Introduction to Antimicrobials

Rachel J. Gordon, MD, MPH
Assistant Professor of Clinical Medicine and Epidemiology

What are antimicrobials?

- Drugs that destroy microbes, prevent their multiplication or growth, or prevent their pathogenic action
- Differ in physical, chemical, pharmacological properties
- Differ in antibacterial spectrum of activity
- Differ in their mechanism of action

Antibiotic Classes (by mechanism of action)

- Inhibit cell wall synthesis
 - Penicillins
 - Cephalosporins
 - Monobactams (aztreonam)
 - Carbapenams
 - Glycopeptides (vancomycin)
- Inhibit protein synthesis
 - Aminoglycosides
 - Tetracyclines
 - Glycylcycline (tigecycline)
 - Macrolides (azithromycin, clarithromycin)
 - Lincosamides (clindamycin)
- Alter nucleic acid metabolism
 - Rifamycins
 - Quinolones
- Inhibit folate metabolism
 - Trimethoprim
 - Sulfonamides
- Inhibit protein synthesis
- Alter nucleic acid metabolism
- Inhibit folate metabolism
- Other mechanisms

Antibiotic Classes

- Inhibit cell wall synthesis
 - Penicillins
 - Cephalosporins
 - Monobactams (aztreonam)
 - Carbapenams
 - Glycopeptides (vancomycin)
- Inhibit protein synthesis
 - Aminoglycosides
 - Tetracyclines
 - Glycylcycline (tigecycline)
 - Macrolides (azithromycin, clarithromycin)
 - Lincosamides (clindamycin)
- Alter nucleic acid metabolism
 - Rifamycins
 - Quinolones
- Inhibit folate metabolism
 - Trimethoprim
 - Sulfonamides
- Miscellaneous
 - Metronidazole
 - Lipopeptides (Daptomycin)
 - Polymyxins

Antibiotic Targets
Beta-lactams
- All contain the beta-lactam ring with 3 carbon atoms and one nitrogen atom
- Inhibit synthesis of the peptidoglycan layer of the cell wall by blocking the action of transpeptidases (penicillin binding proteins)
- Includes: penicillins, cephalosporins, monobactams, and carbapenams

Vancomycin (Glycopeptide)
- Inhibits cell wall synthesis by interfering with peptidoglycan synthesis.
- It does this by binding to the D-Ala-D-Ala terminals of N-acetylmuramic acid (NAM) and N-acetylglucosamine (NAG) peptide subunits localized at the outer surface of the cell membrane.
- As a result, these subunits cannot incorporate into the peptidoglycan matrix.
- With a rare exception, only active against gram positive bacteria

Protein Synthesis Inhibitors
(inhibit translation of bacterial proteins in various ways)
- **Rifamycins (rifampin)**
 - Mechanism of action:
 - Blocks mRNA synthesis (prevents transcription of bacterial DNA)
 - Does this by binding to the bacterial DNA-dependent RNA polymerase
 - Used in combination with other antimicrobials (only used alone as prophylaxis for *N. meningitidis*)
Quinolones

- Inhibit DNA synthesis
- Inhibit the topoisomerases responsible for supercoiling DNA (DNA gyrase) and relaxing the supercoiled DNA (topoisomerase IV)
- Examples: ciprofloxacin, levofloxacin, moxifloxacin

Inhibitors of Folate Metabolism

- Examples: trimethoprim, sulfonamides
- Often given in combination (example: trimethoprim-sulfamethoxazole)

Metronidazole

- Diffuses into the cell and is reduced
- Metronidazole free radicals interfere with organism DNA causing breakage, destabilization and cell death
- Active in anaerobes and select parasites such as Entamoeba and Giardia

Metronidazole: mechanism of action in anaerobes

Daptomycin (Lipopeptide)

- Binds to the cell membrane of gram-positive organisms in a calcium-dependent process and disrupts the bacterial cell membrane potential causing ion leakage and cell death.

Polymyxins

- Polymyxins destroy bacterial membranes with a surface detergent–like mechanism by interacting with membrane phospholipids and increasing cellular permeability.
- Only active against Gram negative bacteria (do not have access to the bacterial cell membrane in Gram positives and resistant Gram negatives)
How are antibiotics used?

