Early Sensory Experience and the Fine Tuning of Synaptic Connections

I. Effects of social deprivation
 - Birds
 - Humans
 - Monkeys

II. Visual system - from eye to thalamus to cortex
 - Physiological features of ocular dominance columns in the visual cortex
 - Experimentation: eye closure; critical periods
 - Postnatal vs. prenatal inputs; neural activity
 - Mechanism for “winner-take-all” (open eye) and synapse elimination (closed eye)

III. Topics/Controversies in recent research (not in the text book)
 - Mechanisms other than sensory input for establishment of ocular dominance columns?
 - Dendritic Spines are motile; continued plasticity into adulthood?
 - Reactivation of plasticity in the adult by degradation of the extracellular matrix
 - Changes in steroid hormone levels induce dendritic alterations and loss of synapses
 - Barn owls and visual/auditory localization: functional and structural plasticity

THEMES

*There is a connection between neural development and learning

*The immature brain is highly plastic, with developing circuits molded by patterns of electrical activity.

*There is a critical period during which developing system is particularly susceptible to environmental deprivation, during the development of social behavior.

I. Effects of social deprivation

 Lorenz and imprinting
 Spitz and institutionalized children
 Harlow and monkeys with surrogate, inanimate mother
There is a connection between neural development and learning.

Konrad Lorenz' work on "imprinting":
Just after birth, birds become indelibly attached or "imprinted" to any prominent moving object in their environment, e.g., their "mother".

Observations of Rene Spitz - 1940's:
Young children were raised in two different institutions,
Prison nursing home: with open cribs, a lively environment and extensive interaction with the mother,
(even though she lived in the prison next door)

Foundling home with nurses caring for several babies: where cribs were shielded, there was no intimate interaction with the mother or other caregivers, and little opportunity for other social interaction.

By the first birthday, children in the foundling home had susceptibility to disease; they were not walking or talking properly at 2-3 years old.

1960's: Harry and Margaret Harlow studied monkeys reared in isolation for 6-12 months.

In isolation, monkeys were healthy but behaviorally devastated (autistic-like features).
With a surrogate mother, most extreme symptoms not present; peer contact alleviated further symptoms.
Isolation of animals after 18 months did not have such consequences.
A critical period is a limited developmental period when extrinsic influences can induce permanent changes in both structure and function of circuits. The developing nervous system is particularly susceptible to environmental deprivation, resulting in aberrant development of social behavior.

The role of early experience in human development has become a political issue:

“Fifteen years ago, we thought that a baby’s brain structure was virtually complete at birth. Now we understand that it is a work in progress, and that everything we do with a child has some kind of potential physical influence on that rapidly forming brain. A child’s earliest experiences determine how their brains are wired. These experiences can determine whether children will grow up to be peaceful or violent citizens, focused or undisciplined workers, attentive or detached parents themselves.

Hilary Clinton, 4/97
---from an article by Malcolm Gladwell, “Baby Steps”, New Yorker, January 10, 2000

II. The Visual system - from eye to thalamus to cortex

Physiological features of ocular dominance columns in the visual cortex (work of Hubel and Wiesel)

Experiment: eye closure; critical period for affecting visual behaviors
Postnatal vs. prenatal inputs; neural activity
Mechanisms - “winner-take-all”, elaboration of axon branches and synapses (open eye) and synapse elimination (closed eye)
Afferent pathways from the two eyes remain segregated from eye to visual cortex

In the cortex above layer 4c, cells * respond to stimuli presented to either eye.

Kandel/Schwartz/Jessell
Principles of Neural Science
Fig. 56.01

Early visual experience:

Children or chimps who receive only diffuse light input during early childhood subsequently have difficulty in pattern recognition.

David Hubel and Torsten Wiesel - won the Nobel prize for studies in the 70's and 80's on sensory deprivation.

They deprived animals of visual input (by closing/suturing the eyelid of one or both eyes) and analyzing the consequences on visual cortical development and visual behavior.
Are there structural changes after monocular eye closure?

Inject radioactive tracer into one eye…
and cut brain sections*

After injecting radioactive tracer into eye,
cutting sections of visual cortex,
followed by autoradiography of sections.

NORMAL

DEPRIVED: INJECT OPEN EYE

DEPRIVED: INJECT CLOSED EYE
WHAT ARE THE TEMPORAL PARAMETERS of sensory deprivation?

