Lecture 17. Viruses that Infect Lymphocytes: EBV and HIV

Host - Pathogen Relationships

Host immune defense consistently fail to clear certain viral infections

Examine mechanisms pathogens use to evade immune defense

Contrasting host-pathogen relationships of two prototype infections

Epstein-Barr Virus (EBV)

Large DNA virus, e.g. herpesviruses have coevolved with their host species over many thousands to millions of years, are genetically stable, and persist in the immune host by shifting to a latent pattern of viral gene expression in response to T cell surveillance

Human immunodeficiency virus (HIV)

RNA viruses, e.g. HIV-1, are recently introduced into humans and have error-prone viral replication mechanisms that result in “swarms” of structurally distinct strains “quasispecies” that ultimately overwhelm the host by escaping from immune surveillance

Host-pathogen relationships

Mechanisms of avoiding immune surveillance

1. Avoid recognition by cytotoxic T cells
 - Evolution of viral strains that avoid presentation by MHC by mutating class I molecule peptide anchor amino acids or amino acids recognized by T cells in immunodominant peptides
 - Blocking of antigen processing and presentation

2. Modification of the immune response
 - e.g. release of anti-inflammatory cytokines, IL-10

3. Suppression of viral gene expression by the virus
 - Change from productive to latent mode by selective pressure of immune response

Syndromes resulting from EBV infection

- Primary infection with EBV in childhood usually subclinical
- 25-70% of newly infected adolescents and adults develop infectious mononucleosis: triad of fever, lymphadenopathy, and pharyngitis plus transient appearance of heterophil antibodies and activated clonally expanding CD8 cytotoxic anti EBV T cells (“atypical lymphocytosis”)
- Nasopharyngeal carcinoma, Gastric cancer subset
- B cell lymphomas: Burkitt’s Lymphoma and immunoblastic lymphoma in immunosuppressed host, subset Hodgkin’s disease

EBV is a B cell lymphotropic herpesvirus

Stages of EBV infection

- First phase of infection is binding of an EBV surface glycoprotein to CD21 (CR2) expressed on the B cell membrane as a a BCR co-receptor complex with CD19; CD21 also expressed on some epithelial cells, accounting for tropism
- The binding of EBV to CD21/CR2 triggers T-independent polyclonal B cell activation (CD23 and induction of Ig synthesis) and B cell proliferation resulting in T-independent release of heterophil and other antibodies (Rheumatoid factor, cold agglutinins, ANA)
- EBV enters the cell by receptor mediated endocytosis

Viruses often infect cells of the immune system through receptors that are immunologically important

Initially EBV replicates as a productive lytic infection

- IgM antibodies to Viral Capsid Antigens (VCA) and Early Antigens (EA) are found at clinical presentation, indicating lytic replication and persists for 1-2 months.
- IgG anti VCA appears at time of clinical presentation and persists lifelong—“standard EBV titre”
- Antibodies to EA Peak at 3-4 weeks; marker of more severe disease
- Lytically infected cells are largely eliminated by EBV-specific cytotoxic cells (atypical lymphocytes), NK cells, interferon-mediated mechanisms and ADCC
- Antibodies to latent EB Nuclear Antigens (EBNA’s) appear 3-6 weeks after initial infection; last lifelong
- EBV is maintained in its latent infective cycle as a multicopy circular 172Kd ds plasmid minichromosome with replication linked to B cell proliferation
- Latent proteins, consist of six nuclear antigens: EBNA1, EBNA2, EBNA3A, EBNA3B, EBNA3C, and EBNA leader protein (EBNA-LP)
- and three latent membrane proteins: LMP1, LMP2A, and LMP2B
- CTL responses are Class I-restricted and are mainly directed against EBV nuclear antigens of the EBNA-3 family, and the latent membrane protein LMP 2
- EBNA1 binds to the EBV ori, initiating replication and also acting as a transcriptional enhancer
- EBNA1 contains a gly-alu repeat region that inhibits the ATP motor of the proteasome, impeding further insertion of EBNA1 into the proteasome, thus halting its degradation, a strategy for avoiding surveillance
- T cells play a crucial role in enforcing the maintenance of latency and thwart proliferation of EBV infected B cells by killing the B cell
- B cell lymphoblastoid cell line (BLCL)
- Express all latency genes, a pattern designated latency III, BLCL can be derived from nearly everyone
- The characteristic BLCL phenotype consists of high expression of B cell activation markers CD23, CD30, CD39, and CD70, the cellular adhesion molecules LFA1 (CD11a/18), LFA3 (CD58), and intercellular adhesion molecule 1 (ICAM1: CD54)
- Because of the adhesion molecules these BLCLs grow in large clumps in tissue culture
- Immunoblastic lymphomas resembles the BLCL phenotype as well as express all latency genes; start polyclonal, then monoclonal
- Develop in solid organ or bone marrow transplant recipients receiving T cell immunosuppressive therapies

