Cardiovascular Pathophysiology: Left To Right Shunts
Ismee A. Williams, MD, MS
iib6@columbia.edu

Learning Objectives

• Learn the relationships between pressure, blood flow, and resistance
• Review the transition from fetal to mature circulation
• Correlate clinical signs and symptoms with cardiac physiology as it relates to left to right shunt lesions:
 – VSD, PDA, ASD
• Discuss Eisenmenger’s Syndrome
Pressure, Flow, Resistance

- **Perfusion Pressure**: Pressure gradient across vascular bed
 - Δ Mean Arterial - Venous pressure
- **Flow**: Volume of blood that travels across vascular bed
- **Resistance**: Opposition to flow
 - Vessel diameter
 - Vessel structure and organization
 - Physical characteristics of blood

Poiseuille equation

$$Q = \frac{\Delta P \pi r^4}{8nI}$$
$$R = \frac{8nI}{\pi r^4}$$

ΔP = pressure drop
r = radius
n = viscosity
I = length of tube
Q = flow
Hemodynamics

\[\text{Flow (Q)} = \frac{\Delta \text{Pressure}}{\text{Resistance}} \]

\[\text{Resistance} = \frac{\Delta \text{Pressure}}{\text{Flow}} \]

Two parallel fetal circulations

- Placenta supplies oxygenated blood via ductus venosus
- Foramen ovale directs ductus venous blood to left atrium (40%)
- Pulmonary blood flow minimal (<10%)
- Ductus arteriosus allows flow from PA to descending aorta (40%)
Ductus Venosus and Streaming

- **Ductus venosus** diverts O_2 blood through liver to IVC and RA
 - Amount varies from 20-90%

- Streaming of blood in IVC
 - O_2 blood from the DV→FO→LA→LV
 - De-O_2 blood from R hep, IVC →TV→ RV

- SVC blood flows across TV→RV
 - <5% SVC flow crosses FO

O$_2$ blood to high priority organs

- RV pumps De-O_2 blood to PA→DA→DescAo → lower body and **placenta**

- LV pumps O_2 blood to AscAo→ coronary + cerebral circ

- Aortic isthmus connects the two separate vascular beds
Fetal Shunts Equalize Pressure

- $\text{RAp} = \text{LAp}$ due to FO
- $\text{RVp} = \text{LVp}$ due to DA

Unlike postnatal life unless a large communication persists...

RV is “work horse” of fetal heart

- RV pumps 66% CO
 - 59% goes to DA
 - (88% RV CO)
 - 7% goes to lungs
 - (12% RV CO)
- LV pumps 34% CO
 - 31% goes to AscAo
- Only 10% total CO crosses Ao isthmus
Transition from Fetal to Neonatal Circulation

- Lose placenta
 - ↑SVR
- Lungs expand mechanically
- ↑O₂ vasodilates pulm vasc bed
 - ↓PVR
- ↑PBF + ↑LA venous return
 - ↑LAp
- DV constricts
 - ↓RAp

Three Fetal Shunts Close

- LAp > RAp
 - FO closure
- ↑O₂ and ↓PGE₁
 - DA and DV constrict
- RV CO ↓
 - RV wall thickness ↓
- LV CO ↑
 - LV hypertrophies

RV CO = LV CO
Postnatal circulation in series
Regulation of Pulmonary Vascular Tone

- **Vasocostriction**
 - Hypoxia/acidosis
 - High blood flow and pressure
 - Failure of vessel maturation (no regression of medial hypertrophy)

- **Vasodilation**
 - Improved oxygenation
 - Prostaglandin inhibition
 - Thinning of vessel media (regression of medial hypertrophy)

Fetal Pulmonary Vascular Bed

- Placenta is the organ of gas exchange
- Goal to bypass the fetal lungs

- **Pulmonary Pressure >> Ao Pressure**
 - Low O$_2$ tension causes Vasocostriction
 - Medial wall hypertrophy

- **Pulmonary blood flow << Ao flow**
- **Pulmonary resistance >> Ao resistance**
 - Encourages shunting via DA to aorta
Neonatal Pulmonary Vascular Bed

- **Pulmonary Pressure ≈ Ao Pressure**
 - Arterial vasodilation
 - Medial wall hypertrophy persists

