Analysis of Algorithms
Algorithms are Everywhere

Examples

- Maps
- Fedex
- Biology
- Physics
- Computer Operating Systems
- Car Engines
- Space Shuttle
- ...

Why is this the right time to study algorithms?

- Mathematical understanding
- Fast computers
- Ability to get algorithm implementations to users
- Good interfaces
What do we study in this class

- Given a problem, we find the right algorithm
- We use math
- We prove that our work is right
- We keep an eye on practice/implementation, but our goal is to solve the clean well-defined problem.
First problem to consider: Matrix Multiplication

\[C = A \cdot B \]

\[
\begin{bmatrix}
3 & 1 & 1 \\
2 & 0 & 3 \\
\end{bmatrix}
\begin{bmatrix}
1 & 6 \\
2 & 0 \\
1 & 2 \\
\end{bmatrix} =
\begin{bmatrix}
6 & 20 \\
5 & 18 \\
\end{bmatrix}
\]
Algorithm for Matrix Multiplication

\[C = A \cdot B \]

\[
\begin{bmatrix}
3 & 1 & 1 \\
2 & 0 & 3 \\
\end{bmatrix}
\begin{bmatrix}
1 & 6 \\
2 & 0 \\
1 & 2 \\
\end{bmatrix}
=
\begin{bmatrix}
6 & 20 \\
5 & 18 \\
\end{bmatrix}
\]

Write pseudocode

1 // input: A, an \(n \times m \) matrix and B, an \(m \times p \) matrix
2 // output: C, an \(n \times p \) matrix
3 for \(i = 1 \) to \(n \)
4 \hspace{1em} for \(j = 1 \) to \(p \)
5 \hspace{2em} \(C[i,j] = 0 \)
6 \hspace{1em} for \(k = 1 \) to \(m \)
7 \hspace{2em} \(C[i,j] = A[i,k] \cdot B[k,j] \)
Analysis

1 // input: A, an \(n \times m \) matrix and B, an \(m \times p \) matrix
2 // output: C, an \(n \times \) matrix
3 for \(i = 1 \) to \(n \)
4 for \(j = 1 \) to \(p \)
5 \(C[i, j] = 0 \)
6 for \(k = 1 \) to \(m \)
7 \(C[i, j] += A[i, k] \cdot B[k, j] \)

Running time

- 3 nested loops
- \(O(nmp) \) time
- if \(n = m = p \), then \(O(n^3) \) time
- Lower bound of \(\Omega(n^2) \)
Can we do better?

- We are implementing the standard algorithm efficiently, what else could we do?
- You have to do n^3 operation, each of n^2 entries of C, involves adding up the result of n multiplications.
Can we do better?

• We are implementing the standard algorithm efficiently, what else could we do?

• You have to do n^3 operatation, each of n^2 entries of C, involves adding up the result of n multipications.

Maybe divide and conquer can help

\[
\begin{pmatrix}
 a & b \\
 c & d
\end{pmatrix}
\begin{pmatrix}
 e & g \\
 f & h
\end{pmatrix} =
\begin{pmatrix}
 r & s \\
 t & u
\end{pmatrix}
\]

\begin{align*}
 r &= ae + bf \\
 s &= ag + bh \\
 t &= ce + df \\
 u &= cg + dh
\end{align*}
Maybe divide and conquer can help

\[
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix}
\begin{bmatrix}
 e & g \\
 f & h
\end{bmatrix} =
\begin{bmatrix}
 r & s \\
 t & u
\end{bmatrix}
\]

\[
\begin{align*}
 r &= ae + bf & (5) \\
 s &= ag + bh & (6) \\
 t &= ce + df & (7) \\
 u &= cg + dh & (8)
\end{align*}
\]

Multiply 2 $n \times n$ matrices takes

- 8 multiplications of $n/2 \times n/2$ matrices
- 4 additions of $n/2 \times n/2$ matrices

- Adding two $n \times n$ matrices takes $O(n^2)$ time
- Adding matrices seems easier than multiplying them
Let $T(n)$ be the time to multiply 2^n by n matrices.

$$T(n) = \begin{cases}
8T(n/2) + 4(n/2)^2, & \text{if } n > 1 \\
1, & \text{if } n = 1
\end{cases}$$
Let’s Analyze

Let $T(n)$ be the time to multiply 2^n by n matrices

$$T(n) = \begin{cases}
8T(n/2) + 4(n/2)^2 & \text{if } n > 1 \\
1 & \text{if } n = 1
\end{cases}$$

As we will learn, this solves to $O(n^3)$.

But consider the following recurrence

$$T(n) = \begin{cases}
7T(n/2) + 18(n/2)^2 & \text{if } n > 1 \\
1 & \text{if } n = 1
\end{cases}$$

As we will learn, this solves to $O(n^{\log_2 7}) = O(n^{2.81})$.

But can we multiply $2^n \times n$ matrices by doing 7 multiplications of $n/2 \times n/2$ matrices and 18 additions of $n/2 \times n/2$ matrices.
Strassen’s Algorithm

To Compute

\[r = ae + bf \] \hspace{1cm} (9) \\
\[s = ag + bh \] \hspace{1cm} (10) \\
\[t = ce + df \] \hspace{1cm} (11) \\
\[u = cg + dh \] \hspace{1cm} (12)

Calculations

\[P_1 = a(g - h) = ag - ah \] \\
\[P_2 = (a + b)h = ah + bh \] \\
\[s = P_1 + P_2 \]

\[P_3 = (c + d)e = ce + de \] \\
\[P_4 = d(f - e) = df - de \] \\
\[t = P_3 + P_4 \]

\[P_5 = (a + d)(e + h) = ae + ah + de + dh \] \\
\[P_6 = (b - d)(h + f) = -dh - df + bh + bf \] \\
\[r = P_5 + P_6 - P_2 + P_4 \]

\[P_7 = (a - c)(e + g) = ae + ag - ce - cg \] \\
\[u = P_5 + P_1 - P_3 - P_7 \]
Course Logistics
Another Problem

Investing for someone who knows the Future: You are given the prices of a stock for each of the next n days. You can buy once and sell once and you want to maximize your profit.

Example

<table>
<thead>
<tr>
<th>Day</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>70</td>
<td>90</td>
<td>40</td>
<td>27</td>
<td>69</td>
<td>80</td>
<td>13</td>
<td>50</td>
<td>35</td>
<td>75</td>
<td>51</td>
<td>53</td>
<td>56</td>
<td>10</td>
<td>15</td>
<td>41</td>
</tr>
</tbody>
</table>

Questions:

- How long does the naive algorithm take?
- Can we improve this with divide and conquer?