Burkitt’s lymphomas exhibit a different gene expression pattern “latency III”
- Only abundant EBNA1 transcription is found
- Lymphoma cells display a distinct phenotype: CD10+ (CALLA) and CD77+ (BLA), but lack expression of activation and adhesion molecules
- In culture Burkitt B cell lines grow as dispersed single cells

HLA-restricted CTL responses influence evolution of the host-pathogen relationship
- HLA-A11 distribution: African 1.5%, Caucasian 6.9%, Asian 16.3%
- HLA-A11 positive Caucasians nearly always respond to two immunodominant HLA-A*1101 epitopes of the nuclear antigen EBNA3B (EBNA4):
 - ARGFSF 416 to 424
 - AFDRKSD 399 to 408
- These sequence motifs were often mutated in EBV strains in lowland Papua New Guinea and southern China, areas where more than 50% of individuals carry the HLA-A*1101 allele
- All showed the same single point mutation, an A -> C mutation that produced a Lys -> Thr (K -> T) change in residue 424 of EBNA4 at position 9 of the CTL epitope
- Loss of recognition of immunodominant epitope and ability to recognize EBV is a mechanism of escaping the CTL response

The achilles’ heel of the immune system
- The T cell immune response to viruses often uses a very small number of different CD8 T cell clones directed to one or a few “immunodominant” peptides encoded by the viral genome, that are often presented by just one allelic type of an individual’s HLA molecules

Organization of HIV-1 provirus
- Size 9kb
- Contains 9 genes encoding 15 proteins
Early events of HIV infection

Membrane Receptor Complex
Binding of envelope gp120 prompts p41 to project 3 fusion domains that harpoon the membrane, resulting in fusion
Integration leads to either latent or transcriptionally active infection

Host Response to HIV-1 infection

First Phase: CD8 T cell response of immune system controls initial destruction of memory/effector CD4 T cells, but does not eliminate infectious virus primarily located in monocytes and memory CD4 T cells

Antibodies to HIV-1 are formed but these neither clear the infection nor are protective
- Acute illness- “flu-like”
- Clinical asymptomatic phase- 2-12 or more years

Second Phase: HIV-1 escapes the CD8 T cell response and mutations in the viral envelope now favor infection and destruction of naive CD4 T cells

Acquired immune deficiency (AIDS) appears upon depletion of critical CD4 T cell subsets

Host - Parasite Relationships of HIV

Reverse transcriptase has no proofreading function and creates a vast number of mutations

HIV must adapt and evolve in an environment determined by attributes of the host’s immune system
- MHC alleles
- TCR repertoire
- Polymorphism of viral entry receptors
- Chemokine and cytokine milieu (e.g. parasitic infections)
- Other genes regulating immune response
- Prior immune history
- Age

Outcome of infection depends on biology of host, especially whether immune response targets critical HIV structures and HIV-1 mutational capacity, etc.

