Randomization in Algorithms

- Randomization is a tool for designing good algorithms.
- Two kinds of algorithms
 - **Las Vegas** - always correct, running time is random.
 - **Monte Carlo** - may return incorrect answers, but running time is deterministic.
Hiring Problem

\textit{Hire} − \textit{Assistant}(n)

1. $best \leftarrow 0$ \hspace{1cm} \triangleright \text{candidate 0 is a least-qualified dummy candidate}
2. \textbf{for } $i \leftarrow 1$ \textbf{to } n
3. \hspace{1cm} \textbf{do} interview candidate i
4. \hspace{1cm} \textbf{if} candidate i is better than candidate $best$
5. \hspace{1cm} \hspace{1cm} \textbf{then} $best \leftarrow i$
6. \hspace{1cm} \hspace{1cm} hire candidate i

How many times is a new person hired?
A random variable X takes on values from some set, each with a certain probability.

Expected value: $E[X] = \sum_{\text{values}} x \Pr(X = x) \cdot x$

Example: rolling a die.
Expected number of hirings

- Assume that all orderings of candidates are equally likely.
- \(n! \) orderings, \(\pi_1, \pi_2, \ldots, \pi_n! \)
- \(H \) is the total number of hirings.
- \(h(\pi_i) \) is the number of hirings for permutation \(\pi_i \).

\[
E[H] = \sum_{\pi_i} \frac{1}{n!} h(\pi_i)
\]

How do we compute \(E[H] \)?
Indicator random variables

- Let A be an event.
- The indicator variable $I\{A\}$ is defined by:

$$I\{A\} = \begin{cases}
1 & \text{if } A \text{ occurs}, \\
0 & \text{if } A \text{ does not occur}.
\end{cases} \quad (1)$$

What is the expected number of heads when I flip a coin?
- Let Y be a random variable that denotes heads or tails.
- Let X_H be the i.r.v. that counts the number of heads.

$$X_H = I\{Y \text{ is heads}\} = \begin{cases}
1 & \text{if } Y \text{ is heads} \\
0 & \text{otherwise}
\end{cases}$$

$$E[X_H] = \Pr(X_H = 1) \cdot 1 + \Pr(X_H = 0) \cdot 0$$

$$= \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 0$$

$$= \frac{1}{2}$$
Linearity of Expectation

Let X and Y be two random variables

$E[X + Y] = E[X] + E[Y]$

Linearity of expectation holds even if X and Y are dependent.
n coin flips

- What is $E[\text{number of heads}]$ when you flip n coins.
- Different events are:
 - 0 heads
 - 1 head
 - 2 heads
 - 3 heads
 - ...

\[
E[\text{number of heads}] = \sum_{i=0}^{n} \Pr(\ i \ \text{heads in} \ n \ \text{flips}) \cdot i
\]

- Complicated calculation
- Is there another way?
Use indicator random variables

- Divide events not by number of heads overall, but by heads in ith flip.
- Let X_i be the indicator random variable associated with the event in which the ith flip comes up heads:
 $$X_i = I\{\text{the } i\text{th flip results in the event } H\}.$$
- Let X be the random variable denoting the total number of heads in the n coin flips
 $$X = \Sigma_{i=1}^{n} X_i.$$
- We take the expectation of both sides $E[X] = E[\Sigma_{i=1}^{n} X_i].$

$$E[X] = E[\Sigma_{i=1}^{n} X_i]$$
$$= \Sigma_{i=1}^{n} E[X_i]$$
$$= \Sigma_{i=1}^{n} 1/2$$
$$= n/2.$$
Hiring

• Divide events not by number of hires overall, but by hires in \(i \)th flip.
• Let \(X_i \) be the indicator random variable associated with the event in which the \(i \)th person is hired.
• \(X_i = I\{ \text{the } i \text{th person is hired} \} \).
• Let \(X \) be the random variable denoting the total number of people hired.
• \(X = \sum_{i=1}^{n} X_i \).
• We take the expectation of both sides \(E[X] = E[\sum_{i=1}^{n} X_i] \).

\[
E[X] = E[\sum_{i=1}^{n} X_i] \\
= \sum_{i=1}^{n} E[X_i] \\
= \sum_{i=1}^{n} \Pr(X_i = 1)
\]

What is \(\Pr(X_i = 1) \)?
What is \(\Pr(X_j = 1) \), the probability that we hire on the \(j \) th day?

\[
\Pr(X_1 = 1) = ??
\]
Analysis

What is \(\Pr(X_j = 1) \), the probability that we hire on the \(j \) th day?

\[
\Pr(X_1 = 1) = 1 \\
\Pr(X_2 = 1) = ??
\]
Analysis

What is \(\Pr(X_j = 1) \), the probability that we hire on the \(j \) th day?

\[
\Pr(X_1 = 1) = 1
\]

\[
\Pr(X_2 = 1) = 1/2
\]

\[
\Pr(X_j = 1) = \text{??}
\]
Analysis

What is $\Pr(X_j = 1)$, the probability that we hire on the jth day?

