Why Take This Course?

- How to answer policy and management questions
 - What is our clinical pathways program doing? Should we keep it?
 - Should we fund the fear-based anti-smoking campaign?
- How to pose research question(s) which are relevant to a particular policy or management decision
 - How to ask research questions, not simply talk “about” something
- How to do your own research
- How to judge the “research” (including salesmen’s charts and casual) of others

Disciplines Differ in Research Methods

- Biostatistics emphasizes randomized trials (classical experiments)
- Epidemiology uses correlational analysis of observational data
 - Addresses causality through timing, “dose-response”, biological mechanism, …
- Social sciences emphasize the role of theory when analyzing observational data
 - Economics also uses “natural experiments”
 - Policy analysis also uses design of quasi-experiments

Why social sciences are different (1)

- Epidemiology developed for essentially biological questions
- In the social arena, people are making decisions themselves, often thinking ahead
- Example: “Christmas card sales (Granger) cause Christmas”
 - Christmas card sales generally precede Christmas
 - Granger causality is a formal statistical test for whether one event regularly precedes another
 - When humans decision-making is involved one event preceding another may not be good evidence for causality
Why social sciences are different (2)

- Randomized Clinical Trials
 - the gold standard for solving treatment selection bias problems
 - often not a practical, ethical or sometimes even possible alternative
- Consider a randomized trial to study the effect of divorce on children’s substance abuse
- Consider a randomized trial to see the effect of a new clinical pathways program in your hospital

HPM Application: Physician Profiling

- **Physician profiling**: statistical analysis of the treatment patterns of an individual physician or groups of physicians relative to other physicians
 - Management question: Does physician profiling result in lower costs or better health outcomes for our enrollees?
 - Policy question: Does physician profiling result in dumping of riskier patients?
 - Outcomes question: Does physician profiling improve health of population?
- Is an RCT possible? Necessary? Can you learn things in other ways?

Why do Disciplines Differ in Research Methods?

- Different methods are suited to different questions
 - Social sciences, policy and management offer differ
- These are difficult questions with no right answers
 - Even RCTs do not solve many problems
 - Can never really know if something is true
 - But you can sometimes know that something is not true
 - Very intelligent people often disagree
What’s new in this course?

- Using theory a lot
 - thinking through lots of possibly alternative theories
- Natural Experiments
- Designing Quasi-experiments
- Using panel data in new ways
- What is “bad” or misleading about randomized trials, even when they are possible
- We will also review ideas of experiments, but with a new goal:
 - Understanding elements of what makes an experiment useful in order to judge how well particular observational data, particularly natural experiments, can justify causal conclusions

Other Reasons to Take This Course

- Practical Implementation Skills
 - Data Management
 - Statistical Packages (SPSS)
 - Knowledge of Existing Datasets
 - Experience with Regression
- Risk Adjustment

Outline of Class

- Asking the Right Question
- Correlation and Causality
- An Example to Illustrate Both Points
 - Review of Cross-tabs and Chi-squared
- Experimental vs. Observational Data
- Generalizability

- The most important thing in this course:
 - Correlation vs. causality
 - Goal: You will all spot correlation/causality confusion in its many guises
Asking the Right Question

- Often interested in the effect of a particular action:
 - Raising cigarette taxes
 - Anti-smoking advertising campaign
 - Patient’s bill of rights legislation
 - New scheduling system in your clinic
 - New utilization management software
 - Paying physicians more for fewer specialist referrals
- What ideal research question addresses your policy question?

Correlation and Causality

- Correlation
 - In empirical data, when A is higher, B is systematically higher (or lower)
- Causality
 - A causes B
 - If we can somehow increase A, B will increase (or decrease)
- Correlation is not Causality
 - Something trained people know in principle but frequently mistake in practice

Example

- “Teenagers who do not get on well with their fathers are more likely to smoke, drink and use drugs than youngsters in average two-parent families”
- “A wake-up call for dads across America. Every father should look in the mirror and ask: ‘How often do I eat meals with my children? ‘Take them to religious services?’...’”
- “The study was based on a survey of teenagers”
What is the relevant policy question?

- What is the relevant policy question?

- What is the research question that was asked?

- Are research question and policy question the same? What links them?