Cellular Specificity, “Tropism” of HIV strains

Based on envelope structure
- The viral envelope contains sequences that interact with a membrane viral/receptor complex composed of CD4 and one of several chemokine receptors
- The sequence of a given viral envelope is specific for one of the chemokine receptor types
- The main two chemokine receptors are CCR5 and CXCR4 that are distributed on different cell lineages
- Strains that bind to CCR5 are termed “R5” tropic and those that bind CXCR4 are termed “R4” tropic
Chemokine Receptors:

CCR5
- Ligands: RANTES, MIP-1α, MIP-1β are produced in large quantities by activated CD8 and CD4 T cells in the immune response to HIV and compete with R5 HIV binding to membrane receptor complex, blocking progression of the infection
- Distribution: CCR5 found on monocytes, DC and effector, memory or activated T cells, not naive CD4 T cells
- Biology: CCR5 responsible for migration of memory and effector T cells, monocytes and dendritic cells to sites of inflammation
- Several CCR5 polymorphisms: e.g. ∆32 mutant allele render CCR5 unexpressed and incapable of binding HIV R5 strains. Homozygote frequency 1%, heterozygote ~10% in N.Euro. Caucasoids, but X4 strains are still infective

HIV strain early in infection
- **R5 is almost always the sexually transmissible form of the virus**
- Primary isolates from newly infected individuals are usually R5
- R5 strains mainly replicate in monocytes. Activated and memory T cells are infected, but at lower efficiency (old term = MT-tropic or monocytopathic)
- Therefore much of the viral load in earlier phase of HIV infection is in the monocytes and macrophages and the number of CD4 T cells though decreased, remains stable

Evolution of tropism in an individual from R5 to X4 is the precursor to developing immune deficiency, but R5 strains are preferentially sexually transmitted

Mutation of R5 to X4: a few changes in envelope V3 Loop sequence changes strain tropism

Acute HIV-1 Infection "Flu-Like"

Clinical
- Headache, retro-orbital pain, myalgias, pharyngitis, fever, Nonpruritic maculopapular rash in first 1-3 weeks
- Adenopathy and malaise may last for several months
- Transient thrombocytopenia and CD4 T-cell lymphopenia

Viral
- Rapid appearance of marked viremia with an R5 strain infecting monocytes and memory CD4 T cells
- This results in acute CD4 T-cell lymphopenia
- Integration in memory CD4 T cells provides a long-lived reservoir where HIV can remain latent
- Structurally the initial virus strain has no, or very limited diversity

Chemokine Receptors: Coreceptors for HIV entry

CXCR4
- Ligand: Stromal derived growth factor 1 (SDF-1) produced by stromal cells. Competes with HIV binding, but not produced in inflammation or by T cells
- Receptor: expressed on monocytes, naïve T-cells, B-cells, etc. X4 virus preferentially infects naïve/activated T cells
- Biology: SDF-1 responsible for migration/homing of naïve T cells to lymph node

(Because T-cell lines only express CXCR4 coreceptors and respond to HIV infection by forming syncyia, earlier X4 strains were termed “syncyta inducing, or T-tropic”)
Acute Infection

Development of anti HIV Immune Response

- With onset of a CD8 T-cell immune response viremia falls from \(\sim 5 \times 10^6 / ml \) to \(< 10^4 / ml\)
- The CD4 T-cell count rises from \(\sim 400 \) to \(> 800 / \mu l \)
- Degree of viral suppression and return of CD4 T cell levels (set point !) varies and correlates with the length of the asymptomatic period
- HIV species begin to diversify, viral variants appear reflecting successful attempts to escape the suppression of the CD8 T cell response
- The virus mainly persists in monocytes / macrophages

CD8 T-cell Response to HIV-1

- Establishes asymptomatic phase of infection
- Specific CD8 CTL lysis of HIV- infected target cells (macrophages and CD4 T cells) via perforin pathway and/or apoptosis via upregulation of fas ligand
- Strong inhibition of viral infectivity by release of chemokines (MIP-1\(\alpha / \beta \), RANTES) that bind to CCR5 and compete with coreceptor dependent entry of R5 HIV-1
- Release of IFN-\(\gamma \) and secondarily TNF-\(\alpha \), decrease LTR-driven transcription