$\Pr(X_1 = 1) = 1$

$\Pr(X_2 = 1) = 1/2$

$\Pr(X_j = 1) = 1/j$

\[
E[X] = E\left[\sum_{i=1}^{n} X_i\right] \\
= \sum_{i=1}^{n} E[X_i] \\
= \sum_{i=1}^{n} \Pr(X_i = 1) \\
= \sum_{i=1}^{n} \frac{1}{i} \\
\approx \ln n
\]
Randomized algorithms vs. Probabilistic Analysis

- We have assumed that the candidates come in a random order.
- Can we remove this assumption?
Randomized algorithms vs. Probabilistic Analysis

- We have assumed that the candidates come in a random order.
- Can we remove this assumption?

Randomize the algorithm:

- Force the candidates to come in a random order by randomly permuting the data, before we start.
- We have now eliminated an adversarial-chosen bad case, the only bad case is to be extremely unlucky in our coin flips.
Case of Sorting

Scenario Imagine a sorting algorithm whose bad case is when the data comes in reverse sorted order.

- **Data is “random”:** Bad case is reverse sorted order.
- **Algorithm is random:** some set of coin flips that occur with probability \(\frac{1}{n!} \) makes the algorithm slow
Producing a Uniform Random Permutation

Def: A uniform random permutation is one in which each of the \(n! \) possible permutations are equally likely.

RANDOMIZE-IN-PLACE(A)

1. \(n \leftarrow \text{length}[A] \)
2. for \(i \leftarrow 1 \) to \(n \)
3. do swap \(A[i] \leftrightarrow A[\text{RANDOM}(i, n)] \)

Lemma Procedure **RANDOMIZE-IN-PLACE** computes a uniform random permutation.

Def Given a set of \(n \) elements, a \(k \)-permutation is a sequence containing \(k \) of the \(n \) elements.

There are \(n!/(n-k)! \) possible \(k \)-permutations of \(n \) elements.
Proof via Loop invariant

We use the following loop invariant:

Just prior to the ith iteration of the for loop of lines 2–3, for each possible $(i-1)$-permutation, the subarray $A[1..i-1]$ contains this $(i-1)$-permutation with probability $\frac{(n-i+1)!}{n!}$.
Initialization

Randomize-In-Place(A)

1. \(n \leftarrow \text{length}[A] \)
2. for \(i \leftarrow 1 \) to \(n \)
3. do swap \(A[i] \leftrightarrow A[\text{Random}(i, n)] \)

Just prior to the \(i \)th iteration of the for loop of lines 2–3, for each possible \((i-1)\)-permutation, the subarray \(A[1..i-1] \) contains this \((i-1)\)-permutation with probability \((n - i + 1)!/n!\).

Initialization Consider the situation just before the first loop iteration, so that \(i = 1 \). The loop invariant says that for each possible 0-permutation, the subarray \(A[1..0] \) contains this 0-permutation with probability \((n - 1)!/n! = n!/n! = 1\). The subarray \(A[1..0] \) is an empty subarray, and a 0-permutation has no elements. Thus, \(A[1..0] \) contains any 0-permutation with probability 1, and the loop invariant holds prior to the first iteration.
Maintenance

Randomize-In-Place(A)

1. \(n \leftarrow \text{length}[A] \)
2. \(\text{for } i \leftarrow 1 \text{ to } n \)
3. \(\text{do swap } A[i] \leftrightarrow A[\text{Random}(i, n)] \)

Just prior to the \(i \)th iteration of the for loop of lines 2–3, for each possible \((i-1)\)-permutation, the subarray \(A[1..i-1] \) contains this \((i-1)\)-permutation with probability \((n - i + 1)!/n! \).

