Lecture 11

- Using Simulation for Risk Management
 - Risk management at Merck
 - Should corporations hedge?
 - Simulating foreign exchange rates
 - Evaluating hedging effectiveness using simulation
- Summary and Preparation for next class

Foreign Exchange Risk Management at Merck:
Background

- Merck & Company is a producer and distributor of pharmaceutical products worldwide.
- Based in New Jersey, Merck is a multinational company which does business in over 100 countries. Its worldwide market share is about 5%, with competition from European and Japanese companies.
- Merck is one of the ten largest U.S. firms by market capitalization, worth about $194 billion (as of 3/5/01). It is one of the world's largest sellers of pharmaceuticals.
- About 1/3 of its revenue is from foreign sources, but relatively little of its costs are foreign expenses.
- If foreign-currency prices decline, the U.S. dollar value of Merck's revenue declines.
- Should Merck hedge its foreign exchange (FX) risk, i.e., buy or sell financial securities to reduce its FX exposure?
Merck Sales Index

- Merck has exposures to about 40 currencies.
- To measure its FX exposure, Merck uses a “sales index.” This is an average of FX rates (expressed in US$ per FX) weighted by sales in each currency. The index is normalized to 100 in 1978.

Index levels above 100 indicate foreign currencies are strong versus the dollar, which has a positive impact on Merck’s dollar revenues.
Index levels below 100 indicate a strong dollar or weak foreign currencies. This has a negative impact on Merck’s dollar revenues.

Impact of Changes in FX Rates

- In 1995 Merck had worldwide sales of $16.7 billion, about $5.3 billion in sales were foreign. R&D expenses were $1.3 billion. Net earnings were $3.3 billion.
- Suppose that the dollar strengthens by 20%. What is the impact on net earnings?
- Is management to blame for the shortfall?
- How would management deal with the shortfall?
 - Cut dividends?
 - Cut R&D?
 - Issue new debt?
 - Issue new equity?

From Merck’s 1995 annual report, p.37:
“The ability to finance ongoing operations primarily from internally generated funds is desirable because of the high risks inherent in research and development required to develop and market innovative new products and the highly competitive nature of the pharmaceutical industry.”
Merck’s Hedging Decision

Issues in Merck’s FX Hedging Decision

- Does hedging increase shareholder value?
- Do investors want exposure to FX rates?
- Reducing earnings volatility, Merck can
 - Maintain constant or growing dividend
 - Fund R&D expenses

From Merck’s 1995 annual report, p.36:

“A significant portion of the Company’s cash flows are denominated in foreign currencies. The company relies on sustained cash flows generated from foreign sources to support its long-term commitment to U.S. dollar-based research and development. To the extent the dollar value of cash flows is diminished as a result of a strengthening dollar, the Company’s ability to fund research and other dollar based strategic initiatives at a consistent level may be impaired. To protect against the reduction in value of foreign currency cash flows, the Company has instituted balance sheet and revenue hedging programs to partially hedge this risk.”

(Italics added)

Merck’s Hedging Decision (continued)

From Merck’s 1995 annual report, pp.36-37:

“The objective of the revenue hedging program is to reduce the potential for longer-term unfavorable changes in foreign exchange to decrease the U.S. dollar value of future cash flows derived from foreign currency denominated sales ... To achieve this objective, the Company will partially hedge forecasted sales that are expected to occur over its planning cycle, typically no more than three years into the future ... The portion of sales hedged is based on assessments of cost-benefit profiles that consider natural offsetting exposures, revenue and exchange rate volatilities and correlations, and the cost of the hedging instruments ... The Company manages its forecasted transaction exposure principally with purchased foreign currency put options.”

