an introduction to R for epidemiologists
the basics

Charles DiMaggio, PhD, MPH, PA-C

New York University Departments of Surgery and Population Health
NYU-Bellevue Division of Trauma and Surgical Critical Care
550 First Avenue, New York, NY 10016

Spring 2015

http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/
Charles.DiMaggio@nyumc.org
Outline

1 about
 - Some things people are doing with R

2 installing

3 using
 - calculating, assigning, combining
 - from calculations to programming
 - packages

4 getting data into data

5 under the hood
 - how is R different from other programs?
 - workspaces and files
 - workspaces
 - help!
But first...

“THE BAD ARTISTS IMITATE, THE GREAT ARTISTS STEAL.”

PAUL PICASSO

BANKSY
Credit where credit is due...

- **Tomas Aragon, MD, DrPH**
 - Applied Epidemiology Using R
 - http://medepi.com/

- **John Fox, PhD**
 - An Introduction to Statistical Computing in R
 - http://socserv.mcmaster.ca/jfox/Courses/UCLA/index.html

- **Bill Venables, PhD**
 - An Introduction to R
 - cran.r-project.org/doc/manuals/R-intro.pdf

- **Phil Spector, PhD**
 - Data Manipulation with R
Outline

1. about
 - Some things people are doing with R

2. installing

3. using
 - calculating, assigning, combining
 - from calculations to programming
 - packages

4. getting data into data

5. under the hood
 - how is R different from other programs?
 - workspaces and files
 - workspaces
 - help!
I 💚 R!
what is R?

A flexible, scalable, **free** tool for the description, analysis, visual display, exploration and interpretation of data.

- a calculator
- a suite of statistical tools
- a graphics creator
- a programming language
- a simulation lab
- a means of scientific documentation and discourse

It is uniquely suited to epidemiological analysis.
Making stunning graphics
Paul Butler
Predicting Elections
Andrew Gelman, "Red State, Blue State, Rich State, Poor State"
Crawling and Scraping the Web
John Muschelli, Andrew Jaffe, Jeffrey Leek. Simply Statistics Blog

Charles DiMaggio, PhD, MPH, PA-C (New Y
Some things people are doing with R

Making Money

Charles DiMaggio, PhD, MPH, PA-C (New York University Departments of Surgery and Population Health NYU-Bellevue Division of Trauma and Surgical Critical Care 550 First Avenue, New York, NY 10016)
Publishing Newspapers
New York Times is an R Shop

The 1% Next Door
A household must earn more than $380,000 to rank in the top 1% of all American households. But to be in the top 1 percent in Las Vegas, Nev., a household needs to earn much less — $229,000.

Amount a household must earn annually to be in the top 1% of a given metropolitan area

- $126,000
- $266,000
- $386,000
- $486,000
- $586,000

Charles DiMaggio, PhD, MPH, PA-C (New York University Departments of Surgery and Population Health NYU-Bellevue Division of Trauma and Surgical Critical Care 550 First Avenue, New York, NY 10016)
Doing Science

Developed by Scientists for Scientists
so, why learn R?

Many options for epidemiological computing: SAS, STATA, SPSS, Mathematica, Excel....

But, if you want to ...

- accomplish many tasks with a single tool
- better understand the methods you use
- use methods not available in any other program
- develop and share your own methods
- collaborate with wide community of scientific colleagues

...R might be for you.

and did I mention it’s free?
what R is not

- a GUI experience
- initially easy and intuitive
- warrantied in any way (if it runs, it can be on CRAN)
- a DBMS
- (traditionally) well suited to enormous data sets (but that is changing...)

 - historical 32-bit limit \((2^{31} - 1)\) on size of a vector
 - in R, objects like matrices are actually vectors
 - R stores everything in RAM
 - old rule of thumb: 100,000 rows, 20 variables (very conservative), single object 10% of RAM, etc...
 - but, things have changed

 - 64 bit computing, increased RAM
 - interest in 'big data' in R
 - http://www.cybaea.net/Blogs/Data/Big-data-for-R.html
 - packages like optimize read.csv, ff, bigmemory, data.table, rsqlite, python take advantage of ”parallellism” (Hadoop, MapReduce)
how to install R

1. go to http://www.r-project.org/
2. select CRAN (Comprehensive R Archive Network) from left menu
3. link to nearby geographic site (e.g., http://software.rc.fas.harvard.edu/mirrors/R/)
4. select your operating system
5. chose ”Base” installation
6. save R-X.X.X-win32.exe (windows) or R-X.X.X-mini.dmg (Mac OS X)
7. run the installation program accepting defaults
1 about
 - Some things people are doing with R

