Single Genes can modify behavior: Worms; Flies; Mice: Humans
Social Behavior in *C. elegans*.

- Mutation in a neuropeptide-Y-like protein; the NPR-1 receptor. In mammals, important for “feeding”.
- Clumping is controlled by an unknown neuropeptide acting through the receptor.
- Secretion of the neuropeptide is probably regulated by food.

Proposed Model:

Dispersing strains have a repellant response (mediated by NPR-1 receptor) that masks the attractant response.
<table>
<thead>
<tr>
<th>Normal</th>
<th>24 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-day mutant</td>
<td>19 hours</td>
</tr>
<tr>
<td>Long-day mutant</td>
<td>28 hours</td>
</tr>
<tr>
<td>Arrhythmic mutant</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3-6 A single gene, *period* (*per*), governs the circadian rhythms of specific behaviors in *Drosophila*. (From Konopka and Benzer 1971.)
The Sleep Disorder Canine Narcolepsy is Caused by a Mutation in the Hypocretin (Orexin) Receptor 2 Gene.
L. Lin et al., Cell 98 365 1999

Narcolepsy in orexin Knockout Mice: Molecular Genetics of Sleep Regulation.
RM Chemelli et al., Cell 98, 437 1999

Narcolepsy: debilitating, neurological disorder characterized by:
1. Sleep attacks
2. Episodic loss of muscle tone (cataplexy)
3. Hypnagogic hallucinations
4. Abnormal sleep-wake cycle

Reduced Number of Hypocretin Neurons in Human Narcolepsy
TC Thannickal et al., Neuron 27; 469 2000

Distribution of Cells in Perifornical and Dorsomedial Hypothalamic Regions of Normal and Narcoleptic Humans
- On average, narcoleptics have 7% of the Hcrt cells seen in normals
- C and D - low power covering regions shown in grey at top
- E and G - normal subjects
- F and H - narcoleptic subjects

Most human narcolepsy is NOT familial; is discordant in identical twins; and NOT linked to mutations in hypocretin.
Narcolepsy: summary

Hypothetical Effect of Blunted nCt Activation:

2. Cholinergic Brainstem and Basal Forebrain: cause sleepiness associated with narcolepsy.

3. Dense nCt Projections to the Suprachiasmatic Nucleus: reduced amplitude of circadian sleep rhythms, and thereby increased sleepiness during the day and interrupted sleep at night.

The Essential Role of Hippocampal CA1 NMDA Receptor-Dependent Synaptic Plasticity in Spatial Memory

Summary of Hippocampal Studies since 1957:

1. Required for certain kinds of memory; spatial in rodents; facts and faces in humans.
2. Rodent hippocampal neurons are “place cells”; ‘fire’ when animal moves into marked area.
3. Hippocampal synapses exhibit LTP (paradigm for synaptic plasticity).
 - Tsien et al: use cre/loxP recombination system to delete NMDA receptor function only in CA1 subregion.
 - THUS: By effecting CA1-specific NMDA receptor inactivation, the studies relate synaptic plasticity to neuronal activity (place fields) and to spatial learning.
The Essential Role of Hippocampal CA1 NMDA Receptor-Dependent Synaptic Plasticity in Spatial Memory
JZ Tsien, PT Huerta, and S. Tonegawa, Cell 87 1327 1996.

Table 3.1: Neuronal diseases involving trinucleotide repeats

<table>
<thead>
<tr>
<th>Disease</th>
<th>Repeat</th>
<th>Repeat length</th>
<th>Gene product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lysinocarboxamiduria and inulin-resistant dystrophy</td>
<td>CAG</td>
<td>Normal 15-24</td>
<td>Adenosine receptor</td>
</tr>
<tr>
<td>Neurofibromatosis type 2</td>
<td>CGG</td>
<td>Normal 6-158</td>
<td>Tuberous sclerosis 1</td>
</tr>
<tr>
<td>Myotonic dystrophy</td>
<td>CTG</td>
<td>Normal 5-80</td>
<td>Myotonic dystrophy</td>
</tr>
<tr>
<td>Huntington’s disease</td>
<td>CAG</td>
<td>Normal 15-101</td>
<td>Huntington’s disease</td>
</tr>
<tr>
<td>Spinocerebellar ataxia type 1</td>
<td>CAG</td>
<td>Normal 19-56</td>
<td>Absent</td>
</tr>
<tr>
<td>TSC2 mental retardation</td>
<td>GCC</td>
<td>Normal 6-27</td>
<td>?</td>
</tr>
<tr>
<td>Huntington’s polyglutamine amyotrophy</td>
<td>CAG</td>
<td>Normal 15-75</td>
<td>?</td>
</tr>
</tbody>
</table>
Most Human Behaviors are Likely to be Genetically Complex: i.e., result from the complex interaction of multiple genes together with non-genetic (environment; stochastic) factors.

Genetics of Autism

Twin Studies
- Monozygotic twins are about 78% concordant for autism and spectrum disorders.
- Dizygotic twins are about 17% concordant.