- **Pulmonary Blood flow = Aortic Flow**
 - Ductus arteriosus closes
 - Neonatal RV CO = LV CO

- **Pulmonary resistance ≈ Ao Resistance**

Adult Pulmonary Vascular Bed

- **Pulmonary Pressure << Ao Pressure**
 - 15 mmHg vs. 60 mmHg
 - Arterial Vasodilation
 - Medial wall hypertrophy regresses - remodeling

- **Pulmonary Blood Flow = Aortic Flow**

- **Pulmonary Resistance << Ao Resistance**
 - Resistance = $\Delta \frac{Pressure}{Flow}$
Pulmonary Vascular Bed:
Transition from Fetal to Adult

Re-Cap: Fetal to Postnatal

- **Fetus**
 - Shunts exist
 - Lungs collapsed
 - RV CO > LV CO (Parallel circ)
 - Pulmonary pressure and resistance high

- **Newborn**
 - Shunts close
 - Lungs open
 - RV CO = LV CO (Series circ)
 - Pulmonary pressure and resistance drop

\[R = \frac{\Delta P}{Q} \]
Left to Right Shunts

- Anatomic Communication between Pulmonary and Systemic circulations
- Excess blood flow occurs from the Systemic (Left) to the Pulmonary (Right) circulation

Qp:Qs

- Extra flow is represented by the ratio of pulmonary blood flow (Qp) to systemic blood flow (Qs)
- Qp:Qs = 1:1 if no shunts
- Qp:Qs >1 if left to right shunt
- Qp:Qs <1 if right to left shunt
- Qp:Qs of 2:1 means pulmonary blood flow is twice that of systemic blood flow
Why do we care?

- Already oxygenated pulmonary venous blood is *recirculated* through the lungs
- Excess PBF causes heart failure (CHF)
- Size of the shunt and \(Q_p \) determine how much CHF
- Shunt size determined by:
 - Location of communication
 - Size of communication
 - Age of the patient
 - Relative resistances to blood flow on either side of the communication

Pulmonary Effects of L to R Shunt

- ↑ PBF = ↑ extravascular lung fluid
 - Transudation of fluid across capillaries faster than lymphatics can clear
- Altered lung mechanics
 - Tidal volume and lung compliance ↓
 - Expiratory airway resistance ↑
- Pulmonary edema results if \(Q_p \) and Pulm Venous pressure very high
- Tachypnea
Neurohumoral Effects of L to R Shunt

- Sympathetic nervous system and renin-angiotensin system activation
 - plasma [NE] and [Epi] ↑
 - cardiac hormone B-type natriuretic peptide (BNP) ↑

- Tachycardia
- Diaphoresis

Metabolic Effects of L to R Shunt

- Acute and chronic malnutrition
- Mechanism not clear
 - ↑ metabolic expenditures (↑ O2 consumption) due to ↑ respiratory effort and myocardial work
 - ↓ nutritional intake

- Poor growth/ Failure to thrive
Pulmonary Hypertension: End Stage

• ↑ PBF causes sustained ↑ PAp
• Pulm vascular bed fails to remodel
 – Alveolar hypoxia may exacerbate
• Gradual effacement of the pulm arterioles
 – Overgrowth of vascular smooth muscle
 – Intimal proliferation
• Abnormal local vascular signaling
• Impaired endothelial function
• Pulm bed loses normal vasoreactivity
 – fixed pulmonary HTN and irreversible pulmonary vascular disease

Re-Cap

• Flow, Resistance, Pressure
• Fetal and Transitional Circulation
• Left to Right Shunts and CHF
 • VSD
 • PDA
 • AVC
 • ASD
 • Eisenmenger
“Top 4” Left to Right Shunt Lesions

- **Ventricular Septal Defect (VSD)**
 - Left ventricle to Right ventricle
- **Patent Ductus Arteriosus (PDA)**
 - Aorta to Pulmonary artery
- **Atrioventricular Canal Defect (AVC)**
 - Left ventricle to Right ventricle
 - Left atrium to Right atrium
- **Atrial Septal Defect (ASD)**
 - Left atrium to Right atrium