(Italics added)
Hedging by Corporations: Empirical Evidence

From the October 1995 Wharton survey of derivatives use by non-financial U.S. firms:

- 38% of firms use derivatives
 - 13% with market cap under $50 million
 - 48% with market cap from $50-250 million
 - 59% with market cap over $250 million
- Top reasons given by firms that do not use derivatives:
 - Lack of significant exposure
 - Expected costs exceed the benefits
 - Concern about perception of derivatives use
- Top reasons given by firms that use derivatives:
 - Manage foreign-exchange exposure
 - Manage interest-rate exposure
 - Manage commodity-price exposure
 - Manage equity exposure
- Frequency of FX-derivative use for hedging by exposure category:
 - Contractual commitments: 90%
 - Anticipated transactions within 1 year: 90%
 - Foreign repatriations: 72%
 - Anticipated transactions over 1 year: 54%

Merck's Foreign Exchange Hedging Problem

- Suppose Merck has receivables of 1.0 billion Swiss francs (SF) in one year. The current rate of the SF is 0.75 $/SF. So if this money could be converted today to dollars, it would be worth $750 million.
 - What is the risk in U.S. dollars if this cash flow is not hedged?
 - How likely is it that when these receivables are converted to dollars a year from now, their value has decreased by $100 million or more? I.e., what is the probability that the U.S. dollar revenue in a year will be less than $650 million?

- Because the market for Swiss franc put options is not highly liquid, Merck is considering a partial hedge of its exposure by purchasing German mark put options. As we'll see, the Swiss franc and German mark currencies are very highly correlated.
- In particular, Merck is considering the purchase of 750 million one-year German mark put options. The current FX rates are: 0.7465 $/SF, 0.6418 $/DM. The cost of a one-year German mark put option with a strike of 0.635 is $0.021.
- What is the risk in U.S. dollars if this hedging strategy is followed? Is it worth hedging?
A Simulation Model to Manage Foreign Currency Exposure

- The current rate ($ per SF) is $SF_0 = 0.7465 \text{ $/SF}$. If the rate does not change, the 1.0 billion SF receivable will be worth $746.5 million.

- Let SF_1 denote the Swiss franc rate one year from today (a random or unknown number) and let R_{SF} represent the Swiss franc return over the year, i.e.,

$$SF_1 = SF_0 \times (1 + R_{SF}).$$

- We will simulate R_{SF} instead of SF_1, because returns are generally easier to estimate than values or rates.

- How do we estimate the return on the Swiss franc?

Historical Swiss Franc Returns

- The Swiss franc model can be estimated using historical data. Eight years of (slightly hypothetical) Swiss franc rates are given here:

<table>
<thead>
<tr>
<th>Year</th>
<th>Rate ($/SF)</th>
<th>Return (in %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.6006</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.5453</td>
<td>- 9.21</td>
</tr>
<tr>
<td>3</td>
<td>0.6706</td>
<td>22.98</td>
</tr>
<tr>
<td>4</td>
<td>0.7019</td>
<td>4.67</td>
</tr>
<tr>
<td>5</td>
<td>0.6357</td>
<td>- 9.43</td>
</tr>
<tr>
<td>6</td>
<td>0.7034</td>
<td>10.65</td>
</tr>
<tr>
<td>7</td>
<td>0.7830</td>
<td>11.32</td>
</tr>
<tr>
<td>8</td>
<td>0.7465</td>
<td>- 4.66</td>
</tr>
</tbody>
</table>

The rates are converted to returns using:

$$\text{Return} = \frac{\text{Rate}_{\text{new}} - \text{Rate}_t}{\text{Rate}_t}$$

- The standard deviation of returns is 11.26% (we will use 11%).

Although the historical mean return is 3.8%, the standard error of the estimate is so large (4.3%) that a mean of zero cannot be ruled out. We will use a mean return of 0%, which is likely a better predictor of future FX returns than the historical estimate.
Assumption About Swiss Franc Return

- Without any additional information (besides historical data) about the distribution of the Swiss franc return, it is reasonable to assume a normal distribution.
- Therefore, our simulation model for R_{SF} (and hence for SF_1) is

$$R_{SF} \sim N(\mu = 0, \sigma = 0.11).$$

- This implies that the model assumes the most likely value for R_{SF} is 0, so the most likely value for the rate next year is $SF_1 = 0.7465$.
- Using the rule of thumb for the normal distribution, a one standard deviation return of 11% corresponds to a rate change of $0.7465(0.11) = 0.0821$. There is roughly a 2/3 chance that R_{SF} will lie in the interval $[-0.11, 0.11]$, so there is a 2/3 chance that SF_1 will lie in the interval $[0.7465(1-0.11), 0.7465(1+0.11)]$, i.e., in $[0.6644, 0.8286]$.