2 installing

3 using
 - calculating, assigning, combining
 - from calculations to programming
 - packages

4 getting data into data

5 under the hood
 - how is R different from other programs?
 - workspaces and files
 - workspaces
 - help!
R is a calculator

Math Operators and Functions

- Arithmetic: `+`, `-`, `*`, `/`
- Power: `^`

Convert 68 degrees Fahrenheit to Celsius: \(C^0 = \frac{5}{9}(F^0 - 32) \)

\[\frac{5}{9} \times (68 - 32) \]
assignment operator

‘memory’ key

```r
y <- 5^3  #assignment (no display )
y
(y <- 5^3) #assignment (display)
```
concatenation function
combine or "vectorize"

\[
x <- c(1,2,3,4,5)
x
y<-c("a", "b", "c", "d")
y
\]
functions

R "apps"

math operators and functions

mathematical functions - sqrt, log, exp, sin, cos, tan
simple functions - max, min, length, sum, mean, var, sort

abs(-23) # absolute value
exp(8) # exponentiation
log(exp(8)) # natural logarithm
sqrt(64) # square root
YOUR TURN
create a vector object called "my.numbers" that consists of the numbers 2, 4, 6 and 8.
what is the square root of the sum of "my.numbers"?
about R functions
and their arguments

- function name without parentheses returns source code
 - useful if want to write own code or functions
- `args(function)` returns brief argument syntax
- some arguments have default values
 - if entered in correct order need not be named

```r
args(sample)
data<-1:30
sample(s = 18, x = data, r = T)
  # with replacement (spell enough to identify)
sample(s = sample(1:100, 1), x = sample(1:10, 5), r=T)
  # arg any valid R expression
```
write your own function
R is a programming language

my.function<-function(x){
5/9*(x-32)
}
my.function(68)
[1] 20

a<-c(134,156,222)
my.function(a)
[1] 56.66667 68.88889 105.55556
base R comes with many handy statistical functions

Summary Statistics
- `summary()`, `fivenum()`, `stem()` - examine the distribution of a data set
- `qqnorm()`, `qqline()` - normal plots
- `boxplots()` (a, b)

Test Statistics
- `t.test()` 2-sample t test, (a, b),
 - R does not by default assume equality of variances, (can use an F test to examine this assumption)
 - `var.test()` returns an F test, (a,b)
- `wilcox.test()` returns a two-sample non-parametric Wilcoxon (aka Mann-Whitney) or one-sample Wilcoxon (specify “paired=TRUE”) test
Some statistics with R

```r
myDat<-data.frame(cbind(outcome1=rnorm(1000,20,5),
                      outcome2=rpois(1000,5),
                      grp=factor(sample(c("a","b","c"), 1000, replace=T))))

summary(myDat$outcome1)
fivenum(myDat$outcome1)
stem(myDat$outcome1)

boxplot(myDat)
boxplot(outcome1~grp, data=myDat)

myDat2<-cbind(rnorm(1000,20,5), rpois(1000,5))
boxplot(myDat2)

qqnorm(myDat$outcome1)
qqline(myDat$outcome1)

t.test(myDat$outcome1, myDat$outcome2)
wilcox.test(myDat$outcome1, myDat$outcome2)
wilcox.test(myDat$outcome1, myDat$outcome2, paired=T)
```
YOUR TURN
run the following code to create a small data set:
```r
crashDat<-data.frame(age=rnorm(n=100,mean=22, sd=2),
crash=sample(x=c(0,1),size=100,replace=T, prob=c(.2,.8)))
```

what is the mean age

create a box plot comparing age by crash status
Outline

1. about
 - Some things people are doing with R

2. installing

3. using
 - calculating, assigning, combining
 - from calculations to programming
 - packages

4. getting data into data

5. under the hood
 - how is R different from other programs?
 - workspaces and files
 - workspaces
 - help!
collections of user-written functions

install.package("my.package") - copies the package from CRAN to your installation of R

library(my.package) - brings the package into RAM so you can use it

is jello associated with diarrhea?
library(epitools) # load 'epitools' package
data(oswego) # load Oswego dataset
names(oswego) # get some info
epitab(oswego$jello, oswego$ill) # use epitab for RR

"pretty" up the results (everything is an object)
round(epitab(oswego$jello, oswego$ill, method = "riskratio")$tab, 3)

same function, different method for OR
with(oswego, round(epitab(jello, ill, method = "oddsratio")$tab, 3))
1 about
 ● Some things people are doing with R

2 installing

3 using
 ● calculating, assigning, combining
 ● from calculations to programming
 ● packages

4 getting data into data

5 under the hood
 ● how is R different from other programs?
 ● workspaces and files
 ● workspaces
 ● help!
the scan() and cbind() functions

