Auditory System: Introduction

- Sound: Physics; Salient features of perception.
 - Weber-Fechner laws, as in touch, vision
- Auditory Pathway: cochlea – brainstem – cortex
 - Optimal design to pick up the perceptually salient features
 - Coding principles common to other sensory systems:
 - sensory or “place” maps,
 - receptive fields,
 - hierarchies of complexity.
 - Coding principles unique to auditory system: timing
 - Physiology explains perception
- fMRI of language processing
- Plasticity (sensory experience or external manipulation).
- Diseases:
 - Hearing impairment affects ~ 30 million in the USA

Sound: a tiny pressure wave

- Waves of compression and expansion of the air
 - (Imagine a tuning fork, or a vibrating drum pushing the air molecules to vibrate)
- Tiny change in local air pressure:
 - Threshold (softest sounds): $1/10^{10}$ Atmospheric pressure
 - Loudest sounds (bordering pain): $1/1000$ Atmospheric pressure
- Mechanical sensitivity + range

Pitch (Frequency): heard in Octaves

- PITCH: our subjective perception is a LOGARITHMIC FUNCTION of the physical variable (frequency). Common Principle
 - Pitch perception in OCTAVES: “Equal” intervals actually MULTIPLES. Sound “Do” in musical scales:
 - C1. 32.703 Hz.
 - C2. 65.406.
 - C3. 130.81.
 - C4. 261.63. (middle C)
 - C5. 523.25.
 - C6. 1046.5.
 - C7. 2093.

- Natural sounds:
 - multiple frequencies (music: piano chords, hitting keys simultaneously, speech). We hear it as a “whole” not parts.
 - constantly changing (prosody in speech, trills in bird song)
- Hierarchical system, to extract and encode higher features (like braille in touch, pattern motion in vision)

Complex sounds: Multiple frequencies

- Natural sounds:
 - multiple frequencies (music: piano chords, hitting keys simultaneously, speech). We hear it as a “whole” not parts.
 - constantly changing (prosody in speech, trills in bird song)
- Hierarchical system, to extract and encode higher features (like braille in touch, pattern motion in vision)

Pitch (Frequency): heard in Octaves

- PITCH: our subjective perception is a LOGARITHMIC FUNCTION of the physical variable (frequency). Common Principle
 - Pitch perception in OCTAVES: “Equal” intervals actually MULTIPLES. Sound “Do” in musical scales:
 - C1. 32.703 Hz.
 - C2. 65.406.
 - C3. 130.81.
 - C4. 261.63. (middle C)
 - C5. 523.25.
 - C6. 1046.5.
 - C7. 2093.

- Two-tone discrimination: like two-point discrimination in the somatosensory system. Proportional to the frequency (~ 5%).
- Weber-Fechner Law
- WHY? Physiology: “place" map for frequency coding from the cochlea up to cortex; sizes of receptive fields. Just like somatosensory system

Loudness: Huge range; logarithmic

- Why DECIBELS?
 - LOUDNESS perception; also LOGARITHM of the physical variable (intensity).
 - Fechner (1860) noticed “equal” steps of perceived loudness actually multiples of each other in intensity. Logarithmic
 - Defined: log scale (Bel)
 - $10 \log_{10} (I/I_0) \text{ Decibels}$
 - Threshold: 0 dB: $(1/10^{10}$ atmospheric pressure)
 - Max: 5,000,000 larger in amplitude, 10^{13} in power
 - HUGE range.
- Encodes loudness
- Adapts to this huge range (like light intensity)
Timing: Used to locate sound sources

- Not PERCEIVED directly, but critical for LOCATING sources of sound in space:
 - Interaural Time Difference (ITD) as a source moves away from the midsaggital plane.
 - Adult humans: maximum ITD is 700 microseconds.
 - We can locate sources to an accuracy of a few degrees. This means we can measure ITD with an accuracy of ~ 10 microseconds.
 - Unique to auditory system (vs. visual or touch).

Auditory System: Demands

- Frequency (logarithmic, octave scale)
- Complex sounds: multiple & changing frequencies.
- Loudness (logarithmic scale; extending over a range of 5,000,000 in amplitude, i.e. 2.5 \times 10^{13} in intensity)
- Properties analogous to touch and vision
- Timing, to 10 microsecond accuracy

Auditory System: Ear

- Perfect design to transmit tiny vibrations from air to fluid inside cochlea
- Stapedius muscle: damps loud sounds, 10 ms latency.