Recurrence Risk
- Approximately 3% of affected probands have an affected sibling with autism (15% for autism + spectrum).

Relative risk
- Recurrence risk/prevalence
- 50-100 fold increase risk to first-degree relatives compared to general population.
Genetics of Autism

- Very high: MZ:DZ twin ratio
- Relatively low: ‘sibling-risk’ (recurrence risk)
- Very high: ‘relative risk’

Interpretation: Autism is strongly influenced by genetic factors; multiple genes contribute; each single gene effect is probably small; epistatic interactions are likely.

Hypothetical Transmission of Autism Predisposing Alleles

Model of Complex Trait Alleles

- Phenotype might occur due to any of several combinations of mutations, for example mutations in genes 3, 8, & 9; or genes 2 & 5. Some or all combinations may be dependent upon environmental factors.
Heritability of Psychiatric Disorders

Degree to which heritable (genetic) factors influence expression of disease or trait

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Heritability (Range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schizophrenia</td>
<td>50-60%</td>
</tr>
<tr>
<td>Bipolar Disorder</td>
<td>60-70%</td>
</tr>
<tr>
<td>Panic Disorder</td>
<td>30-40%</td>
</tr>
<tr>
<td>Obsessive-Compulsive Disorder</td>
<td>60-80% (small studies)</td>
</tr>
<tr>
<td>ADHD</td>
<td>60%</td>
</tr>
<tr>
<td>Reading Disability</td>
<td>50%</td>
</tr>
<tr>
<td>Autism (+ spectrum)</td>
<td>90%</td>
</tr>
<tr>
<td>Personality</td>
<td>40-60%</td>
</tr>
<tr>
<td>Nicotine Addiction</td>
<td>50% for initiation, 70% for 10 yr. persistence</td>
</tr>
</tbody>
</table>

Dopamine D4 receptor (D4DR) exon III polymorphism associated with the human personality trait of Novelty Seeking

Richard P. Ebstein1,3, Olga Novick2, Roberto Umansky2, Beatrice Priet2, Yamina Osher2, Darren Blaine1, Estelle R. Bennett1, Lubov Nemanov1, Miri Katz1 & Robert H. Belmaker2
Alzheimer’s Disease is currently the best example of a complex disease with known genetic etiology.

Alzheimer’s Disease

1. Degenerating disorder of the CNS leading to a progressive decline in memory, reasoning, judgement and orientation.
2. Affects 2-5 million people in the U.S.A.
3. Fourth leading cause of death in the U.S.A.
4. Patients generally live 5-10 years after onset and often require institutionalized care; 25 billion dollars / year in U.S.A.
5. By the early 21st century, due to the increasing rate of life-expectancy, approximately 1 in every 5 people in the U.S.A. will suffer some form of dementia.

Etiology of Alzheimer’s Disease

1. Classically considered non-genetic
2. Affects 1/10 over age of 65, 1/3 over age of 85
3. Epidemiology Studies: Increased risk among relatives of patients with A.D.
4. Pedigrees: Autosomal dominant form of inheritance usually characterized by an early age of onset (Familial Alzheimer’s Disease).
<table>
<thead>
<tr>
<th>Chromosome</th>
<th>Gene</th>
<th>Onset</th>
<th>Proportion of cases (%)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Presenilin II</td>
<td>Early</td>
<td><1</td>
<td>Mainly Velga German</td>
</tr>
<tr>
<td>14</td>
<td>Presenilin I</td>
<td>Early</td>
<td><5</td>
<td>Autosomal dominant</td>
</tr>
<tr>
<td>19</td>
<td>APOE</td>
<td>Both</td>
<td>40-50</td>
<td>Dose effect on risk</td>
</tr>
<tr>
<td>21</td>
<td>APP</td>
<td>Early</td>
<td><<1</td>
<td>Autosomal dominant</td>
</tr>
<tr>
<td>?</td>
<td>?</td>
<td>Late</td>
<td>>50</td>
<td>Unknown number of genes</td>
</tr>
</tbody>
</table>

Apolipoprotein E (APOE) and AD

- APOE is a major serum lipoprotein involved in cholesterol metabolism.
- Synthesized in the brain by astrocytes
- In the brain, APOE is thought to be involved in mobilization and redistribution of cholesterol and phospholipid during membrane remodeling associated with plasticity of synapses.
Apolipoprotein E - e4

- e4/e4 AD patients show markedly more APP deposition in plaques relative to non-e4 AD patients
- ApoE e4 binds BA4 peptide with greater avidity than e3 isoform.
- ApoE e4 shows significant allelic association in familial and sporadic late onset AD, and in familial early onset AD.
 - e4 heterozygote is 3X more likely to be affected than e2/e3 or e3/e3
 - e4 homozygote is 8X more likely to be affected

Conclusion: ApoE e4 gene dose is a major risk factor for late (and possibly early) onset AD. Inheritance of two e4 alleles is not necessary and probably not sufficient to cause AD.