VSD most common CHD (20%)

- 2/1000 live births
- Can occur anywhere in the IVS
- Location of VSD has no effect on shunt

- **Perimembranous** most common (75%)
- **Muscular** (15%) most likely to close
- **Outlet** (5%) most likely to involve valves
 - ↑ incidence in Asian pop (30%)
- **Inlet** (5%) assoc with AVC
Ventricular Septal Defect

- Subaortic
- Inlet/Outlet
- Inlet (Atrio-ventricular)
- Subpulmonary
- Conoventricular/Supracrystal
- Muscular

VSD: Determinants of L to R shunt

- Size of VSD
- Difference in resistance between Pulmonary and Systemic circulations
- Difference in pressure between RV and LV
VSD: Determinants of L to R shunt

- **Small (restrictive) VSD**: L to R shunt flow limited by size of hole

- **Large (unrestrictive) VSD**: L to R shunt flow is determined by Pressure and Resistance
 - If RVp < LVp, L to R shunt occurs
 - If RVp = LVp, L to R shunt occurs if pulmonary < aortic resistance

- Shunt flow occurs in systole

Transitional Circulation: Effects on L to R shunt in large VSD

- **Fetus**: bidirectional shunt
- **At Birth**: No shunt
- **Transition 1-7 wks**
 - PA/RVp ↓ to < LVp
 - PA resistance ↓ to < Systemic
 - L to R shunt ↑
Large VSD: Hemodynamic Effects

- Flow LV → RV → PA
- ↑ Pulm Venous Return
- LA/LV volume overload
- ↑ LV SV initially by Starling mechanism
- ↑ LV dilation leads to systolic dysfxn & CHF
- ↑ Pulm circ leads to pulm vascular disease

VSD: Signs/Symptoms

- Asymptomatic at birth: PA = Ao
 Pressure and Resistance
- Signs of congestive heart failure as pulmonary pressure and resistance ↓
 - Poor feeding
 - Failure to thrive (FTT) with preserved height and low weight
 - Tachypnea
 - Diaphoresis
 - Hepatomegaly
 - Increased respiratory illness
VSD: Physical Exam

- **Harsh Holosystolic murmur**
 - loudest LLSB radiating to apex and back
 - Smaller VSD = louder murmur
- **Precordial Thrill** 2° turbulence across VSD
- **Mid-Diastolic rumble** 2° ↑ trans-Mitral flow
- **LV heave** 2° LV dilation
- **Signs of CHF**
 - Gallop (S3), Hepatomegaly, Rales
- **Signs of Pulm Vasc Disease**
 - ↑murmur, RV heave, loud S2, cyanosis

VSD: Laboratory Findings

- **CXR:** Cardiomegally, ↑PVM
 - Pulm Vasc Dz: large PAs
- **EKG:** LAE, LVH
 - Pulm Vasc Dz: RVH
- **ECHO:** Location/Size VSD
 - Amount/direction of shunt
 - LA/LV size
 - Estimation RV pressure
- **CATH:** only if suspect ↑PVR
 - O2 step up in RV
VSD: Electrocardiogram

VSD: CXR
VSD: Echocardiogram

VSD: Angiogram
VSD: Management

- Does the patient have symptoms?
 - size of the defect, RV/LV pressure, Pulm/Ao resistance
- Will the VSD close or ↓ in size?
- Is there potential for complications?
 - Valve damage, Pulm HTN
- Will the surgery be difficult? Will the surgery be successful?

VSD: Management

- Medical
 - Digoxin
 - Lasix
 - Increased caloric intake
 - 50% VSD size ↓ and CHF resolves
- Surgical
 - Persistent CHF
 - ↑ pulmonary vascular resistance
 - Valve damage
 - Within first two years of life
- Catheter
VSD: Endocarditis Prophylaxis

- Not for isolated VSD
- Yes for 1st 6 mo following repair of VSD with prosthetic material or device
- Yes for life if there is a residual defect at or adjacent to the site of a prosthetic device
- For dental and respiratory tract procedures ONLY
 - no longer for GI or GU procedures

Patent Ductus Arteriosus (PDA)