Middle Ear: Engineering; diseases

- CONDUCTIVE (vs. SENSORINEURAL) hearing loss
 - Scar tissue due to middle-ear infection (otitis media)
 - Ossification of the ligaments (otosclerosis)
- Rinne test: compare loudness of (e.g.) tuning fork in air vs. placed against the bone just behind the auricle.
- Surgical intervention: usually highly effective

Inner ear: Cochlea

- 3 fluid-filled cavities
- Transduction: organ of Corti: 16,000 hair cells, basilar membrane to tectorial membrane

Basilar Membrane

- Incompressible fluid, dense bone (temporal).
- Traveling wave (vibrations) IN THE FLUID
- Basilar membrane: individual elements (vibraphone, not didgeridoo).
Basilar Membrane: tonotopy, octaves
- Thick & taut near base
- Thin & floppy at apex
- Couples with vibrating fluid to give local peak response.

Organ of Corti

Auditory System: Hair Cells
- Force towards kinocilium opens channels & K^+, Ca^{2+} enter, depolarizing cell by 10s of mV. Force away shuts channels.
- Tip links (em): believed to connect transduction channels (cation channels on hairs)

Basilar Membrane: tonotopy, octaves
- Thick & taut near base
- Thin & floppy at apex
- Couples with vibrating fluid to give local peak response.
- Tonotopic PLACE map (...homunculus)
- LOGARITHMIC: 20 Hz -> 200 Hz -> 2kH -> 20 kHz, each 1/3 of the membrane
- Two-tone discrimination
- Timing
Hair Cells: Tricks to enhance response

- Inner hair cells: MAIN SOURCE of afferent signal in auditory (VIII) nerve. (~10 afferents per hair cell)
- Outer hair cells: primarily get EFFERENT inputs. Control stiffness, amplify membrane vibration. (5,000,000 X range)

To enhance frequency tuning:
- Mechanical resonance of hair bundles: Like a tuning fork, hair bundles of cells near base of cochlea are short and stiff, vibrating at high frequencies; hair bundles near the tip of the cochlea are long and floppy, vibrating at low frequencies.
- Electrical resonance of cell membrane potential (in mammals?)
- An AMAZING feat of development.

Synaptic transmission speed (10 µs):
- Synaptic density: for speed? (normal synapse: 1 to 100s of ms)

Ear: a finely tuned machine

Optimally engineered to:
- pick up the very faint vibrations of sound &
- extract perceptually relevant features
 - pitch
 - loudness
 - complex patterns
 - timing

Cochlear prosthesis

- Most deafness: SENSORI-NEURAL hearing loss.
- Primarily from loss of cochlear hair cells, which do not regenerate.
- Hearing loss means problems with language acquisition in kids, social isolation for adults.
- When auditory nerve unaffected: cochlear prosthesis electrically stimulating nerve at correct tonotopic site.

Auditory Nerve (VIII cranial nerve)

- Neural information from inner hair cells: carried by cochlear division of the VIII Cranial Nerve.
- Bipolar neurons, cell bodies in spiral ganglion, proximal processes on hair cell, distal in cochlear nucleus.

Auditory Nerve (VIII): Receptive fields

- Receptive fields: TUNING CURVE from hair cell
 - "Labeled line" from "place" coding.
 - Note: bandwidths equal on log frequency scale. Determines two-tone discrimination.
Auditory Nerve (VIII): Receptive fields

- Receptive fields: TUNING CURVE from hair cell.
- "Labeled line" from "place" coding.
- Note: bandwidths equal on log frequency scale. Determines two-tone discrimination.
- Loudness: spike rate (+ high-threshold fibers)
- Phase-locking to beyond 3 kHz
- Match: to frequency, loudness and timing

Auditory System: Central Pathways

- Very complex. Just some major pathways shown.
- Extensive binaural interaction, with responses depending on interactions between two ears. Unilateral lesions rarely produce unilateral deficits.