- THERE IS A CRITICAL PERIOD DURING THE FIRST 6 WEEKS OF LIFE
- ONE WEEK OF DEPRIVATION IS ENOUGH TO CAUSE IRREVERSIBLE CHANGES
- LONGER PERIODS OF DEPRIVATION LATER IN LIFE DO NOT HAVE THE SAME EFFECT

Normal Development of Ocular Dominance Columns
Tracer injected into one eye, transneuronally transported across retinal axon synapse in thalamus (LGN), to cells projecting to visual cortex

Postnatal Age

2 weeks
3 weeks
5 weeks
13 weeks

The effects of eye closure on formation of ocular dominance columns in layer 4c

Normal eyes
Blue eye closed
After binocular deprivation, many cells remain responsive to both eyes.

Monocular experiment: activity from afferent pathways is critical
Binocular experiment: the balance of activity between inputs is also important.

Does neural activity play a role prenatally?

Postnatal critical period vs. prenatal “neural” activity;

The lateral geniculate nucleus (first relay or target of retinal axons) and retinal “waves”
Segregation of eye-specific inputs from retinal to first relay in the Lateral Geniculate Nucleus occurs before birth in utero

This process is perturbed if neural activity is blocked in the eye or optic chiasm;

Kandel/Schwaert/Jessel
Principles of Neural Science
56.09

In the embryo, neighboring ganglion cells fire together in synchronous bursts or "waves". This spontaneous but synchronous firing of retinal afferent fibers excites a group of target neurons in the LGN, and strengthens those synapses.

Fluorescent imaging of local calcium levels; each color represents a different "wave" event

Mechanism for "winner-take-all" (open eye) and synapse elimination (closed eye):
- Cooperative, synchronous firing and competition (Hebb; LTP)
- Postsynaptic NMDA receptors open
- Neurotrophins from postsynaptic cell released and taken up by active presynaptic terminals (ones that are strongly firing, cooperatively)
- Neurotrophins act on presynaptic axons, axon arbors branch and expand

"Neurons that fire together wire together"
Axons from right eye fire synchronously; large depolarization leads to NMDA receptor activation, neurotrophin release, and enhanced uptake by active terminals with active endocytosis.

Axons from left eye did not take up neurotrophins, retracted.

Axons from the right eye, took up neurotrophic factor and branch, and occupy the vacated site from left eye.

Administration of neurotrophins NT4, 5 or BDNF to developing cortex eliminates the need to compete, so no ocular dominance columns form.
Ocular dominance columns can be induced experimentally in a frog by the transplantation of a third eye.*

The activity of NMDA-type glutamate receptors controls the segregation of afferent input in the frog optic tectum. This mechanism, which resembles LTP, explains how an initial relatively small bias towards one eye can be progressively reinforced until there is complete dominance.
Early Sensory Experience and the Fine Tuning of Synaptic Connections

I. Effects of social deprivation
 - Birds
 - Humans
 - Monkeys

II. Visual system - from eye to thalamus to cortex
 - Physiological features of ocular dominance columns in the visual cortex
 - Experimentation: eye closure; critical periods
 - Postnatal vs. prenatal inputs: neural activity
 - Mechanism for "winner-take-all" (open eye) and synapse elimination (closed eye)

III. Topics/Controversies in recent research (not in the textbook)
 - Mechanisms other than sensory input for establishment of ocular dominance columns?
 - Dendritic Spines are motile; continued plasticity into adulthood?
 - Reactivation of plasticity in the adult by degradation of the extracellular matrix
 - Changes in steroid hormone levels induce dendritic alterations and loss of synapses
 - Barn owls and visual/auditory localization: functional and structural plasticity

A. Are cortical ocular dominance columns set up prenatally in absence of neural activity? Molecular matching?

B. Dendritic Spines (sites of excitatory synaptic input on large neurons) are highly dynamic, changing shape and synaptic contacts
 - Increased dynamism in enriched environments; perturbed in deprived contexts.
 - Does morphological plasticity continue? At reduced levels?

