Single Genes can modify behavior: Worms; Flies; Mice; Humans

Social Behavior in *C. elegans*.

- Mutation in a neuropeptide-Y-like protein; the NPR-1 receptor. In mammals, important for “feeding”.
- Clumping is controlled by an unknown neuropeptide acting through the receptor.
- Secretion of the neuropeptide is probably regulated by food.

Proposed Model:

Dispersing strains have a repellant response (mediated by NPR-1 receptor) that masks the attractant response.
The Sleep Disorder Canine Narcolepsy is Caused by a Mutation in the Hypocretin (Orexin) Receptor 2 Gene.
L. Lin et al., Cell 98 365 1999

Narcolepsy in orexin Knockout Mice: Molecular Genetics of Sleep Regulation,
RM Chemelli et al., Cell 98, 437 1999

Narcolepsy: debilitating, neurological disorder characterized by:
1. Sleep attacks
2. Episodic loss of muscle tone (cataplexy)
3. Hypnogogic hallucinations
4. Abnormal sleep-wake cycle

Figure 3-6 A single gene, periods, governs the circadian rhythms of specific behaviors in Drosophila. (From Konopka and Benzer 1971.)

The Sleep Disorder Canine Narcolepsy is Caused by a Mutation in the Hypocretin (Orexin) Receptor 2 Gene.
L. Lin et al., Cell 98 365 1999

Reduced Number of Hypocretin Neurons in Human Narcolepsy
TC Thannickal et al., Neuron 27; 469 2000

Distribution of Cells in Perifornical and Dorsomedial Hypothalamic Regions of Normal and Narcoleptic Humans

- On average, narcoleptics have 7% of the Hcrt cells seen in normals
- C and D - low power showing regions shown in grey at top
- E and G - normal subjects
- F and H - narcoleptic subjects

- Most human narcolepsy is NOT familial; is discordant in identical twins; and NOT linked to mutations in hypocretin.
Narcolepsy: summary

Hypothetical Effect of Blunted Hcrt Activation:

2. Cholinergic Brainstem and Basal Forebrain: cause sleepiness associated with narcolepsy.
3. Dense Hcrt Projections to the Suprachiasmatic Nucleus: reduced amplitude of circadian sleep rhythms, and thereby increased sleepiness during the day and interrupted sleep at night.

The Essential Role of Hippocampal CA1 NMDA Receptor-Dependent Synaptic Plasticity in Spatial Memory
JZ Tsien, PT Huerta, and S. Tonegawa, Cell 87 1327 1996.

Summary of Hippocampal Studies since 1957:

1. Required for certain kinds of memory; spatial in rodents; facts and faces in humans.
2. Rodent hippocampal neurons are “place cells”; “fire” when animal moves into marked area.
3. Hippocampal synapses exhibit LTP (paradigm for synaptic plasticity).
 - \textit{Tsien \textit{et al.}} use cre/loxP recombination system to delete NMDA receptor function only in CA1 subregion.
 - \textit{Thus:} By effecting CA1-specific NMDA receptor inactivation, the studies relate synaptic plasticity to neuronal activity (place fields) and its spatial learning.
Most Human Behaviors are Likely to be Genetically Complex: i.e., result from the complex interaction of multiple genes together with non-genetic (environment; stochastic) factors.

Genetics of Autism

Twin Studies
- Monozygotic twins are about 78% concordant for autism and spectrum disorders.
- Dizygotic twins are about 17% concordant.

Recurrence Risk
- Approximately 3% of affected probands have an affected sibling with autism (15% for autism + spectrum).
- Relative risk
- Recurrence risk/prevalence

50-100 fold increase risk to first-degree relatives compared to general population.