Auditory System: Central Pathways

General principles.
- Parallel pathways, each analysing a particular feature
- Streams separate in cochlear nucleus: different cell types of project to specific nuclei. Similar to "what" and "where"
- Increasing complexity of responses (like vision, touch)

Cochlear Nucleus:

- VIII nerve: branches -> 3 cochlear nuclei.
 - Dorsal Cochlear Nucleus (DCN)
 - Posteroventral Cochlear Nucleus (PVCN)
 - Anteroventral Cochlear Nucleus (AVCN)
- Tonotopy (through innervation order)
- Start of true auditory feature processing,
 - Distinct cell classes: stellate (encode frequency), bushy (encodes sound onset)
 - Different cell types project to different relay nuclei.
Superior Olive: Locates sound sources

- **Medial Superior Olive**: interaural time differences:
 - Delay Lines: Coincidence detector (accurate up to 10 ms).
 - Timing code converted to place code for angular location.
 - Tonotopic: matching across frequency bands.
- Multiple sclerosis -> sound sources seem centered.

Auditory System: Midbrain

- From superior olives via lateral lemniscus to the inferior colliculus (IC). Separate path from DCN.
- Dorsal IC: auditory, touch
- Central Nucleus of IC: combines LSO, MSO inputs to 2-D spatial map; passed on to Superior Colliculus to match visual map
- Medial geniculate body: Principal nucleus: thalamic relay of auditory system. Tonotopic. Other nuclei: multimodal: visual, touch, role in plasticity?

Auditory Cortex: Complex patterns

- Progressively more complex
- 15 distinct tonotopic areas.
- A1: Primary Auditory Cortex: Superior temporal gyrus
- Like other sensory cortex:
 - 6 layers
 - Input layer: IV.
 - V: back project to MGB.
 - VI: back project to IC
 - Cortical columns (map),
- Logarithmic map of frequency.
- Perpendicular to freq axis:
 - binaural interactions: EE, EI,
 - rising or falling pitch

Superior Olive: locates sound sources

- Lateral Superior Olive: interaural intensity differences.
- Works best at high frequencies, the head casts a better shadow.
- Again, organized tonotopically to match across frequencies.

Auditory Cortex: Complex patterns

- Cortical cells: tuned to precise sequence of complex sounds
- Particularly, ethologically important sounds
- Marmoset A1 response to its own twitter call

Cochlea

Auditory Nerve

Dorsal Cochlear Nucleus

Anteroventral Cochlear Nucleus

Posteroventral Cochlear Nucleus

Medial Superior Olive

Lateral Superior Olive

Lateral Lemniscus

Inferior Colliculus

Medial Geniculate Body

Cortical Auditory Area (A1)

Medial Geniculate Cortex

Acoustic Stria: Dorsal Intermediate Ventral
Auditory Cortex: “What vs. Where”

- Rhesus monkey: “belt” or secondary auditory cortex

Auditory System: Speech Areas

- Classical division on basis of aphasia following lesions:
 - Broca’s area: understand language but unable to speak or write
 - Wernicke’s area: speaks but cannot understand

- Current understanding: not uniform areas. Rather, category-specific with strongest activation proximal to the sensory or motor area associated with that category:
 - Words for manipulable objects (tools) activate reaching / grasping motor areas
 - Words for movement activate next to visual motion areas
 - Words for complex objects (faces) activate visual recognition areas

Auditory System: Speech Areas

- Not monolithic areas. Rather, category-specific with strongest activation spatially proximal to the sensory or motor area associated with that category:
 - Words for manipulable objects (tools) activate reaching / grasping motor areas
 - Words for movement activate next to visual motion areas
 - Words for complex objects (faces) activate visual recognition areas

Auditory System: Recapitulation:

- Sound: Physics, Perception
 - Characterizing: Frequency (pitch), Loudness
 - Timing (sound source location; discriminating complex sounds)
 - Weber-Fechner law: perceptions are logarithmic; just noticeable differences are proportional to the value (of loudness or pitch)

- Pathway: cochlea – brainstem – cortex
 - Ear: finely engineered to pick up sound
 - Parallel processing of pitch, loudness, timing, (complex sounds)
 - Higher along pathway: more complex processing.
 - “Physiology explains perception”: receptive fields, tuning curves, place coding for pitch, loudness, sound source location. Similar to sensory systems of vision, touch

- fMRI of language processing

- Plasticity (sensory experience or external manipulation).