Excessive anti HIV CD8 T cell response may result in diffuse infiltrative lymphocytosis syndrome (DILS) simulating Sjogren’s syndrome

Salivary gland biopsy

- Nuclide scan
- CT scan
- CD8 T cells \(> 2000 / \mu l \)
- H & E
- HLA-DR stain

Anti-HIV antibodies usually appear in several weeks, they play a minor role

- Other mechanisms

Immune Responses in asymptomatic phase

Depends on a relatively few CD8 T cell clones

- Maintenance of a few CD8 T-cell expanded memory/effector CTL clones, each comprising 1-5% of CD8 T cell repertoire
- Clones each recognize different immunodominant HIV peptides, great individual variation in number and particular peptide recognized
- More clones = generally good outlook for long asymptomatic period (\(> 12 \) yrs), fewer clones = rapid progression of HIV infection (\(< 2 \) yrs)
Long term non progressors

- A subset of infected individuals that remain asymptomatic for >12 years
- Particular HLA types, e.g. HLA-B27, B57, etc.
- Low levels of plasma virions, CD4 counts >500/ul
- High CD8 T-cell counts, may be > 3,000/ul
- High chemokine release (RANTES, MIP)
- CTL response is against critical conserved region of HIV gag, env, pol that cannot readily be mutated without loss of viral function-This appears to be the key factor!

The environment formed by peptide binding properties of MHC molecules influences evolution of the HIV infection. HLA alleles influence the number of peptides in a protein that can be recognized (Example HIV envelope protein)

<table>
<thead>
<tr>
<th>Allele</th>
<th>HLA-B*27052</th>
<th>HLA-B*3501</th>
<th>HLA-B*0702</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motif</td>
<td>xPxxxxxxY</td>
<td>xRxxxxxxL</td>
<td>xPxxxxxxY</td>
</tr>
<tr>
<td>Peptides able to bind all allelic molecule</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rapid Progression

- xPxxxxxxY peptides recognized, if any, are in non-critical parts of HIV genome permitting mutations in MHC anchor residues. Peptides weak stimulators
- Rapid viral replication and evolution not restrained

Slow Progression

- xRxxxxxxL R5 peptides recognized are often in critical parts of HIV genome and mutations not permitted in MHC anchor or TCR recognition residues
- Viral replication and evolution greatly slowed

Basis of outcome with HLA type

- HLA-B35: Rapid Progression
- HLA-B27: Slow Progression

An example of HIV-1 escape from a CD8 T cell clone

- HLA-B27 hemophiliac, infected ~1983 by blood products
- CTL clone to gag p24 263-272 controlled HIV-1 replication for >10 years

Viral Response near end of asymptomatic period

- Rate of cellular infection and potential mutations increases
- Definitive viral escape occurs when virus is no longer presented by MHC to available CD8 T cell clones
- Continual generation of env mutations
- Selection against R5 variants by CD8 T-cell CCR5 chemokines that blocks infection is finally bypassed
- Change in cellular tropism by env mutations leads to X4 phenotype (CXCR4, T-tropic)
- Enhanced T-tropism of X4 leads to more significant impairment of CD4 T-cell compartment

Loss of the “epitope war”
Reasons for CD4 T cell loss in HIV-1 Infection

During asymptomatic phase and transition to AIDS
Accelerated loss in number of CD4 T cells

- Activation of large numbers of mature and naive CD4 T cells by cytokines, etc. during antiviral response (Bystander activation, homeostatic regulation) leads to loss of repertoire by physiologic apoptosis
- Thymic derangement results in failure to generate new naive CD4 T cells to repopulate repertoire
- CD8 T cell killing of infected CD4 T cells
- ADCC by NK cells, etc. to infected CD4 T cells