C. Experience and changes in connections later in life?
 - Reactivation of plasticity in the adult by degradation of the extracellular matrix
 - Changes in steroid hormone levels induce dendritic alterations, and loss of synapses
 - Barn owls and visual/auditory localization: functional and structural plasticity

![Diagram of visual system](Image)
Segregated Thalamocortical Afferents in P18 Ferret Cortex - well before eye opening

P0 P10 P20 P30 P40 P50 P60

LGN afferents
Horizontal connections
Ocular dominance
Arrive, synapse in layer 4
Clustering in L 2/3
Transneuronal OD patches
Critical period for MD
Modified from Issa et al., J. Neurosci. 19:6965, 1999

Development of Ferret Visual Cortex

Ocular Dominance Development

Two phases:

Establishment → Plasticity
Ocular dominance columns form before eye opening

By molecular “matching”? Visual activity important for later branch addition, retraction?

III. Topics/Controversies in recent research (not in the text book)
A. Are cortical ocular dominance columns set up prenatally in absence of neural activity? Molecular matching?

B. Dendritic Spines (sites of excitatory synaptic input on large neurons)
 - Highly dynamic, changing shape and synaptic contacts
 - Increased dynamism in enriched environments; perturbed in deprived contexts.
 - Does morphological plasticity continue? At reduced levels?

C. Experience and changes in connections later in life?
 - Reactivation of plasticity in the adult: by sensory experience, by degradation of the extracellular matrix
 - Changes in steroid hormone levels induce dendritic alterations, and loss of synapses
 - Barn owls and visuo/auditory localization: functional and structural plasticity

Light microscope view Electron microscope view

spine
Increased in environments rich in sensory inputs. Perturbed in deprived environments and in developmental disorders (mental retardation, autism, hypothyroidism, etc).

Dendrites, spines, afferent synapses

Is spine motility developmentally regulated?

P22+2 div

P10+2 div

Spine motility is developmentally regulated

% Motile Spines

P10 P19-22
Age +2DIV

Dunaevsky, Yuste and Mason
In the adult cortex, spine lifetimes vary greatly: 50% are stable for at least a month, whereas the remainder are stable for only a day or less.

Spines imaged in the cortex of an intact living brain

III. Topics/Controversies in recent research (not in the text book)
A. Are cortical ocular dominance columns set up prenatally in absence of neural activity? Molecular matching?
B. Dendritic Spines (sites of excitatory synaptic input on large neurons) are highly dynamic, changing shape and synaptic contacts
 - Increased dynamism in enriched environments; perturbed in deprived contexts.
 - Does morphological plasticity continue? At reduced levels?
C. Experience and changes in connections later in life?
 - Reactivation of plasticity in the adult: by sensory experience, by degradation of the extracellular matrix
 - Changes in steroid hormone levels induce dendritic alterations, and loss of synapses
 - Barn owls and visual/auditory localization:
 functional and structural plasticity
Experience and changes in connections later in life?

Experience alters spine turnover, even in the adult
Whiskers were cut, dendrites and spines on somatosensory cortex cells imaged.

If spines that have a synaptic contact move, then either...
(a) the synapse must break, or (b) the spines “wiggle” around the synaptic contact.

*Trachtenburg et al., Nature 2002
*Mason and Dunaevsky, 2003
Reactivation of plasticity in the adult by degradation of the extracellular matrix

Responses of neurons in the visual cortex after closure of one eye in the young animal: This does not occur if one closed in the adult unless the cortex is injected with an enzyme that “dissolves” chondroitin sulfate proteoglycans. (Pizzorusso et al, 2002)

spine

Light microscope view electron microscope view

= Extracellular matrix
III. Topics/Controversies in recent research (not in the text book)

A. Are cortical ocular dominance columns set up prenatally in absence of neural activity? Molecular matching?

B. Dendritic Spines (sites of excitatory synaptic input on large neurons) are highly dynamic, changing shape and synaptic contacts:
 - Increased dynamism in enriched environments;
 - Perturbed in deprived contexts;
 - Does morphological plasticity continue? At reduced levels?

C. Experience and changes in connections later in life?
 - Reactivation of plasticity in the adult: by sensory experience,
 - By degradation of the extracellular matrix
 - Changes in steroid hormone levels induce dendritic alterations,
 - And loss of synapses.
 - Barn owls and visual/auditory localization:
 functional and structural plasticity

Steroids induce dendritic regression,
loss of synapses (synaptic weakening),
and loss of specific behaviors

Gray and Weeks, 2003
Plasticity of auditory orienting behavior of a juvenile owl resulting from prism experience.

Visuomotor adjustment occurs more rapidly than auditory-visual realignment.

Plasticity of the anatomical projection from the ICC to ICX in adults after juveniles were raised with prisms.