A Model for the Swiss Franc Rate

The model for SF_1 is

$$SF_1 = SF_0 \times (1 + R_{SF}),$$

where $R_{SF} \sim N(\mu = 0, \sigma = 0.11)$. Since the current rate is $SF_0 = 0.7465$, these assumptions imply the following assumption about the rate next year (SF_1):

In this model, the Swiss franc rate is said to have a volatility of 11%.
Merck’s U.S. Dollar Risk Unhedged

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MERCK_U.XLS Merck’s Unhedged U.S. Dollar Risk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Swiss franc receivable in one year</td>
<td>1 (in billion SF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Current Swiss franc rate</td>
<td>0.7465 (in US$/SF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Swiss franc volatility</td>
<td>11%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Swiss franc</td>
<td>0.7008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Return Price 0.7008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Revenue in one year (unhedged)</td>
<td>0.7008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Assumption cell C7: Normal with mean = 0, std dev = E5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Forecast cell E10 named Unhedged revenue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Spreadsheet formulas:
 - Cell D8: =E4*(1 + C8), i.e., SF$_1$ = SF$_0$ × (1 + R$_{SF}$).
 - Cell E10: =E3*D8

- In the Crystal Ball “Run Preferences,” set the maximum number of trials to 500, the random number seed to 123, and for the sampling method choose “Latin Hypercube.” This sampling method requires somewhat more computer memory, but gives more accurate results. The spreadsheet is now ready to run a Crystal Ball simulation.

Merck’s U.S. Dollar Risk Unhedged (continued)

- If FX rates do not change, the 1.0 billion Swiss franc receivable will be worth $750 million one year from today. What is the likelihood that Merck will see a shortfall of $100 million or more? We want to estimate the probability that SF$_1$ is less than $750 - $100 = $650 million. The simulation output can be used to estimate this probability: \(P(SF_1 \leq 0.65) \).

- After running the simulation, move the right arrow in the “Unhedged revenue” forecast window to 0.65. The certainty window reads 12%, i.e., there is a 12% chance of a shortfall of $100 million or more. (The histogram was drawn using 25 bins.)
The Hedging Case: German Mark Put Options

- Because the market for Swiss franc put options is not highly liquid, Merck is considering a partial hedge of its exposure by purchasing German mark put options. These are options to sell marks at a fixed dollar price.
- An option is defined by several factors:

<table>
<thead>
<tr>
<th>Factor</th>
<th>Our option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underlying</td>
<td>DM rate ($/DM)</td>
</tr>
<tr>
<td>Expiration</td>
<td>1 year</td>
</tr>
<tr>
<td>Strike (K)</td>
<td>0.635</td>
</tr>
<tr>
<td>Type</td>
<td>Put</td>
</tr>
<tr>
<td>Cost</td>
<td>$0.021</td>
</tr>
</tbody>
</table>

- The payoff of an option occurs at the expiration (or maturity) of the option. At expiration, let the DM rate be denoted by DM_t. The payoff of a German mark put option is

$$
\text{Put Payoff} = \begin{cases}
K - DM_t, & \text{if } DM_t \leq K, \\
0, & \text{if } DM_t > K.
\end{cases}
$$

The payoff can be computed in a spreadsheet using the formula:

$$=\text{MAX}(K - DM_t, 0) \text{ or } =\text{IF}(K - DM_t > 0, K - DM_t, 0).$$

German Mark Put Options (continued)

- The DM rate in one year is DM_t, in units of $$/DM. The payoff of a German mark put option is

$$
\text{Put Payoff} = \begin{cases}
K - DM_t, & \text{if } DM_t \leq K, \\
0, & \text{if } DM_t > K.
\end{cases}
$$

- Purchasing a put option is like buying insurance in case the DM rate declines below K.

Example 1. The current DM rate is 0.6418 $$/DM. An investor buys a put option with a strike of $K = 0.635$. Suppose that the mark depreciates in one year to $DM_t = 0.600$. Then the option will have a payoff of $0.035 = (0.635 - 0.600)$.

Example 2. Continuing the previous example, suppose instead that the mark depreciates in one year to $DM_t = 0.500$. Then the option will have a payoff of 0.135.

Example 3. Suppose instead that the mark appreciates in one year to $DM_t = 0.6580$. Then the option will have a payoff of 0.

