Lecture 1

- Syllabus overview
- Introduction to decision models
- Bland brewery linear programming model
- Spreadsheet optimization
- Summary and preparation for next class
What is Decision Modeling?

- *Decision modeling* refers to the use of mathematical or scientific methods to determine an allocation of scarce resources that improves or optimizes the performance of a system.
- The terms *operations research* and *management science* are also used to refer to decision modeling.

Decision Modeling Process

- **Real world System**
- **Formulation** → **Decision Model**
- **Implementation** → **Real World Conclusions**
- **Deduction** → **Model Conclusions**
- **Interpretation**
Applications of Decision Models

A sample of systems to which decision models have been applied include:

- Financial systems
 - Portfolio optimization, security pricing (e.g., options, mortgage-backed securities), cash-flow matching (e.g., pension planning and bond refunding)
 - Example: LibertyView Capital Management uses a spreadsheet optimization model developed by a 1995 Columbia MBA to hedge bond investments using stock and options

- Production systems
 - Oil, steel, chemical, and many other industries
 - Example: Citgo uses linear programming to improve refining operations. Total benefit: approximately $70 million annually.
Applications of Decision Models (continued)

- Distribution systems
 - airlines, paper, school systems, and others
 - Example: Westvaco, a Fortune 200 paper company, uses linear programming to optimize its selection of motor carriers. The result: 3-6% savings on trucking costs of $15 million annually. This work was done by a 1992 Columbia MBA.

- Marketing systems
 - sales-force design, forecasting new-product sales, telecommunications strategies, brand choice, merchandising strategies

- Graduate school admissions
 - Example: The director of CBS admissions uses linear programming to aid in the admissions process.

Overview of Decision Models

Main solution tools

- Optimization
 - Linear programming, Integer programming, Nonlinear programming
- Simulation
Bland Brewery Decision Problem

- Consider the situation of a small brewery whose ale and beer are always in demand but whose production is limited by certain raw materials that are in short supply. The scarce ingredients are corn, hops, and barley malt. The recipe for a barrel of ale calls for the ingredients in proportions different from those in the recipe for a barrel of beer. For instance, ale requires more malt per barrel than beer does. Furthermore, the brewer sells ale at a profit of $13 per barrel and beer at a profit of $23 per barrel. Subject to these conditions, how can the brewery maximize profit?
Bland Brewery Model

Corn
480 lbs

Hops
160 ozs

Barley Malt
1,190 lbs

Ale
1 barrel

Beer
1 barrel

5 lbs corn
4 ozs hops
35 lbs malt

$13 profit

Optimal Production Plan?

15 lbs corn
4 ozs hops
20 lbs malt

$23 profit
What if Bland decides to produce all ale? Then
- their corn supply limits production to at most $480/5 = 96$ barrels,
- their hops supply limits production to at most $160/4 = 40$ barrels, and
- their malt supply limits production to at most $1190/35 = 34$ barrels.
Therefore, they can produce only 34 barrels of ale, which makes a profit of $34 \times 13 = 442$.

What if Bland decides to produce all beer? Then
- their corn supply limits production to at most $480/15 = 32$ barrels,
- their hops supply limits production to at most $160/4 = 40$ barrels, and
- their malt supply limits production to at most $1190/20 = 59.5$ barrels.
Therefore, they can produce only 32 barrels of beer, which makes a profit of $32 \times 23 = 736$.

Is there a better production plan? One way to simplify the computations is to set up a spreadsheet.
Figure 1. The preliminary spreadsheet BLAND.XLS
Figure 2. The spreadsheet `BLAND.XLS` with formulas
Figure 3. The *Solver Parameters* dialog box

A description of the Excel spreadsheet optimizer is given in the reading “An introduction to Spreadsheet Optimization using Excel”.
Figure 4. The *Solver Parameters* dialog box with constraints added
Figure 5. The **Solver Options** dialog box
Figure 6. The spreadsheet after optimizing
Cell F10
=IF(E10<=G10+0.00001, "\leq", "\not \leq")

Figure 7. The spreadsheet with constraints indicated
Decision Variables
Let $A = \#$ of barrels of ale to produce, and
$B = \#$ of barrels of beer to produce.
Note: Use suggestive (mnemonic) variable names for readability.

Bland Brewery Linear Program

$\max 13A + 23B$ (Profit)

subject to
- (corn) $5A + 15B \leq 480$
- (hops) $4A + 4B \leq 160$
- (malt) $35A + 20B \leq 1190$
- (nonnegativity) $A, B \geq 0$
Terminology

Feasible and Infeasible Solutions

A production plan \((A,B)\) that satisfies all of the constraints is called a feasible solution.

For example, in the Bland Brewery LP, the solution \((A=10, B=10)\) is feasible. The production plan \((A=40, B=10)\) is not feasible, i.e. it is infeasible because the hops and malt constraints are violated.

Optimal Solution

For a maximization (respectively, minimization) problem, an optimal solution is a feasible solution that has the largest (respectively, smallest) objective function value among all feasible solutions.

The optimal solution for the Bland Brewery production model is \((A=12, B=28)\). This means that Bland’s optimal production plan is to produce 12 barrels of ale and 28 barrels of beer. The optimal objective function value is $800.
Assumptions in a Linear Program

- Continuity: the decision variables are continuous, i.e., fractional values are allowed.
- Proportionality: for example, it takes twice as much hops to make twice as much beer or ale; there are no economies of scale.
- Additivity: profit is the sum of the profit contributions from ale and beer.

In short, the objective function and constraints must be linear. For example, $13A + 23B$ is a linear function of A and B. The functions $13A^2 + 23AB$ and $\log(A) + \cos(B)$ are nonlinear functions. The function $\max(A,0)$ is not differentiable at $A=0$ and $\text{IF}(A<5,0,10)$ is a discontinuous function.

Allowable variations:

- Objective function can be maximized or minimized.
- Constraints can be \geq, \leq, or $=$.
- Noninteger or integer coefficients and righthand sides are allowed.
- Negative or positive coefficients and righthand sides are allowed.
Summary

- Understand LP terminology: decision variables, objective function, constraints, feasible and infeasible solutions, optimal solution.
- Formulate simple linear programs.
- Solve simple linear programs in a spreadsheet.

Preparation for next class.

- Formulate and solve the “Shelby shelving” case (in the readings book or on pp.108-109 in the W&A text). Prepare to discuss the case in class, but do not write up a formal solution.
- Optional readings: “OR brews success for san Miguel” and “logistics steps onto retail battlefield” in the readings book.