- Communication between Aorta and Pulmonary Artery
- 1/2500-5000 live births
- Risk factors: prematurity, rubella, high altitude
PDA: Determinants of L to R shunt

- Magnitude L to R shunt depends on
 - Length and diameter of ductus
 - Relative resistances of Ao and PA

- L to R shunt as Pulm resistance ↓
 - Volume overload of PA, LA, LV

- Shunt flow occurs in systole and diastole

PDA: Signs/Symptoms

- Small PDA: asymptomatic
- Large PDA: CHF
 - Diaphoresis
 - Tachypnea
 - Poor feeding
 - FTT
 - Hepatomegaly
 - Respiratory infections
- Moderate PDA: Fatigue, Dyspnea, palpitations in adol/adults
 - Afib 2° to LAE
PDA: Physical Exam

- Continuous machine-like murmur at left subclavian region
 - Ao>PA pressure in systole and diastole
- Congestive heart failure

PDA: Laboratory Studies

- **CXR:** cardiomegally, ↑ PVM
- **EKG:** LAE, LVH
- **ECHO:** measures size PDA, shunt and gradient, estimate PAp
- **CATH:** O2 step up in PA
PDA: Management

- **Indications for Closure**
 - CHF/failure to thrive
 - Pulmonary hypertension

- **Closure Methods**
 - Indomethacin if preemie
 - Surgical ligation
 - Transcatheter closure
 - Coil
 - Device

PDA Coil Closure
Atrioventricular Canal Defect/Endocardial Cushion Defect

- Atrial Septal Defect (Primum)
- Inlet VSD
- Common Atrioventricular Valve

AVC: Management

- Closure always indicated
- Timing of surgery (elective by 6 mos.)
 - Congestive Heart Failure
 - Large left to right shunt
 - Mitral insufficiency
 - Pulmonary hypertension
- Surgical repair
 - ASD, VSD closure
 - Repair of AV-Valves
Summary: VSD, PDA and AVC

- Asymptomatic in fetus and neonate
- Progressive increase in L to R shunt from 3-8 weeks of life as pulmonary pressure and vascular resistance decrease
- Indications for intervention
 - Congestive heart failure: FTT
 - Pulmonary vascular disease
- End stage: Eisenmenger’s syndrome

Atrial Septum Formation

- Septum Primum grows downward
- Ostium Primum obliterates
- Fenestration in septum primum forms ostium secundum
- Septum secundum grows downward and fuses with endocardial cushions
 - Leaves oval-shaped opening Foramen ovale
- Superior edge of septum primum regresses
 - Lower edge becomes flap of FO
Atrial Septal Defect

- Persistent communication between RA and LA
- Common: 1/1500 live births
 - 7% of CHD
- Can occur anywhere in septum
- Physiologic consequences depend on:
 - Location
 - Size
 - Association with other anomalies

Atrial Septal Defect (ASD)

- Normal septum formation (A)
- Excessive resorption of septum primum (B)
- Absence of septum secundum (D)
- Septum secundum
- Septum primum
- Pulmonary veins
- Septum secundum
- Septum primum
- Atrial septal defect
- Absence of septum primum and septum secundum

- Large oval foramen
- Short septum primum
- Absence of septum secundum
ASD Types

- **Ostium Secundum ASD (70%)**
 - 2:1 F>M
 - Familial recurrence 7-10%
 - Holt-Oram syndrome - upper limb defects
 - Region of FO
 - Defect in septum primum or secundum

- **Ostium Primum ASD**
 - Inferior portion of septum
 - Failure of fusion between septum primum and endocardial cushions
 - Cleft in MV or CAVC

ASD Types

- **Sinus Venosus ASD (10%)**
 - Incomplete absorption of sinus venosus into RA
 - IVC or SVC straddles atrial septum
 - Anomalous pulmonary venous drainage

- **Coronary Sinus ASD**
 - Unroofed coronary sinus
 - Wall between LA and coronary sinus missing
 - Persistent L-SVC
Patent Foramen Ovale

- Prevalence 30% of population

- Failure of fusion of septum primum and secundum (flap of FO)

- Remains closed as long as LAp>RAp
 - LAp<RAp
 - Pulmonary HTN / RV failure
 - Valsalva
 - Paradoxical embolism and STROKE

