr>
<td></td>
<td>initial mutants strep. evaluation</td>
<td>initial mutants strep. evaluation</td>
<td>mutants strep. testing to monitor compliance diet analysis</td>
</tr>
<tr>
<td>Preventive Therapy</td>
<td>fluoridated dentifrice</td>
<td>fluoridated dentifrice</td>
<td>fluoridated dentifrice</td>
</tr>
<tr>
<td></td>
<td>systemic fluoride supplements *</td>
<td>professional topical fluorides tx sealants</td>
<td>systemic fluoride supplements *</td>
</tr>
<tr>
<td></td>
<td>professional topical fluorides tx sealants</td>
<td>daily home fluoride or antimicrobials</td>
<td>professional topical fluoride tx sealants</td>
</tr>
<tr>
<td></td>
<td>daily home fluoride or antimicrobials</td>
<td>dietary counseling and adjustments</td>
<td>daily home fluoride or antimicrobials</td>
</tr>
<tr>
<td>Restorative Therapy</td>
<td>none</td>
<td>monitor white spot lesions</td>
<td>monitor white spot lesions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>monitor enamel proximal lesions</td>
<td>restoration of enamel proximal lesions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>restoration of progressing lesions</td>
<td>restoration of progressing lesions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>restoration of cavitated lesions</td>
<td>restoration of cavitated lesions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aggressive treatment to minimize continued caries progression</td>
<td></td>
</tr>
</tbody>
</table>

* age and water supply considerations
to minimize continual caries development. In such high-risk cases, more aggressive treatment of primary teeth with stainless steel crown restorations is better over time than multi-surface intracoronal restorations.90,91

Summary

The scientific basis for caries diagnosis, risk assessment, preventive, and restorative therapy for primary teeth requires further development and continued validation. Most needed are longitudinal studies examining the integration of risk assessment with preventive therapies. Nevertheless, sufficient evidence exists to allow practitioners to transcend traditional surgical management of dental caries in primary teeth. Current information on the dynamic nature of the carious process and risk assessment allows increased emphasis on patient-specific approaches that include disease monitoring and prevention as well as restorative therapies.

REFERENCES

11. Craig GG, Powell KR, Cooper MH. Caries progression in primary molars: 24-month results from a minimal treat-