- **Empiric therapy**
 - Often ‘broad spectrum’
- **Definitive therapy**
 - If possible, initial empiric therapy should be changed to an antibiotic with a narrower spectrum of activity
- **Prophylactic or preventative therapy**

Culture and Sensitivities

- Identify the pathogen
- Determine the sensitivity of the organism to various antibiotics
 - is it ‘sensitive’, ‘intermediate’, or ‘resistant’?
- Sensitivity is determined by the interpretation of the **minimum inhibitory concentration (MIC)** which is the lowest concentration of antibiotic that prevents visible bacterial growth after 24 hours of incubation in the appropriate culture media

Antibiotic Spectrum

- **Broad Spectrum**
 - Covers many potential pathogens (example: a carbapenam which has Gram positive, Gram negative, and anaerobic coverage)
- An antibiotic with a **narrower spectrum** has a more targeted spectrum of activity
 - Example: clindamycin which only has Gram positive and anaerobic coverage—no Gram negative coverage)

The MIC

- The MIC is organism and drug specific
- ‘Susceptible’ implies that the concentration of antibiotic that can be achieved at the site of infection is >MIC
- Numerous ways to determine the MIC
 - Kirby–Bauer disk diffusion
 - Broth dilution
 - E-test
When choosing and dosing an antibiotic, consider:

- **Pharmacodynamics** (what the drug does to the body/bacteria)
 - Desirable effects
 - Cidal vs static
 - Concentration vs time-dependent killing
 - Post antibiotic effect
 - Undesirable effects
 - Toxicity (e.g., nephrotoxic, hepatotoxic, ototoxic, etc)
 - Allergy
 - Antibiotic-associated diarrhea or *C. difficile* colitis

When choosing and dosing an antibiotic, also consider:

- **Pharmacokinetics** (what the body does to the drug):
 - Absorption (consider food/drug interactions)
 - Distribution (does it get where it needs to go in the right concentration?)
 - Metabolism (will it be metabolized properly, are there drug-drug interactions?)
 - Excretion
 - Renal vs nonrenal
 - Half life (time for the blood concentration to decrease by half)
Using antibiotics in combination

- Synergism
- Antagonism
- Indifference

Case

- A 19 YO college student complains to her friends that she has a headache and neck stiffness.
- The next morning her roommate is unable to wake her and EMS is called
- Exam: temp 102, RR 24, BP 90/45, P 120, patient is lethargic with nuchal rigidity, photophobia, and a petechial rash

Case Continued

- Bacterial meningitis is suspected in the ER.
- Before a lumbar puncture is performed, she is given broad spectrum coverage with vancomycin (glycopeptide) and ceftriaxone (3rd generation cephalosporin)
- Lumbar puncture draws cloudy fluid.
- CSF analysis reveals leukocytosis w/90% PMNs, low glucose and high protein, consistent with bacterial meningitis.

Case Continued

- Gram stain of the CSF reveals Gram negative diplococci
- Culture grows *Neisseria meningitidis* type B (not covered by vaccine)

Case Continued

- The diagnosis of meningococcal meningitis is made and vancomycin is discontinued (ceftriaxone is continued as definitive treatment).
- The health department is contacted and the patient’s close contacts, including her roommate and boyfriend, are given rifampin for prophylaxis.

Case Continued

- The patient requires treatment in the ICU, but recovers.
- Her boyfriend is shocked to discover that his pee turned orange after taking the rifampin (this is from rifampin, but no one warned him)!
Case Continued

- A health care worker who had almost no contact with the patient is paranoid that he will get infected and takes ciprofloxacin as prophylaxis, despite health department recommendations.
- This worker develops *C. difficile* colitis requiring treatment with metronidazole.
- No one tells him not to drink alcohol on the metronidazole. When he does he has a disulfiram–reaction (flushing, throbbing, headache, copious vomiting, etc!)

Heed this Warning

- Use discretion when prescribing antibiotics. Indiscriminate use promotes antibiotic resistance and unnecessarily puts patients at risk for adverse reactions.
- One of Lowy’s Laws: It is always the patient who didn’t need the antibiotic to begin with who has the worst reaction.

The End!

Good luck with your antibiotic choices!