Maintenance We assume that just before the \((i-1)\)st iteration, each possible \((i-1)\)-permutation appears in the subarray \(A[1..i-1] \) with probability \((n - i + 1)!/n! \), and we will show that after the \(i \)th iteration, each possible \(i \)-permutation appears in the subarray \(A[1..i] \) with probability \((n - i)!/n! \). Incrementing \(i \) for the next iteration will then maintain the loop invariant.
Let us examine the ith iteration. Consider a particular i-permutation, and denote the elements in it by $< x_1, x_2, \ldots, x_i >$. This permutation consists of an $(i - 1)$-permutation $< x_1, \ldots, x_{i-1} >$ followed by the value x_i that the algorithm places in $A[i]$. Let E_1 denote the event in which the first $i - 1$ iterations have created the particular $(i - 1)$-permutation $< x_1, \ldots, x_{i-1} >$ in $A[1..i-1]$. By the loop invariant, $\Pr(E_1) = (n - i + 1)/n!$. Let E_2 be the event that ith iteration puts x_i in position $A[i]$. The i-permutation $< x_1, \ldots, x_i >$ is formed in $A[1..i]$ precisely when both E_1 and E_2 occur, and so we wish to compute $\Pr(E_2 \cap E_1)$. Using equation ??, we have

$$
\Pr(E_2 \cap E_1) = \Pr(E_2 \mid E_1) \Pr(E_1).
$$

The probability $\Pr(E_2 \mid E_1)$ equals $1/(n - i + 1)$ because in line 3 the algorithm chooses x_i randomly from the $n - i + 1$ values in positions $A[i..n]$. Thus, we have

$$
\Pr(E_2 \cap E_1) = \Pr(E_2 \mid E_1) \Pr(E_1) \\
= \frac{1}{n - i + 1} \cdot \frac{(n - i + 1)!}{n!} \\
= \frac{1}{n - i + 1} \cdot \frac{(n - i)!}{n!} \\
= \frac{1}{n!}.
$$
Termination

Randomize-In-Place(A)

1. \(n \leftarrow \text{length}[A] \)
2. for \(i \leftarrow 1 \) to \(n \)
3. do swap \(A[i] \leftrightarrow A[\text{RANDOM}(i, n)] \)

Just prior to the \(i \)th iteration of the for loop of lines 2–3, for each possible \((i-1)\)-permutation, the subarray \(A[1..i-1] \) contains this \((i-1)\)-permutation with probability \((n-i+1)!/n!\).

Termination At termination, \(i = n + 1 \), and we have that the subarray \(A[1..n] \) is a given \(n \)-permutation with probability \((n-n)!/n! = 1/n!\).
Birthday Paradox

Setup:

- \(n \) people

- Do two people have the same birthday?

- Compute expected number of pairs of people that have the same birthday.

- \(X_{ij} \) is indicator random variable associated with \(i \) and \(j \) having the same birthday.

- \(X \) is the expected number of pairs that have the same birthday

\[
X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}
\]

\[
E[X] = E[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}]
\]
Birthday Paradox

\[E[X] = E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^n X_{ij} \right] \]

\[= \sum_{i=1}^{n-1} \sum_{j=i+1}^n E[X_{ij}] \]

\[= \sum_{i=1}^{n-1} \sum_{j=i+1}^n \Pr[i \text{ and } j \text{ have the same birthday}] \]

\[= \sum_{i=1}^{n-1} \sum_{j=i+1}^n \frac{1}{365} \]

\[= \frac{n(n-1)}{2 \times 365} \]

\[= \frac{n(n-1)}{730} \]

Values

\[
\begin{align*}
n &= 23 & 0.69 \\
n &= 28 & 1.03 \\
n &= 64 & 5.5 \\
n &= 90 & 10.9 \\
n &= 140 & 26.6
\end{align*}
\]
Streaks

Question: Suppose we flip n coins, what is the longest streak of heads?

Answer:

- Use indicator random variables.
- Let X_{ik} be the event that there is a streak of length k starting at position i. ($A[i \ldots i + k - 1]$ are all heads.
- Let X_k be the number of streaks of length k.
- $X_k = \sum_{i=1}^{n-k+1} X_{ik}$

\[
E[X_k] = E[\sum_{i=1}^{n-k+1} X_{ik}]
= \sum_{i=1}^{n-k+1} E[X_{ik}]
= \sum_{i=1}^{n-k+1} \text{Pr(streak of length } k \text{ starting at position } i]
= \sum_{i=1}^{n-k+1} 2^{-k}
= \frac{n - k + 1}{2^k}
\]

What is the behavior of $\frac{n - k + 1}{2^k}$? What is it around 1?
When do we have 1 streak of length k

Think about?

$$n - k + 1 = 2^k$$

so if $k = c \lg n$ for some c, we have

$$\frac{n - k + 1}{2^k} = \frac{n - c \lg n + 1}{2^{c \lg n}} = \frac{n - c \lg n + 1}{n^c}$$

- if $c = 1$, then the expected number is around 1.
- if $c >> 1$, then the expected number starts to decrease rapidly.
- if $c << 1$, then the expected number starts to increase rapidly.
- so the longest streak should be around length $\lg n$.