Theory and The Policy Question

Theory:
1. Dad spends more time with teenager \implies (2) Dad and teenager have better relationship \implies (3) Teenager does not use drugs

If theory is true, then dads spending more time will result in less teenage drug use

Study addresses (2) and (3), not (1)

Counterfactuals

- Counterfactual: What would have happened if a different course of action had been taken
- Example: What would have happened to drug usage if Dad had spent more time with teenagers?
- Whenever someone advocates some course of action, there is an implicit counterfactual
Correlation: Cross Tabs Reviewed

<table>
<thead>
<tr>
<th></th>
<th>Good relationship with father</th>
<th>Poor relationship with father</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uses Drugs</td>
<td>80</td>
<td>900</td>
<td>980</td>
</tr>
<tr>
<td>Does not use Drugs</td>
<td>720</td>
<td>300</td>
<td>1020</td>
</tr>
<tr>
<td>Total</td>
<td>800</td>
<td>1200</td>
<td>2000</td>
</tr>
</tbody>
</table>

Testing Correlation Reviewed

- To test for the statistical significance of the relationship… to see if the variables are actually associated
- Predict the number of counts that would occur if there was no association between drug usage and good relationships with Dad
- What would happen if drug use occurred at the same rate among those with good and bad relationships?
Expected Counts if no Association

<table>
<thead>
<tr>
<th>Good relationship with father</th>
<th>Poor relationship with father</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uses Drugs</td>
<td></td>
<td>49%</td>
</tr>
<tr>
<td>49% x 800</td>
<td>49% x 1200</td>
<td>49%</td>
</tr>
<tr>
<td>392</td>
<td>588</td>
<td>49%</td>
</tr>
<tr>
<td>Does not use Drugs</td>
<td></td>
<td>51%</td>
</tr>
<tr>
<td>51% x 800</td>
<td>51% x 1200</td>
<td>51%</td>
</tr>
<tr>
<td>408</td>
<td>612</td>
<td>51%</td>
</tr>
<tr>
<td>Total</td>
<td>800</td>
<td>1200</td>
</tr>
</tbody>
</table>

Testing Correlation Reviewed:
Chi-square Test

\[\chi^2 \text{ statistic } = \sum \frac{(\text{observed count} - \text{expected count})^2}{\text{expected count}} \]

\[\chi^2 \text{ statistic } = \frac{(80-392)^2}{392} + \frac{(720-408)^2}{408} + \frac{(900-588)^2}{588} + \frac{(300-612)^2}{612} \]

\[= 811 \]

Degrees of freedom = (#rows-1) x (#columns-1) = 1

VERY SIGNIFICANT!

Correlation: What does it tell us?

- Having a poor relationship with one’s father is CORRELATED with using drugs

Causality: Better relationships with fathers CAUSE less drug use
Theory and Causality

Theory:
(1) Dad spends more time with teenager \implies
(2) Dad and teenager have better relationship \implies
(3) Teenager does not use drugs

• We observe a correlation between (2) and (3)
• What else might cause the correlation?
 – Higher Dad education might explain better relationship and cause higher income which might in turn lower drug use.
 – One of TONS of explanations
 – What are some other possible explanations?

Other Explanations of Correlation
• A is correlated with B if:
 – A causes B
 – B causes A
 – C causes A and C causes B
• Suppose that
 – having a good marriage causes Dads to spend more time with their teenagers
 – having parents with good marriages causes teenagers to not use drugs

Would Dads with bad marriages spending more time with their teenagers lower drug usage?

Altered Example
• In a survey of teenagers it is found that teenagers who spend more time with their fathers are less likely to use drugs
• Therefore, advocates suggest fathers should spend more time with their teenagers in order to lower drug use

• Now what is the problem?
Selection Bias

- Selection into the “treatment group” – spending more time with fathers – is not random
- Those factors that affect time spent with fathers (the “treatment”) may affect the likelihood of drug usage (the outcome)
- Selection Bias: the “treatment group” and “control group” differ in some way related to the outcome

Theories of Selection Bias

- What are some theories for selection bias in this case?
 - Drug Use Causes Less Time with Dad
 - Other Factors Cause both Less Time and Drug Usage
- For social questions, it is essential to think through possible theories

Randomized Experiments Solve Selection Bias

- Why?
 - We’ll review in more detail next time
- What experiment could you do here?
- What problems would there be with an experiment?
Generalizability

- Generalizability:
 - Do results from study apply to the real world?

- If randomized trial shows that increasing time with teenagers lowers drug use, does that mean it would be true in the country as a whole?

Take-home Lessons

- Clearly define the policy or management question that you would like to ask
- Compare the research question that you can ask with the question you would like to ask
- Think about all possible causal theories that explain observed correlations
- Randomized experiments solve the selection bias problem but can have generalizability problems
Cartoon: Questions for Homework

- Does this mean that a woman would be better off if she walked alone and in unfamiliar neighborhoods more often?
- What is the “policy question”?
- What is the implicit counterfactual?
- What is the relevant research question?
- How does the information given differ from the desired information?
- What experiment could answer the desired question?
- What are the generalizability issues associated with the experiment you describe?