Fungal Infections
• Once exotic and rare
• Now increasingly common
• Fungi are not “virulent”
• But they are good at taking advantage
• “Opportunistic”

Fungal biology
• Eukaryotes
• Non-motile
• Aerobic
• Saprophytic or parasitic
• Cell wall contains glucan and chitin
• Cell membrane contains ergosterol

Fungal cell structure
• Yeasts (unicellular, budding)
• Molds (mycelial, spores)
• Dimorphs (both)

Pathogenesis
• Toxins: produced but not relevant to human infections
• Disease from:
 – Bulk of organisms
 – Immune response to them or their byproducts

Overview of fungal infections
• Superficial (skin or mucosa)
• Subcutaneous
• Systemic:
 – “True pathogens” – infect healthy hosts, although disease worsens with immunocompromise
 – “Opportunists” – disease almost exclusively in immunocompromise

Superficial Fungal Infections
Dermatophytes:
Molds producing keratinase
Saprophytes on skin/nails; inflammation below

Diseases:
• tinea corporis tinea capitis
• tinea cruris tinea pedis
 • tinea unguium
Superficial fungal infections

• Malassezia furfur
 Lipophilic yeast

Disease:
 Tinea versicolor (itch, pigment changes)
 Occasionally, fungemia with lipid infusions

Subcutaneous fungal infections

Pathogenesis: introduced through skin, grow in subcutaneous tissues, spread via lymphatics. May reach distant organs especially bone, joints in path. Most common in nonindustrialized world (“Madura foot”)

Subcutaneous: sporotrichosis

• Organism: Sporothrix schenckii
 – Dimorphic soil organism
 – Worldwide distribution
• Pathogenesis: splinters or thorns inoculate organism into subcutaneous tissues

Sporotrichosis

Pathophysiology:
 • Yeast travel along lymphatics
 • Elicit mixed pyogenic/granulomatous reaction

Clinical:
 • Gardeners and persons of sport
 • Ulcerating nodules along hard cord
 • Bone and joint destruction
 • Occasional dissemination

Systemic fungal infections: the “true pathogens”

Histoplasmosis, Coccidioidomycosis and Blastomycosis

• Dimorphic
• Respiratory acquisition
• Restricted geographic distribution
• Infect normal hosts
• Disease reminiscent of TB

Histoplasmosis

• Organism: Histoplasma capsulatum
 – Dimorphic soil organism
• Habitat: soils with high N content
 • Ohio-Mississippi valley; Puerto Rico, Central and S. America
 • Guano of bats, birds, poultry (chicken coops and caves)
• Pathogenesis: inhalation of spores
Histoplasmosis

Pathophysiology:
- Spores transform to yeast in lung, elicit cellular immunity as per TB
 - Hematogenous dissemination
 - Skin test reactivity (histoplamin)

Clinical: mimics TB
- May disseminate early (infancy, immunodef.)
- May cause acute nodular/cavitary lung disease
- May reactivate years later

Coccidioidomycosis

- Organism: Coccoides immitis
 - Dimorphic soil organism with spherules and endospores in host
- Habitat: the lower Sonoran life zone (arid)
 - Southwest US, Mexico, Central and South America
- Pathogenesis: inhalation of spores

Histoplasmosis

Pathophysiology:
- Spores transform to yeast in lung, elicit cellular immunity as per TB
 - Hematogenous dissemination
 - Skin test reactivity (histoplamin)

Clinical: mimics TB
- May disseminate early (infancy, immunodef.)
- May cause acute nodular/cavitary lung disease
- May reactivate years later

Coccidioidomycosis

- Organism: Coccoides immitis
 - Dimorphic soil organism with spherules and endospores in host
- Habitat: the lower Sonoran life zone (arid)
 - Southwest US, Mexico, Central and South America
- Pathogenesis: inhalation of spores

Blastomycosis

Pathophysiology:
- Spores transform to spherules in lung, elicit cellular immunity as per TB
- Hematogenous dissemination
- Skin test reactivity (coccoidin)

Clinical: Acute self-limited flu-like seroconversion (Valley fever)
- Dissemination (pregnancy, dark skin, immunocompromised)
 - Skin
 - Bone
 - CNS

Blastomycosis

Pathophysiology:
- Spores transform into yeast in lung, disseminate.
- No good antigen test to describe exposed population

Clinical: Acute or chronic lung disease (nodular/cavitary)
- Disseminated disease
 - skin
 - bone
 - urinary tract

Systemic fungal infections: the “opportunists”

"True pathogens"
- geographic restriction
- Dimorphic
- Infection by inhalation
- Pyogenic/granulomatous host response
 - Similar to TB
- Infection \approx immunity

"Opportunists"
- Omnipresent
- Yeasts or molds
- Varies routes
- Host response varies
- Widely variable
- No lasting immunity
Cryptococcosis

- Organism: Cryptococcus neoformans
 - yeast with thick polysaccharide capsule
- Habitat:
 - Bioterrorism of a sort, worldwide
- Pathogenesis: inhalation of yeast

Cryptococcosis

Pathophysiology:
- transient colonization
 OR
- acute/chronic lung disease
 OR
- CNS invasion

Clinical:
- Meningoencephalitis
 - acute or chronic
 - fever, headache, stiff neck, loss of vision
 - complicated by hydrocephalus
 - cryptococcal antigen for diagnosis

Candidiasis

- Organism: Candida albicans et al
- Habitat: normal human flora
- Pathogenesis:
 - colonized areas: overgrowth
 - noncolonized areas: invasion

Candidiasis

Pathogenesis:
- Breach in
 - Skin or mucosal integrity
 - Normal bacteriologic flora
 - Neutrophil function or CMI

Clinical settings:
- Moisture, antibiotics, pregnancy
- HIV infection
- Intravenous catheters
- Chemotherapy or marrow ablation

Candidiasis

Diagnosis:
- Gram stain may help
- Infection and colonization may be difficult to distinguish

Treatment:
- Remove the breach in defenses, if possible

Aspergillosis

- Organism: Aspergillus fumigatus and others
 - Mold without a yeast phase
- Habitat:
 - everywhere, worldwide
- Pathogenesis:
 - Inhalation of spores
Aspergillosis
Pathophysiology:
- Spores in lung may elicit allergy
- Grow in preexisting cavity
- Invade vasculature, disseminate (neutrophils key)
Clinical:
- Allergic bronchopulmonary aspergillosis
- Aspergilloma
- Invasive, with pneumonia, other end-organ disease

Mucormycosis
Pathophysiology:
- Alveolar MPH/PML clear organisms
- Acid
- Sugar
- Neutrophil dysfunction
- May enable relentless growth
Clinical:
- The most acute and fulminant fungal infection known
- Pneumonia progressing to infarction
- Sinusitis progressing to brain abscess

Mucormycosis
• Organism: species of Mucorales, genera Rhizopus and Mucor
 – Mold without a yeast phase
• Habitat:
 – Everywhere, worldwide
• Pathogenesis:
 – Inhalation of spores