AIDS is the consequence of progressive CD4 loss

T cell immune function progressively deteriorates reflecting the central role of CD4 T cells

Stages:
- Loss of antigen-specific clonal responses (in vitro proliferation and skin test to various antigens, including those from immunizations
- Loss of ability to generate new CD8 T cell responses
- Loss of Mixed Lymphocyte Culture responsiveness
- Loss of PHA responsiveness

AIDS is the consequence of progressive CD4 loss

Appearance of different infections as severity of immune deficiency increases

- Candida (Thrush)
- Salmonella - microbial persistence (Reactive arthritis?)
- Mycobacterium tuberculosis reactivation, Cryptosporidium
- Activation of latent herpes zoster
- EBV reactivation and development of polyclonal lymphomas, Kaposi’s sarcoma (HHV-8)
- Pneumocystis carinii
- Progressive cytomegalovirus infections, M. avium complex

HIV virus vaccines have failed, Why?

- Immunization with rENV produce neutralizing antibodies
- But neutralizing antibodies induced by immunization fail to protect as shown in multiple trials
- A live attenuated virus has not yet proved achievable
- The second larger issue is heterogeneity of HIV strains, need many immunodominant peptides directed to critical regions of viral genome because no cross protection
- Some strains, mainly X4 tropic have evolved to circumvent MHC presentation by some common alleles. With high numbers of infected individuals there is increasing chance of infecting a person with the same HLA by a strain evolved to avoid immunosurveillance
- Recombinant live virus vaccines are under trial, but a major issue is providing HIV peptides able to bind divergent MHC class I of a large proportion of the population

Another reason for CD4 T cell loss

CD4 T cell activation initiates HIV replication

T cell activation causes, among other effects, a marked increase in cyclin T1, NFAT and NFκB

Transcriptional activation of HIV-1 gene expression

This links viral expression to T cell activation

AIDS is the consequence of progressive CD4 loss

Appearance of different infections as severity of immune deficiency increases

But vCP205 a recombinant live virus canarypox vector vaccine expressing gp41, Gag and Protease HIV genes addresses- in theory- all of these concerns
Case Report of a failure of a recombinant live vaccine
Betts et al. PNAS 2005, 102:4512
Case # 202-T07, an HLA-B*2705 HIV-negative male homosexual
vCP205 canarypox vector expressing gp41, Gag and Protease vaccination course given over 5 months
Immune response documented to two CD8 epitopes and one CD4 epitope including response to the HLA-B*2705-restricted Gag peptide KRWIIILGNK in central and peripheral memory/effector CD8 T cells CD28+CCR7+CD45RO+ and CD28-CCR7-CD45RO-
Approximately 18 months later 202-T07 had unprotected anal intercourse with an undisclosed HIV+ partner

Shortly thereafter, he developed flu-like symptoms and was then found to be positive for HIV antibodies, with a plasma viral load of 234,695 HIV-1 virions/ml

The acute infection induced a recall response to the B*2705-restricted clone, expanding it from 0.05% of CD8 T cells to 9.8% of CD8 T cells, and this remained the dominant clonotype during acute infection

During the acute infection period there was no evidence of viral escape, but by 32 months after diagnosis the predominant virion-encoded Gag peptide sequence mutated from KRWIIILGNK to KGWIIILGNK, thus thwarting binding and presentation of the peptide by HLA-B*2705

Viral escape this early is extremely unusual, the average time to development of this escape mutation in unvaccinated individuals is >9 years
Moreover, the average survival until AIDS in an HLA-B*2705 individual is >14 years
His CD4 T cell count continues to decline, presently 400 cells /µl at 32 months post infection, and viral titre remains high, despite optimal anti-retroviral therapy
The authors raise the strong possibility that a vaccine developed according to the best notions of current immunological knowledge not only did not protect against HIV infection but accelerated development of the escape mutation in the vaccinated individual, thus hastening progression of the viral infection