R as a spreadsheet

```r
weight <- scan()
1: 134 156 222
4:
Read 3 items
height <- scan()
  1: 60 63 72
  4: Read 3 items
bmi <- (weight*703)/height^2
cbind(weight, height, bmi)
weight height bmi
[1,] 134 60 26.16722
[2,] 156 63 27.63114
[3,] 222 72 30.10532

NB: to scan in character variables use scan( , what = "")
```
getting "real" data into R
"there's a function for that"

- `read.table()` is how you get data into R
- optimized version `read.csv()` even better

cars<-read.table("http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/resources/R/cars.txt", header=T, stringsAsFactors=F)
dig<-read.csv("http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/resources/R/dig.csv", header=T, stringsAsFactors=F) #digitalis data
str(dig)
table(dig$TRTMT,dig$DEATH)
YOUR TURN
 - DIRE → epidemiology → R
- click to download the data file called "sparcs" to your machine
- read the file into R using read.csv()
 - remember to save the dataframe to a named object
- what is the mean age?
- how many males are in county "59" (Brooklyn)?
Outline

1 about
 - Some things people are doing with R

2 installing

3 using
 - calculating, assigning, combining
 - from calculations to programming
 - packages

4 getting data into data

5 under the hood
 - how is R different from other programs?
 - workspaces and files
 - workspaces
 - help!
about data and procedures

- folks come to R from programs like SAS, SPSS and (gasp) Excel
- *data manipulation* steps or procs are followed by *analytic* steps or procs
- these two activities are fairly-well demarcated and differentiated
- data are mutable, procs are immutable
R is different
functional programming, and R objects

- functional programming - data are immutable, functions return new ”objects”
 - could be data, could be something else, e.g. a regression object, a table object
 - you only see minimal information about the new object on your screen
 - you can save the results of a function as a new object

- everything in R (including functions) is an object
 - some objects you will learn about: vectors, matrices, arrays, lists, dataframes
 - objects have ”characteristics” that determine how they ”behave”
practical implications

- same function will return different results depending on the argument object type
 - e.g. plot(numeric.data) returns scatterplot, plot(sp.class.data) returns a map
- you can (and often must) supply a function as an argument to another function
 - e.g. plot(table(a,b))
- you will write a lot of parentheses
- "magrittr" allows pipeline of operations

```r
plot %>%
  table(a,b)
```
Outline

1 about
 - Some things people are doing with R

2 installing

3 using
 - calculating, assigning, combining
 - from calculations to programming
 - packages

4 getting data into data

5 under the hood
 - how is R different from other programs?
 - workspaces and files
 - workspaces
 - help!

Charles DiMaggio, PhD, MPH, PA-C (New York University Departments of Surgery and Population Health NYU-Bellevue Division of Trauma and Surgical Critical Care 550 First Avenue, New York, NY 10016)
your workspace
and how to work in it

- R session stores objects, data etc … in a .RData file
 - at end of session will be prompted to ”save workspace”
 - you may or may not want to
 - do save your source document (we’ll discuss)

- `getwd()` to find location current workspace
- `setwd()` to set it
- `ls()` or `objects()` to list current objects in workspace
- `rm()` to remove objects
- `save.image()` to save current space
- `save()` more control
- `load()` place .RData file back into workspace
- `q()` - quit
objects in your workspace
identifying, assessing, removing

- `ls()` / `objects()` - view the objects in the current workspace, pattern = search for object names that contain phrase
eg `ls(pattern = "dat")`

- `rm()` / `remove()` - remove workspace objects
eg `rm(dat, dat2, dat3, dat4)`
 CAUTION - `rm(list = ls())` will remove everything

- `str()` / `mode()` / `class()` - "go to" functions to assess objects

- `data()` - displays available data sets

 data(Titanic)

 Titanic
 `str(Titanic)`
Outline

1 about
 - Some things people are doing with R

2 installing

3 using
 - calculating, assigning, combining
 - from calculations to programming
 - packages

4 getting data into data

5 under the hood
 - how is R different from other programs?
 - workspaces and files
 - workspaces
 - help!
getting help

online community (http://r.789695.n4.nabble.com/), tutorials (http://www.ats.ucla.edu/stat/r/), search sites (http://www.r-project.org/search.html), books by folks like Venebles and Aragon, and built-in help:

- `help()` opens help page
- `apropos()` displays all objects matching topic
- `library(help=packageName)` help on a specific package
- `example(); demo()`
- `vignette(package="packageName"); vignette(package="topic")`
- `RSiteSearch("packageName")`

```r
help(sample); ?sample; ??sample
apropos("sam")
example(sample)
demo(graphics)
```