MOLecular Medicine

Jumping Genes and the Immunoglobulin V Gene System

Robert S. Schwartz, M.D.

MULTIPLE myeloma begins when one B cell of approximately 10 billion in the body undergoes mutations that enable it to outgrow most other cells in the bone marrow. When the neoplastic clone consists of 10^{14} B cells, serum electrophoresis barely detects the clone’s signature molecule, a monoclonal immunoglobulin; with 10^{12} members, the gammapathy is unmistakable; and with 10^{13} myeloma cells, symptoms begin to appear. Not least of the clinical problems in patients with myeloma is susceptibility to bacterial infection, a paradox given the huge amounts of gamma globulin secreted by the tumor. But most of the antibodies in the serum are worthless securities. They are a population of monoclonal immunoglobulins, and thus all of them have identical antigen-binding sites. The range of protection they provide, if any, is extremely narrow. To be protective, the immune system needs a way of coping with the diversity of the microbial environment. In other words, a proper antimicrobial defense requires billions of different kinds of antibody molecules and T cells.

Few problems in biology have matched the enigma of immunologic diversity. For decades, enormous quantities of paper and ink were consumed in addressing this question. Some immunologists believed there was an all-purpose antibody, which the antigen molded to a custom fit; others thought that each antibody corresponded to one gene, suggesting that there were tens of thousands of immunoglobulin genes. The solution came in 1976, when Hozumi and Tonegawa showed that myeloma cells constructed their monoclonal immunoglobulins from different gene segments, which the myeloma precursor cells had fused into a single coding sequence. This work was the foundation of our present understanding of the structure and function of antibodies and the antigen receptors of B cells and T cells.

Lymphocytes maximize their diversity by compiling the genetic code for their antigen receptors from an assortment of physically discrete segments of DNA. In part, the strategy resembles a game in which each player is dealt a hand from a freshly shuffled deck of 52 cards. If each player receives six cards, about 20 million different hands are possible. However, lymphocytes have the potential to generate more than 10^{13} different antigen receptors. How do they do this? In answering this question, I shall focus on immunoglobulin genes. Similar principles apply to genes for T-cell receptors but differ in important details.

Immunoglobulins embedded in the surface membrane of the B lymphocyte serve as the cell’s antigen receptors. All the receptors in each B cell are the same, but each new clone of B cells expresses a different receptor. Thus, within the whole population of billions of B cells, there is an enormous variety of immunoglobulin receptors. The dynamic turnover of B cells adds another dimension to the diversity of antibodies. Millions of fresh recruits — each with a novel receptor — leave the marrow daily to replace the millions of B cells that die every day in the lymph nodes and spleen. The continuous seeding of lymphoid tissue with new repertoires of B cells gives the immune system a remarkable capacity to respond to a changing environment.

All this diversity rests on about 200 genes. These variable-region genes (V genes) are the physical substrate for antibody variation. They provide the DNA from which the immature B cell fashions its receptor’s coding region by cutting, rearranging, and revising individual gene segments. This process culminates in an antibody whose Y shape delineates the two functionally distinct sections of the molecule (Fig. 1).

The diversity of the antibody is in the arms of the Y. These arms, the variable regions, consist of matched pairs of polypeptides, the light and heavy chains. Each pair forms a surface or groove that serves as a binding site for antigen; an antibody with two variable regions has two identical binding sites. Each light and heavy chain of the pair contains three subdivisions called “hypervariable regions,” which account for most of the variation in immunoglobulins (Fig. 1). The six hypervariable regions, three on the light chain and three on the heavy chain, are the principal contributors to the antibody’s specificity and individuality.

The stem of the Y, the constant region, specifies the antibody’s effector properties, such as complement fixation or passage through the placenta. The variability of this region is limited to the five immunoglobulin isotypes: IgM, IgG, IgA, IgD, and IgE; each corresponds to a particular constant-region gene (C gene): Cα, Cγ, Cε, Cδ, and Cε, respectively. Light chains do not contribute to the constant region, but the 3’ end of the heavy-chain gene does.

Organization of the coding region for the antigen receptor begins early in the maturation of lymphocytes. The cell links physically discrete genes, some separated by thousands of intervening bases, to form a continuous coding unit for the receptor. The κ and λ loci contain the variable-region genes for the two families of light chains, kappa and lambda (Fig. 1). These genes are of two types: variable (Vk or Vλ) and joining (Jk or Jλ). There are three kinds of heavy-chain variable-region genes: variable (VH), diversity (DH), and joining (JH). Strictly speaking, these DNA sequences are not genes but exons, because the B cell translates them into messenger RNA only when they have been joined into a coding unit. Nevertheless, the convention is to call the individual VH, DH, and JH units “genes,” “gene segments,” or simply “segments.”

The B cell has available approximately 50 VH genes, about 30 DH genes, and 6 JH genes, but it uses only one of each kind to assemble the VH–DH–JH coding sequence of its heavy-chain variable region.
We do not know how a particular gene segment enters into the process of VH–DH–JH gene rearrangement. The focus has been on two recombination-activating genes: RAG-1 and RAG-2, which are essential for the VH–DH–JH gene recombination. Studies in mice have shown that when either gene is disabled by the gene-targeting method, the V-gene segments cannot be recombined.

