I. From V_m and I_{Na}, one can calculate g_{Na}
 A. $V_m = E_{Na} + \frac{I_{Na}}{g_{Na}}$ - from the circuit
 B. $I_{Na} = g_{Na} (V_m - E_{Na})$ - generally useful form of the equation
 C. $g_{Na} = \frac{I_{Na}}{V_m - E_{Na}}$ - used to calculate g_{Na}

II. Voltage-activated g_{Na} and g_K have:
 A. Similarities:
 1. More depolarization causes a greater conductance increase
 2. More depolarization causes a faster conductance increase
 B. Differences:
 1. g_{Na} activates faster – allowing net influx of positive charge
 2. g_{Na} inactivates with maintained depolarization, contributing to repolarization
 a) Na channels have activation and inactivation gates
 b) Recovery from inactivation at V_{rest} takes time

III. Generation of the action potential
 A. Positive feedback causes upstroke
 B. Negative feedback causes falling phase and (subsequently) the refractory period
 1. g_{Na} inactivation
 2. Increased g_K

IV. Conduction of the action potential:
 A. Local circuit flow of current
 B. Two phases of spread of the action potential:
 1. Active
 2. Passive
 a. r_a limits current flow, thereby slowing the rate of discharging of c_m
 b. Spread of depolarization limited by r_a and c_m
 b1. Increased axon diameter reduces r_a
 b2. Myelination reduces c_m, and increases effective r_m

V. Functional diversity of voltage-gated channel types in the nervous system, based on differences in:
A. Selectivity
B. Kinetics of activation
C. Voltage-range of activation
D. Physiological modulators (e.g., [Ca++]i, cyclic nucleotides, etc.)

VI. Voltage-gated ion channels belong to two major gene superfamilies:

A. **Cation permeant** (4-fold symmetry; similar secondary, tertiary and quaternary structures):

1. Voltage-gated

 a. K⁺-permeant

 a1. Six transmembrane helices

 a2. Two transmembrane helices (inward rectifiers = hyperpolarization-activated)

 b. Na⁺-permeant

 c. Ca++-permeant

 d. Cation non-specific-permeant (HCN = hyperpolarization-activated)

2. **Non-Voltage-gated**

 2. Cyclic nucleotide-gated
 3. **TRP family** – activated by various second messenger pathways
 4. *permeant leakage channels*

B. **Anion (Cl⁻) permeant** (channels form from single proteins, which combine as dimers to give double-barreled structure):

1. Voltage-gated
2. **Cell swelling-gated**
3. **pH-gated**