A Model for the Deutschemark Rate

- A model for the German mark rate can be estimated using historical data:

<table>
<thead>
<tr>
<th>Year</th>
<th>DM Rate ($/DM)</th>
<th>DM Return (in %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.4675</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.4418</td>
<td>-5.50</td>
</tr>
<tr>
<td>3</td>
<td>0.5433</td>
<td>22.97</td>
</tr>
<tr>
<td>4</td>
<td>0.5645</td>
<td>3.90</td>
</tr>
<tr>
<td>5</td>
<td>0.5286</td>
<td>-6.36</td>
</tr>
<tr>
<td>6</td>
<td>0.5576</td>
<td>5.49</td>
</tr>
<tr>
<td>7</td>
<td>0.6194</td>
<td>11.08</td>
</tr>
<tr>
<td>8</td>
<td>0.6418</td>
<td>3.62</td>
</tr>
</tbody>
</table>

- The DM rates are converted to returns using:

\[\text{Rate}_t = \frac{\text{Rate}_{t+1} - 1}{\text{Rate}_t} \]

- The mean is just about 0%.

- The standard deviation of DM returns is 10.02% (we’ll use 10% in the model). The current DM rate is \(DM_0 = 0.6418 \). We model the DM rate one year from today, \(DM_1 \), by

\[DM_1 = DM_0 \times (1 + R_{DM}) \]

where \(R_{DM} \sim N(\mu = 0, \sigma = 0.10) \).

Combining the SF and DM Rate Models

- Now we have models for the Swiss franc and German mark rates. But we need one more important piece of information. How do these models relate to one another?

- We need to specify the correlation between the returns.

<table>
<thead>
<tr>
<th>Year</th>
<th>SF Rate ($/SF)</th>
<th>SF Return (in %)</th>
<th>DM Rate ($/DM)</th>
<th>DM Return (in %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.6006</td>
<td>0.4805</td>
<td>0.4418</td>
<td>-8.05</td>
</tr>
<tr>
<td>2</td>
<td>0.5453</td>
<td>-9.21</td>
<td>0.5286</td>
<td>-6.36</td>
</tr>
<tr>
<td>3</td>
<td>0.6706</td>
<td>22.98</td>
<td>0.5576</td>
<td>5.49</td>
</tr>
<tr>
<td>4</td>
<td>0.7019</td>
<td>4.67</td>
<td>0.6194</td>
<td>11.08</td>
</tr>
<tr>
<td>5</td>
<td>0.6357</td>
<td>-9.43</td>
<td>0.6418</td>
<td>-3.62</td>
</tr>
<tr>
<td>6</td>
<td>0.7034</td>
<td>10.65</td>
<td>0.6194</td>
<td>11.08</td>
</tr>
<tr>
<td>7</td>
<td>0.7830</td>
<td>11.32</td>
<td>0.6418</td>
<td>-3.62</td>
</tr>
<tr>
<td>8</td>
<td>0.7465</td>
<td>-4.66</td>
<td>0.6418</td>
<td>-3.62</td>
</tr>
</tbody>
</table>

The correlation between the SF and DM returns is 94.5% (we’ll use a correlation of 95% in the model). The correlation can be computed in a spreadsheet using the =CORREL() function.
Historical FX Rates

- The figure below shows FX rates for the Canadian dollar, Australian dollar, and Japanese yen. The rates are scaled to 100 at the beginning of the series.

- Notice the low volatility of the Canadian dollar. The correlation between Australian dollar returns and Japanese yen returns is quite low.

Historical FX Rates (continued)

- The figure below shows FX rates for the German mark, Swiss franc, and Italian lira. The rates are scaled to 100 at the beginning of the series.

- As one can see, the correlation between German mark returns and Swiss franc returns is very high.
Merck’s FX Risk Hedging Spreadsheet