To recombine scattered VH genes and organize them into a unified and translatable coding region, DNA must be cut, the intervening region eliminated, and the severed ends of the two strands of DNA repaired. Enzymes mediate all these steps. Signals flanking the DNA on each DH and JH gene segment and on one side of the V gene guide the cutting enzyme. These recombination-signal sequences ensure the correct linkage of VH, DH, and JH (or VL and JL) segments and prevent nonsense rearrangements between like segments, such as...
as two VH or two JH segments. The cut segments —
DH11 and JH2, for example — fuse, forming a continu-
uous DH11–JH2 sequence from which the intervening
DNA has been eliminated (Fig. 1).

The potential to generate unique combinations by a
process like the card game described above or VH-gene
recombination is large but not unlimited. Other mech-
anisms, which can increase the diversity of antigen re-
ceptors by orders of magnitude, come into play after
the recombination is complete. Special enzymes intro-
duce random somatic alterations in the DNA code
where the V segments join. In the example of the
DH11–JH2 sequence, exonucleases “nibble” several
bases from the cut ends of the DH11 and JH2 seg-
ments. Another enzyme, terminal deoxynucleotidyl
transferase (TdT), randomly adds up to 20 nucleotides,
called N additions, to the joint between the two cut
ends. These random losses and gains of nucleotides in
the recombinant VH-gene segments make the newly as-
sembled coding regions for the heavy- and light-chain
polypeptides virtually unique. Indeed, the variable re-
gion of the antigen receptor provides a molecular sig-
nature distinctive enough to serve as the target in
searching for residual malignant cells after the admin-
istration of chemotherapy in patients with lymphoma or
leukemia.

The immature B cell assembles its V genes in a spe-
cific order. First, it joins heavy-chain segments in the
following sequence: DH→JH; VH→DH–JH. After
RNA-processing enzymes excise introns and any other
intervening segments, the messenger RNA corre-
ponding to the linked VH–DH–JH–Cκ segments is the
transcription unit for heavy chains (Fig. 1). The ap-
pearance of cytoplasmic κ chains, a landmark in B-cell
differentiation, is clinically useful in classifying B-cell
neoplasms. The presence of the heavy chain on the
B-cell membrane has considerable functional impor-
tance: it inhibits further rearrangement of VH-gene
segments and signals the rearrangement of Vk seg-
ments. If errors cause that process to fail, the B cell
tries to make a VA coding unit. These successive effec-
tives — Vk first, then Va — account for the 60:40 ratio
of Vκ to Vλ light chains in populations of immuno-
globulins. Like any other nucleated cell, the B cell has
two sets of V genes, one from each of the person’s
parents. If the B cell were to express more than one
kind of antigen receptor by rearranging V genes from
both parental loci, it would lose specificity and ef-
ciciency — contact with antigen “A” would trigger
not only anti-A antibodies but also anti-B antibodies.
A process called allelic exclusion restricts the rea-
rangement to one of the two parental loci. This mech-
anism explains why all the cells in a particular B-cell
clone, B-cell lymphoma, or monoclonal gammopathy
have only one kind of light chain and one kind of
heavy chain.

Unlike genes for T-cell receptors, the rearranged
V genes in a mature B cell can mutate. Somatic muta-
tion of V genes can increase the ability of the surface
immunoglobulin receptors to bind the antigen, thereby
giving the B-cell clone a growth advantage over other
B cells that cannot respond to the antigen. Such mutat-
ed clones arise in germinal centers of lymph nodes and
spleen under the influence of signals from T cells. The
mutations typically occur in the hypervariable seg-
ments of heavy- or light-chain genes (often both). The
functional influence of these mutations is considerable,
because the antigen-binding site depends on just 5 to 10
amino acids. A mutation that changes only one amino
acid can increase or decrease the antibody’s affinity
10-fold or even change the antibody’s specificity. The
antibody response thus proceeds by a Darwinian mech-
anism in which B-cell clones with receptors having
the highest affinity for the antigen ultimately dominate
the population. Indeed, studies of B cells that were
plucked one by one from germinal centers of human
spleens have shown that a few related clones with mu-
tated VH and VL genes predominate in individual ger-
minal centers.

Clinical applications have been found for virtually all
the molecular elements of lymphocyte diversification. A
previous article in this series explained the molecular
diagnosis of malignant clones of B cells or T cells; we
have seen how investigators can exploit a clone’s spe-
cific molecular signature to seek residual leukemia or
lymphoma; the use of TdT to classify leukemias has be-
come a standard procedure; and V-gene mutations can
be used to trace the origins of lymphomas and leukem-
ias, as well as autoantibodies. Monoclonal antibodies
constructed from mouse V genes and human C genes
by molecular engineering are already in clinical use. In
the not-too-distant future, “phage farms,” exploiting
the principle of V-gene recombination, will produce an-
tibodies made to order entirely in vitro for any clinically
useful immunochemical specificity. The molecular tech-
nology of immunoglobulin genes is now so adva-
ned that the only impediment to new clinical applica-
tions is the investigator’s imagination.

Recommended Reading

Cook GP, Tomlinson IM. The human immunoglobulin VH repertoire.

Hozumi N, Tonegawa S. Evidence for somatic rearrangement of immu-
oglobulin genes coding for variable and constant regions. Proc Natl

Schatz DG, Oettinger MA, Schlissel MS. VDJ recombination; molec-

Stewart AK, Schwartz RS. Immunoglobulin V regions and the B cell.