Hypothetical Transmission of Autism Predisposing Alleles

Genetics of Autism

Very high: MZ:DZ twin ratio
Relatively low: ‘sibling-risk’ (recurrence risk)
Very high: ‘relative risk’

Interpretation: Autism is strongly influenced by genetic factors; multiple genes contribute; each single gene effect is probably small; epistatic interactions are likely.
Heritability of Psychiatric Disorders

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Heritability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schizophrenia</td>
<td>50-60%</td>
</tr>
<tr>
<td>Bipolar Disorder</td>
<td>60-70%</td>
</tr>
<tr>
<td>Panic Disorder</td>
<td>30-40%</td>
</tr>
<tr>
<td>Obsessive-Compulsive Disorder</td>
<td>60-80% (small studies)</td>
</tr>
<tr>
<td>ADHD</td>
<td>60%</td>
</tr>
<tr>
<td>Reading Disability</td>
<td>50%</td>
</tr>
<tr>
<td>Autism (+ spectrum)</td>
<td>90%</td>
</tr>
<tr>
<td>Personality</td>
<td>40-60%</td>
</tr>
<tr>
<td>Nicotine Addiction</td>
<td>50% for initiation, 70% for 10 yr. persistence</td>
</tr>
</tbody>
</table>

Alzheimer’s Disease is currently the best example of a complex disease with known genetic etiology.

Dopamine D4 receptor (D4DR) exon III polymorphism associated with the human personality trait of Novelty Seeking

Richard P. Ebstein\(^1,3\), Olga Novick\(^2\), Roberto Umansky\(^3\), Beatrice Priel\(^2\), Yaminia Osher\(^2\), Darren Blaine\(^1\), Estelle R. Bennett\(^1\), Lubov Nemanov\(^1\), Miri Katz\(^1\) & Robert H. Belmaker\(^2\)

Alzheimer’s Disease

1. Degenerating disorder of the CNS leading to a progressive decline in memory, reasoning, judgment and orientation
2. Affects 2-6 million people in the U.S.A.
3. Fourth leading cause of death in the U.S.A.
4. Patients generally live 5-10 years after onset and often require institutionalized care; 25 billion dollars / year in U.S.A.
5. By the early 21st century, due to the increasing rate of life expectancy, approximately 1 in 36 will suffer some form of dementia.

Etiology of Alzheimer’s Disease

1. Classically: considered non-genetic
2. Affects: 1 in 10 over age of 65, 1 in 3 over age of 65
3. Epidemiology Studies: Increased risk among relatives of patients with A.D.
4. Pedigrees: Autosomal dominant form of inheritance usually characterized by early age of onset (Familial Alzheimer’s Disease)
Apolipoprotein E (APOE) and AD

- APOE is a major serum lipoprotein involved in cholesterol metabolism.
- Synthesized in the brain by astrocytes.
- In the brain, APOE is thought to be involved in mobilization and redistribution of cholesterol and phospholipid during membrane remodeling associated with plasticity of synapses.

Table 1. Genetic susceptibility loci in Alzheimer disease

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>Gene</th>
<th>Onset</th>
<th>Proportion of cases (%)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Presenilin II</td>
<td>Early</td>
<td><1</td>
<td>Mainly Volga German</td>
</tr>
<tr>
<td>14</td>
<td>Presenilin I</td>
<td>Early</td>
<td><5</td>
<td>Autosomal dominant</td>
</tr>
<tr>
<td>19</td>
<td>APOE</td>
<td>Both</td>
<td>40-50</td>
<td>Dose effect on risk</td>
</tr>
<tr>
<td>21</td>
<td>APP</td>
<td>Early</td>
<td><<1</td>
<td>Autosomal dominant</td>
</tr>
<tr>
<td>?</td>
<td>?</td>
<td>Late</td>
<td>>=50</td>
<td>Unknown number of genes</td>
</tr>
</tbody>
</table>

Apolipoprotein E - e4

- e4/e4 AD patients show markedly more APP deposition in plaques relative to non-e4 AD patients.
- ApoE e4 binds BA4 peptide with greater avidity than e3 isoform.
- ApoE e4 shows significant allelic association in familial and sporadic late onset AD, and in familial early onset AD.
 - e4 heterozygote is 3X more likely to be affected than e2/e3 or e3/e3.
 - e4 homozygote is 8X more likely to be affected.

Conclusion: ApoE e4 gene dose is a major risk factor for late (and possibly early) onset AD. Inheritance of two e4 alleles is not necessary and probably not sufficient to cause AD.