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MERCK.XLS</td>
<td>Merck Hedging</td>
<td>Spreadsheet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Swiss franc</td>
<td>receivable in one</td>
<td>year (in billion SF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Current Swiss franc rate</td>
<td>0.7461 (in US$/SF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Current German mark rate</td>
<td>0.6419 (in US$/DM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Strike of one-year German mark put option</td>
<td>0.6350</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Strike of one-year German mark call option</td>
<td>0.0210 (in US$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Strike of one-year German mark call option</td>
<td>0.7500 (in billion)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>German mark/Swiss franc correlation</td>
<td>95%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Swiss franc volatility</td>
<td>11%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>German mark volatility</td>
<td>10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Return Price</td>
<td>SF Return Price</td>
<td>DM Return Price</td>
<td>Revenue in one year (hedged) (in billion US$)</td>
<td>Revenue in one year (unhedged) (in billion US$)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>SF</td>
<td>SF return</td>
<td>DM</td>
<td>SF</td>
<td>DM</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>DM</td>
<td>DM return</td>
<td>SF</td>
<td>DM</td>
<td>SF</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>SF return</td>
<td>SF return</td>
<td>DM return</td>
<td>SF return</td>
<td>DM return</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Revenue in one year (unhedged) (in billion US$)</td>
<td></td>
<td>Revenue in one year (hedged) (in billion US$)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cell D12: =E3*(1 + C12), i.e., $SF = SF_0 \times (1 + R_{SF})$.
Cell D13: =E4*(1 + C13), i.e., $DM = DM_0 \times (1 + R_{DM})$.
Cell E14: =MAX(E5 - D13, 0), i.e., $MAX(K - DM_0, 0)$
Cell E15: =E2*D12
Cell E16: =E15 + E7*(E14-E6)
Cell E16 is interpreted as
Hedged revenue = Unhedged Revenue + No. of Options*(Option payoff - Option cost).

Assumption cells, both normal with mean=0, std dev from E9 and E10, and correlation E8

Forecast cells

Defining Correlated Assumptions in Crystal Ball

To run this simulation, follow the usual steps to define assumption cell C12 (“SF Return”) to be
C12 ~ N(μ = 0, σ = Cell E9 = 0.11)
Then define assumption cell C13 (“DM Return”) to be
C13 ~ N(μ = 0, σ = Cell E10 = 0.10).
In the C13 assumption cell window, click on “Correlate” to bring up the correlation window:

Type =C12 in the “<Select Assumption>” window and type =E8 in the correlation window. Then click on “OK.”
Merck’s U.S. Dollar Risk Hedged

- Now define the forecast cells E15 (“Unhedged revenue”) and E16 (“Hedged revenue”).
- In the Crystal Ball “Run Preferences,” set the maximum number of trials to 500, the random number seed to 123, and for the sampling method choose “Latin Hypercube.”

- After running the simulation, move the right arrow in the “Hedged revenue” forecast window to 0.65 (= $650 million). The certainty window reads 3%, i.e., there is a 3% chance of a shortfall of $100 million or more. (The histogram was drawn using 25 bins.)

Comparison of Hedged and Unhedged Risk

- Here are some selected statistics from the “Unhedged revenue” and “Hedged revenue” forecast cells:

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Unhedged Revenue</th>
<th>Hedged Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trials</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Mean</td>
<td>0.7464</td>
<td>0.7474</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0.0824</td>
<td>0.0633</td>
</tr>
<tr>
<td>Skewness</td>
<td>-0.03</td>
<td>0.68</td>
</tr>
<tr>
<td>P(Revenue ≤ 0.65)</td>
<td>0.12</td>
<td>0.03</td>
</tr>
</tbody>
</table>

- The mean of the U.S. dollar revenue is essentially unchanged whether hedged or not.
- The standard deviation of the hedged revenue is reduced by about 25%; skewness increases significantly.
- The risk of a shortfall of $100 million or more is reduced from 12% (unhedged) to 3% (hedged).
Merck’s Monte Carlo Hedged Revenue Simulator

- The following schematic summarizes the major components of Merck’s financial-hedging simulator:

![Diagram of Merck’s Monte Carlo Hedged Revenue Simulator]

- Accounting issues are important because some financial positions qualify for “hedge accounting” where gains and losses are recorded differently than for other investments.

- Derivative-pricing models become necessary when, for example, the expiration of an option does not coincide with the hedging period.

Merck’s Risk Management System

- Merck’s financial-risk-management system allows them to examine the effects of various hedging strategies. With their system, they can easily compare:
 - Using out-of-the-money options, which are cheaper but offer less protection, or
 - Using forward contracts to lock-in future exchange rates today, versus
 - Not hedging (also called self-insurance)

For next class

- Don’t forget that the “Yield Management at American Airlines” case is due March 1st.