ASD: Manifestations

- L to R shunt between LA and RA
 - Amount of flow determined by:
 - Size of defect
 - Relative compliance of RV / LV
 - Shunt flow occurs only in diastole
 - L to R shunt ↑ with age
 - RV compliance ↑
 - LV compliance ↓

- RA and RV volume overload
ASD: Signs/Symptoms

- Infant/child usually asymptomatic
 - DOE, fatigue, lower respiratory tract infections

- Adults (prior age 40)
 - Palpitations (Atrial tach 2° RAE)
 - ↓ stamina (Right heart failure)
 - Survival less than age-matched controls (5th-6th decade)

ASD: Physical Exam

- Small for age
- Wide fixed split S2
- RV heave
- Systolic murmur LUSB
 - ↑ flow across PV
- Mid-Diastolic murmur LLSB
 - ↑ flow across TV
ASD: Laboratory Studies

- **CXR:** cardiomegally, ↑ PVM
- **EKG:** RAD, RVH, RAE, IRBBB
 - Primum ASD: LAD
- **ECHO:** RAE, RV dilation, ASD size, location, amount and direction of shunt
- **CATH:** O2 step up in RA

ASD: Management

- **Indications for closure**
 - RV volume overload
 - Pulmonary hypertension
 - Thrombo-embolism
- **Closure method**
 - Surgical
 - Catheter Delivered Device
 - Cardioseal
 - Amplatzer septal occluder
Eisenmenger’s Syndrome

- Dr. Victor Eisenmenger, 1897
- Severe pulmonary vascular obstruction 2º to chronic left to right shunts
- Pathophysiology
 - High pulmonary blood flow → Shear Stress
 - Medial hypertrophy + intimal proliferation leads to ↓ cross-sectional area of pulm bed
 - Perivascular necrosis and thrombosis
 - Replacement of normal vascular architecture
- Pulmonary vascular resistance increases
 - Right to left shunt
 - Severe cyanosis

Medial Hypertrophy
Eisenmenger’s Syndrome
R to L flow via VSD

- Pressure:
 - Pulmonary = Aortic
- Resistance
 - Pulmonary > Aorta
- RV hypertrophy
- Blood flow: RV to LV
- Cyanosis
- Normal LA/LV size

Eisenmenger’s: Signs/Symptoms

- **Infancy:**
 - CHF improves with ↓ left to right shunt
- **Young adulthood:**
 - Cyanosis/Hypoxia: DOE, exercise intolerance, fatigue, clubbing
 - Erythrocytosis/hyperviscosity: H/A, stroke
 - Hemoptysis 2º to infarction/rupture pulm vessels
Eisenmenger’s: Physical Exam

- Clubbing
- Jugular venous a-wave pulsations
 - ↑RV pressure during atrial contraction
- Loud S2
- RV heave (RV hypertension)
- Diastolic pulm insufficiency murmur
- No systolic murmur

Eisenmenger’s: Lab findings

- No LV volume overload / ↑ RV pressure
- CXR: Clear lung fields, prominent PA segment with distal pruning, small heart
- EKG: RAE, RVH ± strain
- ECHO: RV hypertrophy, right to left shunt at VSD, PDA, or ASD
EKG: Eisenmenger’s Syndrome

Eisenmenger’s Syndrome: CXR
Eisenmenger’s: Management

• Avoid exacerbating right to left shunt
 – No exercise, high altitude, periph vasodilators
 – Birth Control: 20-40% SAB, >45% mat mortality

• Medical Therapy:
 – Pulmonary vasodilators: Calcium channel blocker, PGI2, Sildenafil
 – Inotropic support for Right heart failure
 – Anticoagulation

• Transplant
 – Heart-Lung vs Lung transplant, heart repair

• Do NOT close Defect
 – VSD/PDA/ASD must stay open
 – Decompress high pressure RV, prevent RV failure and provide cardiac output

Learning Objectives

• Learn the relationships between pressure, blood flow, and resistance

• Review the transition from fetal to mature circulation

• Correlate clinical signs and symptoms with cardiac physiology as it relates to left to right shunt lesions:
 – VSD, PDA, ASD

• Discuss Eisenmenger’s Syndrome