Quicksort

Quicksort(A, p, r)

1. if $p < r$
2. then $q \leftarrow$ Partition(A, p, r)
3. Quicksort($A, p, q - 1$)
4. Quicksort($A, q + 1, r$)

Partition(A, p, r)

1. $y \leftarrow$ Random(p, r)
2. Exchange $A[y]$ and $A[r]$
3. $x \leftarrow A[r]$
4. $i \leftarrow p - 1$
5. for $j \leftarrow p$ to $r - 1$
6. do if $A[j] \leq x$
7. then $i \leftarrow i + 1$
8. exchange $A[i] \leftrightarrow A[j]$
9. exchange $A[i + 1] \leftrightarrow A[r]$
10. return $i + 1$
Partition Loop Invariant

Partition(A, p, r)

1. $y \leftarrow \text{RANDOM}(p, r)$
2. Exchange $A[y]$ and $A[r]$
3. $x \leftarrow A[r]$
4. $i \leftarrow p - 1$
5. for $j \leftarrow p$ to $r - 1$
6. do if $A[j] \leq x$
7. then $i \leftarrow i + 1$
8. exchange $A[i] \leftrightarrow A[j]$
9. exchange $A[i + 1] \leftrightarrow A[r]$
10. return $i + 1$

Loop Invariant At the beginning of each iteration of the for loop in Partition
1. $A[p \ldots i] \leq x$
2. $A[i + 1 \ldots j - 1] > x$
3. $A[j \ldots r - 1]$ is unexamined
4. $A[r] = x$
Quicksort Analysis

- \(T(n) \) is the expected running time of quicksort
- Partition takes \(O(n) \) time.
- If partition is \(x \) th smallest, then

\[
T(n) = T(x) + T(n - x) + O(n)
\]
Quicksort Analysis

- \(T(n) \) is the expected running time of quicksort
- Partition takes \(O(n) \) time.
- If partition is \(x \) th smallest, then

\[
T(n) = T(x) + T(n - x) + O(n)
\]

For intuition consider cases:

- \(x = n/2 \)
- \(x = n/10 \)
- \(x = 1 \)
Cases

\[T(n) = T(x) + T(n-x) + O(n) \]

1: \(x = n/2 \)

\[
T(n) = T(n/2) + T(n/2) + O(n) \\
= 2T(n/2) + O(n) \\
= O(n \log n)
\]

2: \(x = n/10 \)

\[
T(n) = T(n/10) + T(9n/10) + O(n) \\
= O(n \log n)
\]

3: \(x = 1 \)

\[
T(n) = T(1) + T(n-1) + O(n) \\
= T(n-1) + O(n) \\
= O(n^2)
\]

What might this make us guess the answer is?
Following the Selection Analysis

\[T(n) = \sum_{i=1}^{n} \frac{1}{n} (T(i) + T(n-i) + O(n)) \]

could continue as in Selection.
We will count comparisons of data elements.

Claim 1: The running time is dominated by comparison of data items.

Claim 2: All comparisons are in line 6 of \textsc{Partition}, and compare some item $A[j]$ to the pivot element.

Claim 3: Once an element is chosen as a pivot, it is never compared to any other element again.

Claim 4: Each pair of elements is compared to each other at most once.

Analysis:

Let the data be renamed Z_1, \ldots, Z_n in sorted order.

Use Z_{ij} to denote $Z_i, Z_{i+1}, \ldots, Z_j$.

Let X_{ij} be the indicator random variable for the comparison of Z_i to Z_j.

Let X be the random variable counting the number of comparisons.

By claim 4, we have

$$X = \sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{ij}$$
Analysis

\[X = \sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{ij} \]

Taking expectations

\[
E[X] = E\left[\sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{ij} \right] \\
= \sum_{i=1}^{n} \sum_{j=i+1}^{n} E[X_{ij}] \quad \text{linearity of expectation} \\
= \sum_{i=1}^{n} \sum_{j=i+1}^{n} Pr(Z_i \text{ is compared to } Z_j)
\]
What is the probability that Z_i is compared to Z_j?

When is Z_i compared to Z_j?

- When either Z_i or Z_j is chosen as a pivot, and the other one is still in the same recursive problem.
What is the probability that Z_i is compared to Z_j?

When is Z_i compared to Z_j?

- When either Z_i or Z_j is chosen as a pivot, and the other one is still in the same recursive problem.
- Equivalently, when either Z_i or Z_j is the first element from Z_{ij} to be chosen as a pivot.
- What is the probability that Z_i or Z_j is the first element from Z_{ij} to be chosen as a pivot?
What is the probability that Z_i is compared to Z_j?

When is Z_i compared to Z_j?

- When either Z_i or Z_j is chosen as a pivot, and the other one is still in the same recursive problem.
- Equivalently, when either Z_i or Z_j is the first element from Z_{ij} to be chosen as a pivot.
- What is the probability that Z_i or Z_j is the first element from Z_{ij} to be chosen as a pivot?
 - Z_{ij} has $j - i + 1$ elements.
 - Pivots are always chosen uniformly at random.
 - $Pr(Z_i \text{ is compared to } Z_j) = \frac{2}{j - i + 1}$
Finishing analysis

\[E[X] = E[\sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{ij}] \]

\[= \sum_{i=1}^{n} \sum_{j=i+1}^{n} E[X_{ij}] \quad \text{linearity of expectation} \]

\[= \sum_{i=1}^{n} \sum_{j=i+1}^{n} Pr(Z_i \text{ is compared to } Z_j) \]

\[= \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{j - i + 1} \]

make the transformation of variables \(k = j - 1 + 1 \)

\[= \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{j - i + 1} \]

\[= \sum_{i=1}^{n} \sum_{k=2}^{n-i+1} \frac{2}{k} \]

\[\leq 2 \sum_{i=1}^{n} \ln(n - i + 1) \]

\[\leq 2 \sum_{i=1}^{n} \ln(n) \]

\[= O(n \log n) \]